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FOREWORD 

 

 

The computer architecture is the basic information about a computer, 

which is necessary both for its design and programming. The development of 

a new program is the creative process of implementation of a given algorithm 

on a computer with the specific architecture. The programmer creating a new 

program must clearly understand what processes and in what order are 

executed in the computer, which implements that program. Otherwise, the 

calculation process, which is planned by the programmer, may differ from the 

computational process, which is really running in a specific computer. As a 

result, the purpose of the program development may be unachievable. 

Every year, more complicated computer architectures are in operation, 

increasing the degree of inherent parallelism, and the level of information 

security. At the same time, many programmers understand and percept the 

computer architecture as unchanged one for decades. On the one hand, this 

means that programmers can not achieve the most effective implementation 

of its programs in modern computers without the knowledge of new 

architectures. On the other hand, the particular organization of computing 

processes in these computers can lead to inefficient or even incorrect 

implementation of the programs, which are written for legacy architectures. 

Also without architecture knowledge, it is impossible to develop, 

adjust, and analyse many complex and mission-critical applications that have 

special requirements for speed, reliability, information protection, energy  

consumption. 

In the "Computer Architecture" discipline the students learn the 

theoretical information about the architectural elements of modern 

computers and communication between them, as well as gain the skills for 
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their use in the selection and programming of microprocessors. Therefore, 

this discipline is central to the education of specialists in the field of 

"Information Control Systems and Technologies", "Computer systems and 

networks". 
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1. CENTRAL PROCESSING UNIT ARCHITECTURE 

 

 

1.1 Introduction. Basic definitions and principles of computers 

 

To understand what is architecture, and why it is studied and 

investigated, we should recall the history of computers. 

 

1.1.1 The history of computers and their architectures 

The most significant impetus for the electronic computing machine 

invention has been a need for improvement of weapons during the Second 

World War. The problem of calculating the trajectory of shells and bombs was 

important for the preparation of firing and bombing tables. It was desirable to 

calculate such a data in real time. To speed up the solution of this problem in 

1943 the University of Pennsylvania began to develop the first electronic 

computer ENIAC ( Electronic Numerical Integrator And Computer) by the US 

Ministry of Defense order. It started its operation in 1946 and worked until 

1955. 

 The Eniac computer had 18,000 electronic lamps and performed 

multiplication of decimal 10-bit numbers for 2.8 ms. It consisted of several 

integrators-accumulators, registers, constant and input-output data tables. It 

performed iterative algorithms for solving differential equations. The 

programming of such a computer consisted in connection of that registers, 

accumulators, etc. to the network via data lines in accordance with the 

algorithm graph. 

At the first period, this network was done manually using the wires 

with connectors, and the switching field, which resembled the telephone 

exchange. But the algorithm changing process required several days. To 
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accelerate this process, the special patch panel with the network configura-

tion was invented. Then the algorithm exchange was performed manually by 

replacing the "programmed" patch panel. So, Eniac was the programmable 

computer, but both the algorithm set, and data types were very limited. 

In 1943 in England, ten copies of the Colossus computer have been 

developed and manufactured under the leadership of N. Wiener. They were 

used to decipher German radio messages. According to its principle of 

operation this computer was the symbolic correlator, which consisted of the 

1,500 lamps. However, the structure of it also reflected the structure of the 

algorithm, and this algorithm was unchanged. 

Even earlier — from 1939 to 1942 — D. Atanasof at the State College of 

Iowa developed the ABC electronic computer. It performed a single algorithm 

of the linear equation system solution. It has a parallel structure of thirty 

sequential Arithmetic Logic Units (ALU) with a parallel data storage based on 

the capacitor drum.  

Thus, the first electronic computers were able to perform only one or 

more similar algorithms that have been encoded in their control devices or 

interconnect structure. Their ideology was borrowed from the mechanical or 

electro-mechanical calculators, which were distributed to the middle of the 

twentieth century.  They were very costly. And the computer must be the 

versatile installation to be much more popular, and effective. 

In 1936, Alan Turing has proposed the computational model, in which 

the arbitrary algorithm is coded as a table in the control unit, and as an initial 

state of the endless storage tape. This tape was the model of the computer 

memory. Thus the idea of a computer, that can perform any hypothetical 

algorithm, was born. 

It is believed that the idea of implementing a universal programmable 

computer first appeared in the US in the Moore Electrical School of the 
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Pennsylvania University. There was a team of scientists led by von Neumann, 

which in 1946 drew up a prominent report. In this report, the programable 

computer design principles were proposed. Among them were the ideas to 

store both data and program in a single computer memory, to perform the 

data processing using their binary representation and the apparatus of the 

Boolean algebra, to fetch the instructions using the instruction counter. Thus, 

the memory of a computer as  the basis of its functionality and versatility was 

considered. 

In those days, the computer structure was significantly dependent on  

the memory design. The register memory based on the vacuum tubes was fast 

but too expensive and unreliable. The memory based on the mercury acoustic 

delay lines was very popular. This memory was of the sequential type, and 

therefore, it determined the sequential, bit-wise processing of the data. The 

Williams cathode ray tube (CRT) recorded the data bits in the form of pixels 

on the tube screen and provided the random access to the data. But the 

volume of such a memory not exceeded thousands of bits. 

T. Kilburn, and F. Williams were the first who in June 1948 have 

calculated the first program in the computer SSEM (Small-Scale Experimental 

Machine) at Manchester University. It was the world's first stored-program 

computer, which had successfully demonstrated the practicality of the stored-

program approach and the Williams tube memory effectiveness.  SSEM was 

redesigned into the Mark1 computer, which has runned the first program in 

April 1949.  

The Cambridge professor M. Wilkes took over the idea of the 

Neumann’s group and has implemented his first program in the computer 

EDSAC (Electronic Delay Storage Automatic Computer) in 1949. A year later, 

the computer EDVAC (Electronic Discrete Variable Automatic Computer) was 

in the operation in the Moore School. In fact, the Neumann group report was 
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compiled to develop this computer.  Both these computers were built on the 

delay lines. Therefore, they operate synchronously and  sequentially, that is, 

the words are processed bit by bit. 

At the same period of time in Kiev, S. A. Lebedev has developed the 

computer MESM (Malaja Electronno-Stchetnaja Mashina), in which many new 

ideas have been incorporated. One of them is the parallel ALU data processing 

(such as was first used in the Whirlwind computer in 1951 in the USA). 

Second of them is the microprogramming principle (which was published in 

1951 and implemented in 1957 by M. Wilks).  MESM was running for the first 

time in 1950 and was put into operation in late 1951. Its successful use for 

complex calculations in the defense projects has contributed to the 

emergence, and expanding of the computer industry in the USSR. 

The Univac-1 machine, which was produced from 1951 by the Univak 

affiliate of the Remington company, gave the big push for the commercial 

distribution of computers. It contained 5000 vacuum tubes and hundreds of 

delay lines for a thousand 12-digit decimal numbers. The program and data 

input-output was performed by switches, electric typewriter and a magnetic 

tape device. In 1953, this company was an early adopter of the random access 

memory (RAM), based on the magnetic rings. This memory invention 

improved the computer performance by 50 times. 

The increased memory capacity and the random access to it made it 

possible to introduce the high-level language programming and algorithmic 

languages like Fortran. As early as 1952 the Remington company offered the 

use of a first interpreter for the program with the algebraic entry. A female 

scientist Grace Hopper has developed the first compiler for the Univac 

computer. She also participated in the development of the Cobol language. 

Thus, in the 50-s there were first programming languages, and some of them, 

such as Algol, Fortran, Cobol become standard languages in the 60-ies. 
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Despite the high cost of the of computers of the first generation (about 

one million US dollars), their production became commercially viable. Most 

computer implementations were found in banks and government offices.  

There they were used for the statistical data processing and the cash payment 

account. In these areas, the computer can replace hundreds of employees, 

many times accelerate the solution of problems and, therefore, its use makes a 

profit. Therefore, the main application of computers of the first generation 

was the accumulation and processing of large amounts of structured data that 

were stored on magnetic tape. In past 50-ies, there was a number of computer 

companies, which competed in speed and price of computers. Thus, in 1959, 

the DEC (Digital Equipment Corporation) company released the 18-bit 

computer PDP-1 with the RAM up to 32 Kwords, which cost only 120 

thousand US dollars. 

The RAM miniaturization and use of the semiconductor devices instead 

of lamps (second-generation computers) contributed to increased RAM 

capacity and performance. The concept of the operating system became 

possible when the RAM capacity achieved several tens of thousands of words 

in 60-ies. The operating system (OS) provides the users with new capabilities 

such as virtual memory and time scharing. The study of OS in the early 60-ies 

in Dartmund College, held by General Electric, has pushed to the processor 

time scharing. The time-sharing system made it possible for multiple users to 

manage a single computer at a time. This made it possible to significantly 

reduce the rent for the use of a computer. 

The software in those days was the expensive and necessary 

complement to each computer. And this was the reason for the disappearance 

of software incompatible computers in the market. For example, in 1960, the 

IBM computer Stretch was the high technical achievement, in which the 

pipelined instruction  processing and preliminary analysis of the instruction 
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queue were introduced. But this and other models of computers have lost the 

commercial success due to software incompatibilities and other difficulties of 

working with them. 

Therefore, IBM (International Business Machines) in 1961 committed 

itself to create a unified lineup of computers. Computers need to be really 

versatile — they are used both for commercial and scientific works, are 

coupled with a variety of peripheral devices via standard interfaces. In the 

development of new computers, the leading roles were played by Jim Amdahl 

and Gerrit Blau, who introduced the name of the computer architecture. The 

basic idea of the architecture concept was the fact that all members of a  com-

puter lineup have to be characterized by the same architectural features: the 

same instruction set, addressing modes, etc. Due to this, they can implement 

the same program with the equal results for the original data. To implement 

the same system of complex instructions in the variety of processors, the 

microprogramming was introduced in all the computer models. 

Simultaneously, six models of computers with an IBM-360 architecture 

were designed, which were differed among themselves by the cost and speed. 

Up to 47 different peripheral devices in any configuration could be installed in 

the sold computers. The cache RAM was first introduced in the 195 model of 

the system in 1969. In 1970, the IBM-360 architecture was replaced by the 

IBM-370 architecture. The inner architecture of the IBM-370 processors 

clearly show the details of modern superscalar microprocessors. So, the IBM-

360/370 architecture became the most popular architecture in 60-, and 70-

ies. 

The IBM-360 computer contained several cabinets and was installed in 

a separate room. The central processing unit (CPU) was housed in the main 

frame of the main cabinet of the computer. Therefore, a large computer was 

usually called (and still is called) as a mainframe. In our country, counterparts 
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computers with this architecture were known as the EC-1010,…, EC-1065 

models. The next generations of large IBM computers were designed on the 

microprocessors, which instruction sets had inherited the IBM-360/370 

instructions to meet the portability requirements of the software. 

The computer history shows that successful architectures are not 

those architectures that incorporate advanced scientific ideas, but those that 

are supported by the best sales management and market conditions. For 

example, the company Burroughs had introduced in their computers many 

technical innovations, but they did not contribute to its success. So, in its 

computer B5000, the multiprogram operating system, and the virtual memory 

were used at the first time, which preceded their widespread adoption in the 

decade. But the computer performance in 1963 did not satisfy the users. In 

the most perfect machine of this brand B6500, sample 1966, the operating 

system provided the multiprogramming, parallel processing, time-sharing 

operation, and even the implementation of programs with different instruc-

tion sets. But these achievements did not save the company from the downfall. 

Another example is a company Control Data Corporation (CDC). 

Seymour Cray, its founder, in 1963, has developed the CDC-6600 model 

consisting of multiple ALUs, and peripheral processors. He has found many 

signs, which were introduced later in the RISC-processors, such as, simple 

instructions; instructions working with the registers are separated from other 

instructions; register instructions have three address fields; instruction 

format is simple and has the equal field widths; pipelined instruction 

implementation; multiple hardware resources are redistributed between the 

instruction streams, as in the modern superscalar processors; register 

renaming technique. 

As a result, the speed of the CDC computer was three times the speed 

of the Stretch computer, but it has not received the popularity. Ideas, tested in 
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it, have been introduced in the first Cray supercomputer Cray1, which entered 

service in 1976. 

In 1965, the company DEC pushed the 12-bit PDP-8 computer, which 

gave the impetus for the development of minicomputers. It was the first 

computer, which was sold for less than 20 thousand USD. The presentation of 

the DEC PDP-11 architecture in 1970 was the most significant. A 

minicomputer architecture is characterized in that, that all of its processors 

and peripherals are connected by the asynchronous bidirectional common 

bus. This allows the computer to form a configuration in a modular fashion. 

A few years later this architecture was repeated in the USSR in the CM-

4, M-4030, Саратов computers, and later — in microcomputers 

Электроника-60, and ДВК.  

The PDP-11 architecture was perfect one, so it has become very 

popular among the programmers. This architecture is repeated in 

minicomputers, and workstations of the VAX architecture after its upgrade. 

On the VAX architecture, and its successor Alpha-RISC the DEC company has 

broken its story because it could not compete with Intel architectures in the 

market, in 90-ies. 

In 1968, the Nova architecture of the Data General company also  was 

included in the minicomputer history.  This model was most popular in the 

world among the minicomputers for its price of only eight thousand US 

dollars. This architecture is distinguished by the built-in read-only memory 

(ROM), which stored the software. Then this architectural feature was 

integrated in all microcomputers. 

In the late 60-ies, in Kiev Institute of Cybernetics the minicomputer  

МИР-1 has been developed and implemented in the production. It is 

distinguished by the fact that his high-level language interpreter was 

implemented in the form of the microprogram firmware. This computer was 
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respected among engineers, researchers, thanks to user-friendly interface. His 

successor MИР-2  had a console with display and stylus, and was considered 

as an engineer personal computer (PC). 

The quick growth of the calculator market in the late 60-ies was the 

direct cause of the microprocessor invention. It is believed that the 

appearance in 1971 of the І4004 chip, developed by the Intel engineers, was 

the beginning of a microprocessor era. The chief designer of this 

microprocessor, M. E. Hoff has created it after he has been inspired by the 

PDP-8 architecture. The emergence of the microprocessors became possible, 

clear and inevitable when the number of transistors on a chip became more 

than a few thousand. 

The architectural features of the microprocessors were constantly 

expanded with increasing the number of transistors on a chip. Back in the 

mid-1960s, Gordon Moore, one of Intel's founders, analyzing different 

successful chip manufacturers, noticed that about every two years the number 

of transistors doubles in the chips. This law, named after the Moore, have 

adopted by the Intel economists and they demanded that the designers of new 

chips perform it, because it was the key to business success in the field of 

microelectronics. As a result, this law is strictly carried out for decades and is 

still in use. 

Therefore, the microprocessor architectures were constantly growing 

with the grow of the number of transistors in a chip. Thus, the I8080 micro-

processor had ca. 4500 transistors and provided a single program execution. 

The I8086 microprocessor with 29 thousand transistors had several 

programs running under the operating system. 275 thousand of transistors in 

the I80386 microprocessor provided already the multitasking and the virtual 

memory. 
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According to the Moore's law, the memory chips also have developed. 

The advent of the cheap dynamic memory chips in the early 1980s allowed to 

design small-sized memory with the capacity of up to 1 MB, and thus ensured 

the mass production of personal computers. After the RAM capacity reached 

the values 4-10 MB, it has become possible to run the operating system with a 

graphical interface, such as Windows-3. When this capacity reached 

approximately 100 MB, it was possible to process the multimedia data in 

computers. 

New architectural features in the microprocessors repeated the same 

features in the mainframes of the 1960s - 1980s, while the number of 

transistors on a chip did not become greater than the total number of 

transistors it the mainframe chips. This limit is equal to about 1 mln. 

transistors and has been crossed in the early 90-ies. 

At present, several billion of transistors are available for developers of 

new microprocessors. All the architectural ideas, which were embedded in the 

old computers, have been exhausted. Moreover, miniaturization is 

approaching the limit of using the silicon technology. For the constant growth 

of the computer speed the new architectural ideas are of demand. 

Based on the review of the computer and its architecture history we 

can formulate the following conclusions. 

· The advent of computers with the same architecture occurred due to 

the high programmer labor intensity and the need for software portability 

between different computers. 

· Modern architectures, to a large extent are formed as a set of 

reinterpreted architectural features which were invented before. 

· Most of the architectural features were invented at a time when  the 

hardware resources were severely limited. 



 15 

· The purpose of the computer architecture, like military tasks, 

scientific calculations, economic calculations, management,  affects it. 

· The development of computers and, consequently, their architecture 

is greatly influenced by the commercial benefits and militaristic needs. 

· Miniaturization and new inventions allowed to increase the memory 

amount. When a certain memory limit of the computer was achieved then the 

architecture, programming techniques, and operating system were 

fundamentally changed. 

· Not only the potential effectiveness, speed, size, etc. of a new 

architecture, but the commercial management, competition, and market 

conditions affect the computer architecture success.  

· The high cost of hardware and time resources, a small amount of RAM 

of computers in the early 60-s led to introduce a system of time-sharing, 

multi-tasking, memory protection, virtual memory, cache memory, remote 

access to the processor. 

· The architecture represents the main knowledge about the computer 

potential properties, which serve as a standard both for computer designer 

and for programmers. 

 

1.1.2 Basic definitions concerning the architectures 

To understand the structure of the existing computers, or successfully 

complete the development of new computers, to communicate with experts 

and to understand the relevant technical literature, it is necessary to know the 

number of definitions, axioms and principles of computer science. Some of 

them are listed below. 

State of the computer  is a state Sti of all its memory cells in discrete 

time moment i of its operation. For example, the microprocessor state is 

determined by the content of its instruction, data registers, program counter, 
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flag triggers, interface buffers, as well as all the RAM cells. When we deal with 

the hand made model on the sheet of paper, then its empty squares can serve 

as the memory cells, in which the writing is performed by a pen. 

The different constructive objects can be stored in the memory cells. 

They represent individual bits, characters, words, strings, numbers, as well as 

more complex objects, such as records, lists, files, arrays, and the like. These 

constructive objects specify the state of the computer according to the 

semantic of the computational process implemented in. 

The computational process  is a succession of states Sti of a computer, 

beginning by the initial state St0, and ending by the resulting state StE. 

Moreover, the resulting state can be inaccessible, for example, in a digital 

signal processor, or in the control processor. In the initial state, the defined 

memory cells store the initial data, and in the final state the cells  store the  

calculation results. During the computing process, the constructive objects are 

read from the memory, converted, calculated, forwarded, and stored by means 

of certain operations, instructions, which are specific to the computer. 

The algorithm is the computational process of calculating a specific 

function F in the computational model, which is described by the strict 

mathematical concepts. 

This definition was firstly formulated by E. L. Post, and A.Turing. In the 

Turing’s definition, the Turing machine is taken. This machine is constructed 

as the endless tape and the control unit. The writing-reading head can read 

and write data bits on the tape. The control unit controls the movement, and 

operation of the head according to the algorithm. The state of this model is 

determined by the state of the control unit, the position of the head, and the 

state of the tape, and is called the Turing machine configuration. 

The concept of the algorithm exists as an intuitive concept, rather than 

as a strictly limited definition. This concept implies firstly, that there must be 



 17 

a specific subject or a processor that is able to read, recognize these objects 

and correctly perform operations with them according to the algorithm. 

Second, certainly the algorithm is designed to efficiently compute some 

useful function F in order to obtain the correct result for a particular kind of 

input data. Moreover, the reaching of that result must be guaranteed. 

Third, for ease of understanding and implementation of the algorithm, 

the minor details of the computational process (which usually do not affect 

the computational model) are not taken into account. A set of different 

computational models is usually used in a practice. They are distinguished 

both in the field of application and in the abstraction level. In both situations, 

the model must be as simple as possible to arrange the computational process 

in useful manner. 

The concept of the constructive objects serves not to consider the 

minor details of the algorithm as well. The constructive objects usually form a 

set of abstraction levels. For example, if we consider the array processing then 

we may not consider the separate data of that arrays, and moreover, we could 

not take into account the processing of separate bits of that data. 

So, the algorithm concept is inseparably connected with the meanings 

of the computational process and computational model, which deal with the 

constructive objects (see Fig. 1.1). When we say about some computational 

process, then we consider that it takes place in a given computational model.  

When we have the proper computational model, then we may arrange some 

computational process on it. And in both these situations, we deal with the 

algorithm, which meaning remains not exact. 

Therefore, the definition above is merely an explanation of the algo-

rithm with the goal to represent the architecture concept below. Thus, the 

algorithm can exist apart from the computational model - a model of the rules 

list — or be part of the model as a control unit in a Turing machine, or to be 
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the very model, for example, a finite state machine model or the dataflow 

graph model. For example, if the executor of the algorithm is a man or a 

programmed processor, then the algorithm is traditionally referred to us as  a 

list of instructions that should be followed consistently. 

 

 

 

 

 

 

 

 

 

 

 

So, we can give the following definition of the architecture and other 

definitions connected with. 

The architecture is a model of a real computer with a level of details, 

which is sufficient for its development or programming, and provides the 

implementation of the corresponding  set of algorithms. 

The program is an algorithm that is specified on the computer 

architecture by the means of the algorithmic language or the machine codes 

depending on the level of the architecture details, or the abstraction level. So, 

a program, which is written for a particular architecture, should be computed 

for the same input data with the same intermediate and final results on 

different computers that have the same architecture. 

The architecture from the developer’s point of view is a computer 

model with a level of details that is sufficient for its development and 

Algorithm 

Computational 

model  

Constructive objects  

 Process of 

computations 

Fig.1.1. Algorithm concept 
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production. The architecture, as a rule, includes information about the 

instruction set, address space, address management, system interrupts, 

memory protection, interfaces, peripherals, that is, all information on the 

detailed terms of reference for the computer development. Description of this 

architecture does not include information on the element basis, its speed, 

computer dimensions, power consumption, security settings, etc., as they do 

not directly influence the computing process. 

The architecture from the programmer’s point of view is a computer 

model with a level of detail which is sufficient for a successful programming 

certain computational tasks at a particular algorithmic language. 

For example, a programmer in Pascal language takes into account the 

model of computer memory that is addressed by a 32-bit bus, with the ALU, 

which handles integers or floating point numbers, with the memory at an 

arbitrary amount of magnetic hard disk, a keyboard and a display, the access 

to which is provided by the procedures that he/she can find in the library of 

Pascal procedures. 

Each line of the algorithm, described in the assembly language, means 

a specific machine instruction, performing basic operations with data or 

controlling the selection of the next instruction. Therefore, the assembly 

language programmer needs to know the computer architecture perfectly in 

details up to the separate register and its bit, the interrupt code, the 

peripheral device address, and the like. 

Some of the architectures for the high-level language is defined as an 

interface between the language and the system software, which directly 

implements the compiled program. The operating system or the virtual 

machine model usually serves as such an interface. 

The architectural platform is a common computer architecture, 

which guarantee to be consistent over the next few years. The architectural 
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platform can be used in the new computing tools and computers, ensuring the 

software compatibility, the use of prefabricated components in computers, 

connection of existing peripherals and devices manufactured by other 

companies. The most famous architectural platform is i80x86. Its synonym is 

32-bit Intel Architecture (IA-32). 

The architectural paradigm is a set of common principles and 

approaches for designing computer architectures. For example, the computer 

ENIAC, was made using the special processor paradigm, which uses the 

mapping the algorithm graph into the processor structure with configurable 

connections. That is, the graph node is associated with an operating unit, i.e.  

adder or multiplier, and its edge is mapped into the link between the 

operating units. Most of the computers mentioned above are built on the von 

Neumann machine paradigm, which will be discussed below. 

 

1.1.3 Principles of computer design 

To explain the choice of a particular computer architecture and 

instruction set, let us consider the principles of their design, which were 

invented and perfected over the years of the computer history. 

The hierarchy principle means that the complex computing function 

F = (F1, F2, ..., Fi, ...), that is the composition of functions Fi, is implemented in 

the calculator S = (S1, S2, ..., Si, ...), where each function Fi is performed by the  

certain unit Si. In turn,  functions Fi are performed by modules of the system at 

a lower level of the hierarchy. 

The principle of hierarchy allows us to understand, design and 

implement complex technical systems, which are computers. The overview, 

synthesis (design), or analysis of the system is usually directed upwards 

(down-up concept), i.e. from the elements to complex units or downward 
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(up-down concept), when the system is first treated at a high level and 

gradually descends to the level of elements. 

This principle is the basis of the design of any complex technical 

system. To deal with some complex object it must be represented as simple as 

possible. According to this principle, we can see the different abstraction 

layers in hardware, data structures, and software. So the computer is built as a 

set of building blocks, which in turn are implemented on the base of modules, 

such as ALU, register, counter, and the like. Those, in turn, are performed on 

the basis of certain logical elements. Similarly, the hierarchical dataset 

consists of individual words, which, respectively, are sets of bits. The complex 

program consists of several software modules, which contain routines that are 

written as a sequence of operators, and in the compiled program each 

statement is substituted by one or more machine instructions. 

The concept of operational and control automata claims that the 

processor S can be effectively realized, developed and implemented as the  

composition of operational and control automata. The first one performs a 

specific set of operations with the data, and the second one controls the 

execution of these operations according to a given algorithm. For example, a 

data processing unit, which is discussed below, is composed of an arithmetic 

logic unit (ALU), data registers, representing an operating automaton, and the  

control automaton, which supplies control signals to the registers and ALU 

according to algorithms of the processor instruction performing. 

According to the principle of program control, the operations of the 

function F calculation are coded by instructions that are decoded by the 

control automaton and executed in the operation automaton. The process of 

calculating the function F is described by the algorithm that is represented as 

a list of instructions, in which their order is encoded as well. I.e., such a list 
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represents a program. To change the order of instructions dynamically the 

control, or branch instructions are used. 

Microprogram control principle. It is derived from the previous 

principle. According to it, the implementation of the complex operation, such 

as a processor instruction, is decomposed into micro-operations, which are 

carried out in the serial-parallel order by separate units of the operational 

automaton. Micro-operations, which are performed simultaneously, are 

encoded in a single microinstruction, in which also the order of 

microinstruction execution is encoded. A set of microinstructions is named as 

a firmware, and is stored in the read-only memory (ROM). 

The principle of storing programs and data in a single memory 

(von Neumann principle) is the program control principle, according to 

which the instructions are stored in memory and processed in the same way 

as the data are, the next instruction starts only after the end of the previous 

instruction, the sequence of instructions is given by the natural order of their 

location in memory except for the branch instructions. Since the memory 

usually has a linear addressing, sequential instructions are fetched from it by 

an instruction counter.   

Thanks to this principle, it is relatively easy to define the compu-

tational process in computers and carry them to build programs. In our time, 

the computing process can be arranged by many other methods using the 

automating programming, designing architectures, which are working on 

different principles. But this principle remains the most common principle of 

both programming and designing of most architectures. 

But the von Neuman machines have a lot of disadvantages, which limit 

their use in our time. In the computer, which is running on this principle, the 

instructions and data types are distinguished implicitly. It is believed that the 

word, which is fetched to the instruction register, is an instruction but not a 
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datum, an arithmetic instruction refers correctly to the data of some 

particular type, and the branch instruction takes a branch to a specific 

instruction of the program. But it is possible that the arithmetic instruction 

would fetch the data of improper type, or even not the data at all. When the 

branch instruction occasionally makes the jump to the data array, the 

computational process is failed. Such situations occur in most cases of 

malfunctioning of the computers.  

It is also contrary to the requirements of programming languages, 

according to which the operations refer to the constructive objects (numbers, 

strings, arrays) explicitly, and the mismatch of operation types and objects is 

not allowed. 

According to this principle, it is impossible to perform simultaneously 

multiple instructions in the processor. Therefore, due to the strict observance 

of this principle, it could not increase the computer performance by the 

parallel implementation of operations, which hampers the development of 

computer technology. In modern architecture, this principle is violated in 

hardware to improve performance. Because of this, the reliability of the 

software, which has developed in accordance with the von Neumann 

principle, can decline. 

The synchronous control principle means that all the computer 

memory elements, including registers, change their state Sti simultaneously 

under the influence of a common clock impulse generator, and time is 

measured at discrete moments. Then the period of clock impulses is 

determined by the maximum delay of the signal which is propagated from one 

clocked register to other one. 

Every computer, which was designed in the past three decades, can be 

considered as a set of logical circuits and a set of registers that are clocked by 

a common clock signal. The process of information processing consists in that 
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signals, outputted from the registers at the beginning of each cycle, are 

propagated through logic circuits with inherent delay and converted therein 

according to logical functions, and are stored in the registers at the end of the 

clock cycle. This information processing order in the physical layer of design 

is clear and is supported by all modern computer-aided design (CAD) tools for 

the digital circuits. 

At a higher level — the level of parallel processes — due to this 

principle, the parallel computing processes terminate or exchange the results 

simultaneously under a single source of control instructions, which is the 

manager of  the operating system. The synchronous control principle 

manifests itself at the level of procedures as well. For example, the consistent 

implementation of program streams is planned by quanta of time, or in the 

case of the multiprocessor system programming. 

An asynchronous control principle sometimes is used, when the 

memory element changes its state only by the special signal of the data 

availability. This signal is generated by a logic circuitry which processes the 

data. Therefore, the computer state can be changed faster, and the computer 

can have higher performance. But it is more difficult to design such a 

computer, and its speed can be lost when it is connected to the devices 

controlled synchronously or performing algorithms with the feedback of data. 

This principle is often used in telecommunication systems, for example, in the  

computer network protocols. 

Due to the principle of balanced flexibility and specialization, the 

optimal computer architecture lays on the boundary of universal and 

specialized architectures. It is known from the computer design practice, that 

the general purpose processor is capable performing a large set of algorithms, 

but its speed, power consumption, size, and cost are two — three orders of 

magnitude worse than these parameters in the application specific computer 
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configured to perform a single algorithm. The mainframe computers, which 

are designed to perform a certain set of sophisticated algorithms for a small 

period of time, i.e., supercomputers have the largest parameters of price, 

performance, size, power consumption. 

In addition, a plurality of computer algorithms for a new architecture is 

defined by the number of programs that can be created for it. This number is 

limited as well as the program design time, or the number of the 

programmers in the development team is limited.  

Therefore, designers of new computational tools are always looking for 

a compromise between the flexibility and cost of a new computer in its 

production and use, including the software, trying to use the old, well-

behaved architectures. For example, mobile communication devices perform 

more and more algorithms, but this set of algorithms is limited to, at least, 

opportunities of these devices to save the energy, their battery charge, and 

weight. This also corresponds to the following principle. 

According to the principle of effective multi-functionality, increasing 

the functionality of the computer should not lead to a proportional increase in 

its cost and complexity. In this regard, the von Neumann architecture is 

perfect, as it ensures the execution of arbitrary algorithm with unchanged 

hardware costs. 

The principle of parallel processing of information. Due to this 

principle, the independent steps of calculating a function F and management 

are shared between several operating and control automata (or processors), 

in order to achieve the high performance and (or) high reliability of 

computers.  

The most apparent and therefore, more common are the sequential 

algorithms which are described, for example, by sequential programs. 

Operators of such an algorithm are executed sequentially on a single resource, 
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such as an ALU in the Neumann processor. But to accelerate the algorithm, 

using the same element basic, it is possible only having involved the principle 

of parallel processing. 

According to the principle of pipelined computing, the  calculation of 

the function F is divided into successive stages F1, F2, ..., FK, each of which is 

calculated in a separate computing resource Si of the pipelined processor. The 

operand Хj is sequentially processed while passing through resources Si, called 

pipeline stages. Due to the fact, that the flow of the data Хj through the 

pipeline is a continuous one, the overall throughput is increased up to K times, 

and up to K operands are considered to be processed in parallel. 

The variability principle means the ability to change a set of 

computer components and connections between them. This principle is 

manifested in the properties of persistency and scalability of computers, the 

possibility of adapting the architecture to the specific nature of the task. It 

ensures the implementation of the multifunctionality principle.  

The homogeneity principle is that the structure of the computer or 

parts of it includes the same elements and the repetitive connections. This 

reduces the cost to design, manufacture and operation of the computer. The 

computer memory, consisting of thousands or millions of identical cells, is 

based on this principle. All multi-processor computers consist of multiple 

identical processing elements. Moreover, due to the principle of homogeneity, 

the task scheduling in the multiprocessors is significantly easier than in the  

heterogeneous computers,  consisting of  unequal processors. 

The principle of unification is a universal principle of creation of 

technical systems. This principle insists that an object that must interact with 

other objects, has to be created according to the standard requirements. The 

object is connected seamlessly unified with other objects even when they 

were manufactured in different locations and at any time. The idea of a 
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computer architecture is the result of this principle so that every program 

runs correctly on any computer of the same architecture. 

The main factor in the unification of the computer technology is the 

interface. An interface as a standard means of connection in a computer is 

used both in busses and in programs. The interface between a man and 

hardware and software system is of particular importance because it helps to 

effectively create synergies between the various operators and the computer 

using the same software. 

 

1.1.4 Architecture hierarchy 

Due to the principle of the hierarchy, two or more architecture levels 

are considered in the modern computers. The computers with as many as five 

levels exist, as shown in Fig. 1.2.  

 

 

 

 

 

 

 

 

 

 

 

Fig.1.2. Hierarchy levels of the architecture 
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The microarchitecture level is considered as the bottom architecture 

level 1. It describes the details of the hardware architecture implementation. 

They are how the arithmetic and logic instructions are implemented in ALU, 

the inner structure of the registered RAM, how the busses connect the units of 

the processor, and which control signals control the data writing into 

registers and data output to the common buses, and so on. 

Each processor series has its own microarchitecture. Therefore, the 

microarchitecture can be valued as a kind of the architecture rather relatively, 

because it depends on the hardware element basis. 

On some processors, the operation in the microarchitecture is 

controlled directly by hardware. On other processors, it is controlled by a 

microprogram. So, the microprogram is an interpreter for the processor 

instructions at the level 2 architecture. It fetches, examines, and executes 

instructions one by one, using ALU and registered RAM to do so. For example, 

for an ADD instruction, the instruction would be fetched, its operands located 

and brought into registers, the sum computed by the ALU, and finally the 

result routed back to the place it belongs. On a processor with hardwired 

control, similar steps would take place, but without an explicit stored 

microprogram to control the interpretation of the level 2 instructions. 

The level 2 architecture is called as the Instruction Set Architecture 

level (ISA level). Every computer manufacturer publishes a manual for each of 

the computers it sells, entitled ‘‘Machine Language Reference Manual,’’ or 

something similar. These manuals are really about the ISA level, not the 

underlying levels. Moreover, the level 1 is usually a secret information. When 

such a manual describes the processor’s instruction set, it is in fact describing 

the instructions carried out interpretively by the microprogram or hardware 

execution circuits.  
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The next level is usually a hybrid level. Most of the instructions in its 

language belong also to the ISA level. In addition, there is a set of new 

instructions, a different memory organization including the memory 

protection, the ability to run two or more programs concurrently, and various 

other features.  

The new facilities added at level 3 are carried out by an interpreter 

running at level 2, which, historically, has been called an operating system. 

The Operating System (OS) is a set of programs that allows the user to 

organize effectively the performing a variety of computing tasks in the 

computer, and take the computer system in working condition. The main 

tasks of OS, running at level 3, are loading the user program and data in the 

memory, starting its operation, providing the parallel implementation of 

several programs in the time-division mode, triggering and working off the 

exceptions. The special instructions and hardware, which are not accessible 

directly from the user programs, support these tasks. 

Those level 3 instructions that are identical to level 2’s are executed 

directly by the microprogram (or hardwired control), not by the operating 

system. In other words, some of the level 3 instructions are interpreted by the 

operating system and some are interpreted directly by the microprogram (or 

hardwired control). This is what we mean the level 3 by the ‘‘hybrid’’ level.  

There is a fundamental break between levels 3 and 4. The lowest three 

levels are not designed for use by the usual programmer. Instead, they are 

intended primarily for running the interpreters and translators needed to 

support the higher levels. These interpreters and translators are written by 

people called the system programmers who specialize in designing and 

implementing new virtual machines. Levels 4 and above are intended for the 

application programmer with a problem to solve. 
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Another change occurring at level 4 is the method, by which the higher 

levels are supported. Levels 2 and 3 are always interpreted. Levels 4, 5, and 

above are usually supported by translation. Yet another difference between 

levels 1, 2, and 3, on the one hand, and levels 4, 5, and higher, on the other, is 

the nature of the language provided. The machine languages of levels 1, 2, and 

3 are numeric codes. Starting at level 4, the languages contain words and 

abbreviations meaningful to people. 

Level 4, the assembly language level, is really a symbolic form for one 

of the underlying languages. This level provides a method for programmers to 

write programs for levels 2, and 3 in a form that is not as unpleasant as the 

virtual machine languages themselves. Programs in assembly language are 

first translated to level 2, or 3 language and then interpreted by the 

appropriate virtual or actual machine. The program that performs the 

translation is called an assembler.  

The architecture level 5 usually consists of languages designed to be 

used by applications programmers with problems to solve. Such languages are 

often called high-level languages. A few of the better-known ones are C, C++, 

C#, Java, Pascal, Python, and PHP. Programs written in these languages are 

generally translated to level 3 or level 4 by translators known as compilers.  

In summary, the key thing to remember is that computers are designed 

as a series of levels, each one built on its predecessors. Each level represents a 

distinct abstraction, with different objects and operations present. By 

designing and analyzing computers in this fashion, we are temporarily able to 

suppress irrelevant detail and thus reduce a complex subject to something 

easier to understand. 

 The set of data types, operations, and features of each level is called its 

architecture. The architecture deals with those aspects that are visible to the 

user of that level of abstraction. Features that the programmer sees, such as 
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how much memory is available, are part of the architecture. Implementation 

aspects, such as what kind of technology is used to implement the memory, 

are not part of the architecture. Therefore, the levels 1, 2, 3 we can mean as  

the architectures from the designer’s point of view, and the levels 4, 5 - as the 

architecture from the programmer’s point of view. In common practice, 

however, computer architecture and computer organization mean essentially 

the same thing.  

 

1.1.5 Problems 

1) For which purpose the OS, and the multiprogramming mode 

invented were? 

2) Why the IBM company rent their computers but not sold them in 

50-s? 

3) Estimate the dimensions, speed, and power consumption of a 

hypotetic mainframe in early 60-s, which implements the architecture of the 

Pentium microprocessor, containing 3.1 mln. transistors, and operating with 

the clock frequency of 60 MHz. Note, that in 60-s the main computer module 

was the printed circuit board of dimensions ca. 150x200x15 containing ca. 40 

transistors, operating at 1 MHz with the switching current approx. 10 mA, 

power voltage 12 V.  

4) Estimate the volume of the tape storage shelves for 1 GB of data in 

the mainframe data centre. Note, that the tape of the width 16 mm, and 

thickness of 20 µm stores 30 bytes per mm. 

5) RAM on the ferrite cores has the volume of 1 MB. A worker in 60-s 

can weave 50 cores per minute making the storage, and had a fee 300 USD per 

month. Estimate the cost of the RAM. 

6) Each line of the Basic program has its own number. The Basic 

interpreter was the first product of the Microsoft company. Explain, why. 
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7) The algorithm is given by a formula y = a⋅x2 + b⋅x + c. Explain, what 

are the constructive objects, computational model, and computational 

process. 

8) The algorithm of the finite state machine is given by the state graph. 

Explain, what are the constructive objects, computational model, and 

computational process. 

9) The algorithm of the finite state machine is given by the network of 

this machine. Explain, what are the constructive objects, computational model, 

and computational process. 

10) The algorithm of calculating the sum values is given by the Excel 

table.  Explain, what are the constructive objects, computational model, and 

computational process. 

11) The algorithm is given by the program on the assembly language. 

Explain, what are the constructive objects, computational model, and 

computational process. 

12) The algorithm is given as the text on the HTML language. Explain, 

what are the constructive objects, computational model, and computational 

process.  

13) Write the algorithm of the multiplication of two digit decimal 

numbers by the school method. Explain, what are the constructive objects, 

computational model, and computational process. 

14) Describe the architecture of the decimal handheld calculator from 

the programmer’s point of view. 

15) Describe the architecture things of the processor implementing the 

HTML language (constructive objects, structure, programming language, etc.).  

16) Write the program for computation (a sequence of the pushed 

buttons) of the 4-th order polynomial for the architecture of the handheld 

calculator (modeled by the Calc program). 
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17) Name 6 most popular architectural platforms. 

18) Draw the graph of the algorithm calculating the function 

z = a⋅x2 + b⋅x + c + d⋅y2 + e⋅y + f⋅x⋅y. How many steps has to perform the von 

Neuman machine, and the computer, which calculates this function fully 

parallel? Calculate the speed-up factor. 

19) Draw the pipeline structure, which calculates the formula in the 

task 7. Calculate the speed-up factor comparing to the sequential machine, 

and considering that the data flow through the pipeline is unlimited. 

20) Propose the instruction set of the architecture, which performs the 

task 18. 

 

1.2 Element basis of computers 

 

As shown above, the computer architecture has evolved interrelated to 

the development of their components. The revolutionary impetus to the 

informatics and computerization of the society have been the emergence and 

widespread of the technology of the development and manufacturing of large 

scale integral circuits (ICs). Although, the computer architecture, in principle, 

has no information on the element base, it is largely determined by the 

characteristics of ICs, which it uses. Therefore, hereinafter we do a brief look 

at element basis of modern computers. 

 

1.2.1 Element basis of integrated circuits 

ICs are both the most important products of the electronic industry 

and the basis for all items of computer equipment. The transistor is an 

elementary component of the IC. The inverter, the simplest element of IC,  

consists of two complementary transistors with the structure of the metal-

oxide-semiconductor (CMOS) as shown in the functional diagram in Fig. 1.3. 
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b) 

 

a) 

c)  

d) 

Fig.1.3. Functional diagram of the invertor (а), its symbol (b), its truth 

table (c), invertor connected to the loading (d) 

 

The p-channel transistor VTp in the inverter is always in the opposite 

state, that is in the complementary state with respect to the n-channel 

transistor VTn, as shown in the truth table in Fig.1.3, c. In this table, the 

symbol H (high) is a high signal level, i.e. logic 1, a L (low) is a low level, or 

logic 0. The CMOS inverter has three components of power consumption: 

static, dynamic consumption and consumption in the load. 

In the static mode, either the top or the bottom transistor of the 

inverter is closed. Therefore, the CMOS inverter in this mode consumes almost 

nothing. At the time of the inverter switching, both transistors in a very short 

period of time can become open and then there is little impetus to the 

dynamic current consumption. 

But most of all the inverter power dissipation is due to the load 

current, which charges or discharges the load capacitance CH and flows 

through the resistance rw of the connection and resistance of the open 

transistor. The energy Es , which is considered to be consumed by the inverter 

when it is switched, is equal to the energy dissipated in the resistor rw and 

open transistor, and is the charging energy of the capacitance CH, that is, it can 

be estimated as 

UI VTp VTn UO 

H closed open L 

L open closed H 
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                              Es =  
Сн U2

DD

2  ,                                                                   (1.1)  

where UDD is the supply voltage, which is approximately equal to the 

difference of the levels L and H, CH is the equivalent load capacity, which is 

equal to the total capacity of the CMOS transistor gates in all circuits, which 

are connected to the inverter output, plus the communication line capacity. 

As the number of switchings per second of the inverter circuits and 

similar ICs is proportional to the clock frequency fC, the power consumption of 

the computer is also proportional to this frequency. Also, according to (1.1), 

this consumption is proportional to capacitance, which depends not only on 

the complexity of the circuit but also on the technology of its manufacturing. 

The value CH is inversely proportional to the design norm of IC, which is equal 

to the minimum width of the constructive elements of IC, for example, the 

width of the wire, or the transistor gate. Furthermore, the decrease of CH is 

proportional to its charge shortening and hence, to the inverter speed and in 

general, to the IP clock frequency. Therefore, with each new generation of IP 

technology the energy, produced by the chips, is significantly reduced and 

their performance is increased. 

According to the formula (1.1), it is worth to reduce the power voltage 

UDD to effectively minimize the power consumption. But when it is decreasing 

below the limit of 0.9 V, then one of the CMOS transistors of the inverter is not 

enough closed and proceeds substantial constant current. 

A two input logic element (LE), called the logical gate is formed of four 

transistors as in Figure 1.4. If both inputs a and b are set high, the transistors 

VTn1 and VTn2 are opened, so that the output is set at a low level, while the  

transistors VTр1 and VTр2 are closed. In another combination of the input 
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signals, at least one of transistors VTр1, VTр2 is opened and one of VTn1, VTn2 is 

closed, and the output is a high signal level. 

 

a) 

 

 

 

b) 

 

Inputs Output 

a b y 

L L H 

L H H 

H L H 

H H L 

c) 

  Fig.1.4. Functional network of the AND-NOT gate (а), its its symbol 

(b), its truth table (c) 

 

The basic element of computer memory is a flip-flop, which stores a 

single bit of information. There are triggers such as latch and synchronous 

trigger. The latch is a trigger, which has two main modes: transparent mode, 

in which the trigger output repeats the information at its input, and storing 

mode when it stores a bit in the internal bistable circuit with the state Q = 0, 

or Q = 1. The latch mode is changed by the level of the input data or clock 

signal. Since this trigger has the transparent mode, in which the output signal 

is changed regardless the clock signal, it is often called as the asynchronous 

trigger. 

The clock signal is a control signal, which periodically goes from 0 to 1 

and then back to 0. The clock signal is usually referred to as C or CLK or 

CLOCK. Using the clock signal to control the operation of the trigger allows the 

developer to set a predetermined moment of time, at which data can be stored 

in the triggers of the device. 

Synchronized D-latch in the IC is created by the network as in Figure 

1.5. Its inverters D1 and D2 form a bistable circuit via the feedback. If the 
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clock signal C = 1 opens the transistor VTn3, the input signal D or opens either  

transistor VTn1 or transistor VTn2 so that the bistable circuit goes to a state 

corresponding to the signal D. In this case, a trigger goes to the transparency 

mode, and arbitrary changes in the signal D are transmitted to the output. 

After closing the transistor VTn3 when C = 0, the trigger goes into the storage 

mode and the bit, stored at the last moment, when C = 1, is outputted 

unchanged. 

 

 

 

 

 

b) 

Fig.1.5. Functional network of the D-latch (а), its symbol (b) 

 

The networks, where the latches are used, may have unpredictable 

behavior. So, the signal D can be distributed through a chain of series-

connected latches, when they are in the transparent mode, or in the network 

the oscillations can be excited when the latches are connected through the 

feedback. Therefore, to prevent such phenomena, typically only synchronous 

triggers are used in all modern computers.  

In the simplest network of the synchronous trigger, or flip-flop, two 

simultaneous synchronized latches are connected in series, as shown in 

Figure 1.6. 
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b) 

  

Fig.1.6. Functional network of the synchronous D-flip-flop (а), and its 

symbol (b) 

 

The first latch acts as a master stage and is responsible for receiving  

the data. The second latch is a driven stage and is intended for the storage of 

the data, received from the master stage. In order not to propagate the data 

simultaneously through two stages in the transparency mode, the first and the 

second latch are synchronized by the opposite phases of the clock signal C. 

Consequently, the data from the master latch is rewritten to the slave latch 

(and becomes visible at the output Q) when the clock signal goes from C = 1 to 

C = 0. Because of such properties, this network is considered to be sensitive to 

the rising clock edge. 

Any computer network can be represented as a set of combinational 

networks and a set of registers, built from synchronous triggers. These sets 

are linked by the respective communication system, such as in the Figure 1.7. 

With the single-cycle synchronization, all the computer registers are 

implemented as synchronous ones and are clocked by a single clock signal. 

The clock signal transmission network in the modern chips from its source to 

all triggers is designed with the utmost care. Due to this, it provides minimal 

delay skew of the clock edge arrival to each trigger. Therefore, the minimum 

period ТСmin of the clock signal of a chip is estimated as the maximum delay 

between the output of an arbitrary flip-flop and the input of another one. That 
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is, the signal between these triggers passes through the critical path in the 

combinational network (Figure 1.7). Accordingly, the maximum clock 

frequency of the processor, to a certain extent, determines the computer 

speed and is defined as fCmax = 1 / ТСmin. 

 

 

 

 

 

 

Fig.1.7. Functional network of the arbitrary computer 

 

With the constant decrease of the design rules, the  IC technology has 

moved into a period when the gate delay becomes less than the delay in the 

connections between gates. In addition, the interconnect wire thinning and 

the corresponded increase of their resistance, as well as the increasing of the 

frequency fCmax of up to several gigahertz, lead to substantial signal fading in 

interconnects, as well as a reduction of the propagation velocity (Fig. 1.3, d). 

This has led to the fact that on the one hand, to maintain the desired shape of 

the logic signals it is necessary to insert additional buffers and triggers, on the 

other hand, the growth of the clock frequency fCmax  stopped at the limit values 

of 5 - 7 GHz. 

 

1.2.2 Integral circuit classification 

The complexity of digital ICs is generally expressed in the number of 

equivalent two-input logic gates. According to this number all ICs are divided 

into Ics of the small scale of integration, Large-Scale Integration (LSI) and 

 Critical path 

Logic Logic 
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Very Large-Scale Integration (VLSI). VLSI circuit consist of more than 

hundred thousands of gates.  

VLSI circuits are divided into microprocessors, microcontrollers, 

memory ICs, ASICs (Application Specific Integral Circuits), and ASSPs 

(Application Specific Standard Products). Modern VLSI circuit can contain 

more than ten million gates. In addition, the memory chips have a volume of 

up to billions of bits, wherein to store a single bit, one to ten transistors are 

needed.  

The microprocessor is the main operating unit of the computer. Its 

functionality is not defined, not only during their development, production 

but also during its use. It depends on the user programs and OS (see. Table 

1.1). 

The microcontroller, as the instruction controlled processor, has the 

same properties as the microprocessor. But its functionality is usually 

constant and determines the functionality of the product in which it is 

embedded. This means that the device performs a single program, which 

usually remains unchanged throughout the time of use of the product. 

The Digital Signal Processor (DSP) belongs to a separate subset of 

microcontrollers. Its architecture is adapted to the signal processing 

problems. 

The ASIC chip has this name because of its functionality, which is put 

into it during the design and production. Therefore, ASIC implements a one, 

but a complex function. Examples of ASIC, or custom VLSI are the modem 

circuit, the drive controller, Ics of the computer chipset, encryption IC. Since 

the cost of VLSI design is constantly increasing, their development and 

production can be profitable when the production of the series reaches 

millions of chips. 
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 The chip of ASSP can have the synonym of the multifunctional VLSI. 

The functionality of ASSP is less than the functionality of a microcontroller,  

but it is enough to set it up in a variety of different applications. From the 

perspective of the designer, the ASSP is the multi-purpose ASIC, which has the 

ability to be adapted to the application. Examples of ASSP are IC of dedicated 

memory, the microcontroller with a specific set of peripherals, such as the 

MP3-player, the decoder of the MPEG image. 

Таble 1.1. Integral circuit functionality   

IC type Design stage Manufacturing 

stage 

Introducing and 

use stage 

ASIC known known known 
ASSP unknown  known known 

Microcontroller unknown unknown known 
Microprocessor unknown unknown unknown 

    

The complex programmable logic device (CPLD) and the field 

programmable gate array (FPGA) form a special subset of ASSP. FPGA is an 

array of 2-6-input logic gates, flip-flops and a set of metal strips, which are 

interconnected by a large array of programmable bridges. These bridges are 

formed by MOS transistors, which are controlled by special programming 

triggers. The routes of the element connections are programmed by the 

change of the electric field in the gates of the MOS bridges, which mean the 

origin of the FPGA name. The logic gates are implemented on the base of small 

ROM. Therefore, any boolean function can be programmed in it. Before the 

FPGA use, the serial programming stream, called the configuration, is 

automatically loaded into the FPGA from external ROM. This process is called 

as the FPGA configuring. 

Modern FPGAs include memory blocks, multipliers, fast interfaces, 

processor cores and other specific units. The logical volume of modern FPGAs 
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reaches two to four tens of millions of equivalent gates. Sometimes FPGA is 

part of another ASSP or even heterogeneous multicore system. 

Designing complex systems on CPLD and FPGA is cost-effectively and 

quickly executed. So now the FPGA is often viewed as an alternative to ASIC, 

especially when a planned series of devices is not more than a hundred 

thousand units. As a result, each year the number of new projects in FPGA and 

CPLD is growing, and the number of ASIC projects decreases.  

The memory ICs are divided into the Random Access Memory, or 

RAM, and the Read-Only Memory (ROM). 

A system that includes a processor, an application specific processor, 

RAM, ROM, peripheral devices, etc., which are implemented in a single IC, is 

usually called as the System On the Chip (SOC). 

 

1.2.3 Problems 

1) Draw the network of the 3-input NAND gate. How many MOS 

transistors are used? Why to make the 8-input NAND gate by the similar 

scheme is not possible? 

2) Draw the network of the 3-input NOR gate. How many MOS 

transistors are used? Why to make the 8-input NOR gate by the similar 

schema is not possible? 

3) Draw the network of the 2-input XOR gate. How many MOS 

transistors are used?  

4) Draw the D-latch network based on the NOR gates. Why the 

inverters are used in the latches (see Fig. 1.5) but not the NAND, or NOR gates, 

as in the computers of 70-ies?  

5) To measure the gate delay in IC the circular generators are used, 

which consists of a set of gates, connected to a closed chain. And the odd 



 43 

number of inverting gates are put in a chain. Explain the principle of such 

measuring. 

6) Let the circular generator, described in the problem 5, consists of 15 

inverters. Estimate the inverter delay if the generator frequency is 600 MHz. 

7) The design norms are decreased from 45 nm to 22 nm. Estimate, 

how much the resistance of the 1 mm wire was increased. How much the 

resistance of the scaled wire bar was increased? 

8) To speed up, the processor was overclocked from 2800 MHz to 3200 

MHz, and its voltage 1.2 V was increased to 1.32 V. Calculate, how much its 

speed and  power consumption were increased.  

9) To save the energy, the processor voltage was decreased from 1.1 V 

to 0.9 V, but the clock frequency had reduced from 2200 MHz to 1900 MHz. 

Calculate, how much the processor’s speed and power consumption were 

decreased.  

10) How to feed all the triggers of IC to provide the minimum clock 

skew? Draw the clock signal network for such IC with 30 triggers, when the 

fanout (load capacity) of the clock buffer is 4 inputs. 

11) In the modern IC the signal is faded dramatically at the distance of 

ca. 0.5 mm. How to provide the signal integrity in the chip of large 

dimensions? 

12) Explain, why FPGA has usually in 3 — 10 times lower clock 

frequency, than ASIC has. 

13) The multiplexers in ICs are usually built on the base of the MOS 

transistors used as switches. Draw the network of such 2-input multiplexor. 

14) Sometimes the trigger cell in IC is built on the base of the 

distributed capacitance of some bus. Draw the network of such a trigger cell. 

Explain its properties. 
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1.3. Von Neumann Computer Architecture 

 

1.3.1 Von Neuman processor structure 

A typical software-controlled computer, which operates on the 

principle of von Neumann, consists of a control unit, datapath, and RAM.  The 

control unit provides the fetching and decoding the instructions, and 

generating the  appropriate control signals. In turn, the datapath consists of 

registered RAM and an arithmetic and logic unit (ALU) (see Figure 1.8.). 

Often the control unit with the datapath is referred to as the processor core or 

the central processing unit (CPU). 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.1.8. Von Neuman processor structure 

 

The datapath implements in its ALU the operations, which are coded 

in the instructions. The registered RAM is a set of registers, storing the data, 

which take part in calculations of an instruction. The ALU executes all 

arithmetic and logic operations, and shift operations, which are coded in the 
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instructions. The initial data and program are loaded through the Input unit, 

and the results of computations are outputted through the Output unit. Input 

and Output units are usually formed as a console, which consists of the 

keyboard and display. The data output can be performed to the tape recorder, 

printer, etc. as well.  

 

1.3.2 Instruction execution 

During the computations, the von Neumann computer repeats the 

four-step procedure, executing each instruction. 

At the first step, which is called the instruction fetch, the control unit 

sends to RAM the instruction address from its Program Counter (PC), and a 

signal that the next instruction is of demand. PC is named as the Instruction 

Pointer (IP) in I80x86 architecture  and sometimes called the Instruction 

Address Register (IAR). RAM responds that it sends the read instruction to 

the control unit, which is stored in the Instruction Register (IR). 

At the second step — the step of decoding — the control unit decides, 

what kind of instruction is in IR and what action needs to be done to 

accomplish it. The resulting information is sent to the datapath as the control 

signals and to RAM as the data addresses. 

The third step is the step of the instruction operation execution. The 

datapath reads the necessary data from the registered RAM or from RAM, 

processes them in ALU and sends the operation flags (zero result flag etc.) to 

the control unit. 

The fourth step is the step of storing the results in RAM. Besides, the  

address of the next instruction is determined and is written into PC register. 

When the instruction flow is straight, then the next address is derived by the 

addition of the length of the previous instruction to PC. When the instruction 

is the branch (jump) instruction then the branch code from the IR register 
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influences the address in PC. For example, when the condition branch 

instruction is performed, and the condition is true (for instance, the zero flag 

is 1) then the displacement code from IR is added to PC. 

Each instruction is executed with the same sequence of steps. The 

processor core repeats these four steps during the execution of the program. 

The only difference is that each instruction controlls the data fetching and 

processing differently. 

 

1.3.3 Von Neuman architecture improvements 

The genuine von Neuman computer model has a set of limitations 

because it was invented without taking into account the programming 

experience achieved later. The first limitation is the absence of the facilities 

for the automatic address modification. Thus, for example, in the array access 

routine, the data read instruction must be modified by other instructions to 

index through the array. The resulting self-modifying code is very prone to 

the programming error. 

The architecture does not provide the partitioning the instructions and 

data because no base addressing was involved. Next, the implementation of 

the input and output units were not clear. The PC register is the separate 

register without the architectural access, which makes impossible to do the 

subroutines. Therefore, just after the expansion of the von Neuman 

architecture, it was modified by different scientists. 

The first incorporation of the index addressing was in the Mark I 

computer, built in Manchester. The IBM 704, announced in 1954, had already 

three index registers.  

The introducing the standard interfaces provided the attachment to 

the CPU of a large set of  I/O devices in any combination.   
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But the most prominent improvement was the introduce of the 

subroutines. This concept was proposed by M. Wilkes, D. Wheeler, and S. Gill.  

The subroutine  or subprogram  is a sequence of instructions that perform a 

specific task, packaged as a unit. This unit can then be used in programs 

wherever that particular task  should be performed. The subprograms may be 

defined within programs, or separately in the libraries that can be used by 

multiple programs. 

A subroutine is usually coded so that it can be started (called) several 

times and from several places, including from other subroutines, and then 

branch back (return) to the next instruction after the call instruction,  once 

the subroutine's task is done. A subroutine call not only branches but saves 

the contents of the PC somewhere. A return retrieves the saved contents of 

the PC and places it back in the PC, resuming sequential execution by the 

instruction following the subroutine call. 

The advantages of programming with the subroutines include: 

— decomposing a complex programming task into simpler steps; 

— reducing the duplicate code within a program; 

— enabling the reuse of codes across multiple programs; 

— dividing a large programming problem among various 

programmers. 

 

1.3.4 Functions implemented in the processor 

 All the functions described in the paragraph 1.3.3, are performed in 

the data processing unit and the control unit. These functions are categorized 

according to their purpose as the following. 

The instruction fetch functions control the flow of instructions in the 

processor. They provide the next instruction fetch (calculating its address) 
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depending on condition flags. These flags are the conditions of the branch 

(jump) instructions, procedure call, etc. 

The Control Unit performs a decoding function to determine, which 

function should be calculated on a specific instruction. The function of the 

datapath control provides a corresponding sequence of control signals for 

performing arithmetic and logic operations in ALU, as well as the data 

transfers in the Datapath. 

The data addressing functions supply the necessary addresses of data 

in accordance with a given addressing mode. Some of the features serves as a 

memory management, including support for virtual memory, and 

management of cache RAM. 

The process control functions provide simultaneous execution several 

computing processes in a computer, such as, the independent processes in the 

multiprogramming mode. The interruption is such a function as well. 

The interruption is a function, which stops the normal flow of the 

instruction execution. There are two situations where it is executed. The first 

is called a trap, and occurs when the processor determines, that there is  

some error (overflow, access to the protected area, etc.) during the instruction 

execution. The second one, called the interrupt itself, occurs when an external 

device or process sends a signal, that an event requires a special treatment. 

 

1.3.5 Architecture classification 

Von Neumann architectures can be classified into a number of features. 

These include: 

— Instruction set; 

— Data formats; 

— Program and data memory spaces; 

— Timing diagram of the instruction execution; 
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— CPU structure; 

— CPU interfaces; 

— Interrupt system; 

— Memory protection mechanism; 

— A set of peripherals; 

— Software (firmware, system software, applications) and others. 

 

1.3.6 Problems 

1) Why are both the data and instructions stored in the same RAM in 

the von Neuman architecture? 

2) For which purposes is the registered RAM used? Is it required for 

the von Neuman architecture? 

3) Why is the bus, connecting the RAM and CPU in the von Neuman 

architecture, often named as the “bottleneck” of this architecture? Propose 

three methods to expand this “bottleneck”. 

4) For which purposes is the PC register used? Why is this register 

named as a counter? Which numbers are added to its content during the 

address modifications? 

5) How is the content of the PC register exchanged during the jump 

instruction implementation? 

6) Why can the next instruction in the von Neuman processor start 

only after the previous instruction finishing? 

7) Propose the computer architecture, in which the PC register is not a 

counter. 

8) For which purposes is the interrupt mechanism used in the 

architecture? Is it possible to do without the interrupt system, and why? 

9) Why is a kind of interrupts called as a trap? What traps this feature? 
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10) Why is the instruction set the main distinguishing feature of the 

computer architecture? 

11) Which of the instruction executing steps is the longest and why? 

12) For which purposes does ALU generate the flags? 

13) What role plays the microprogramming in the von Neuman 

architecture? 

14) Explain the situation, which occurs, when PC points not to the 

instruction but to the data in the RAM. 

15) Why is CPU usually separated from the RAM in the processor 

structure? 

16) Take 10 examples of the input and output units. 

17) Why is the PC bit width usually less than the IR bit width? 

18) Can the von Neuman architecture do without the jump type 

instructions? 

19) What is the self-modified program, and why is it bad? 

20) What is the similarity and difference between the subroutine call 

and interrupt? 

21) What has to be stored and then renewed during the subroutine call 

and return, and why? 

22) Why the subroutine concept plays the prominent role in the 

computer architectures? 

23) Why is it important, that the PC content is able to be exchanged 

with the data in the RAM?    
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1.4. Instruction set of the computer 

 

1.4.1 Instruction structure 

The processor instruction word can be divided into the operation code 

(opcode) field and address part, as in Fig. 1.9.  

 

Address part 
Opcode 

Field 1 Field 2 Field 3 

 

Fig. 1.9. Instruction word structure 

 

1.4.2 Instruction coding 

In the opcode field the instruction function is coded, which is 

performed by CPU. Obviously, the bit width of this field determines the 

maximum number of different instructions in the instruction set. This bit 

width may be constant or variable, and is selected for optimizing both the 

instruction length and the number of instructions.   

The simplest approach for coding is the use of the constant opcode bit 

width. Such approach is usually used for the RISC instruction coding, which is 

discussed later. But when the instruction set is designed then it becomes 

obvious that some instructions are used in the programs much frequently 

than others. Therefore, it is useful to make both their Opcode and whole 

instruction bit width much shorter than for the rest of instructions. 

For example, consider the 4-bit opcode for the instruction coding. Then 

16 variants of such opcode are possible.  Let 15 of them code the most useful 

instructions. Then the last code means, that it codes a subset of the rest 

instructions. The additional bits to the opcode are coding these instructions.  
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Another example. Codes 0000, ..., 1101 encode the 14 most useful 

instructions, and the codes 1110 and 1111 have the 4- and 8 –bit suffixes, that 

represent sixteen codes from 11100000 to 11101111 and 256 codes  from 

111100000000 to 111111111111 .  

The instruction set of the Intel processors, which is built according to 

this principle,  has the Opcode length of 5 to 19 bits. Because of this, as well as 

the fact that the instruction can perform complex actions, such an instruction 

set is called as a complex instruction set. Such an instruction set is used in the 

CISC-processors (Complex Instruction Set Computer — CISC). 

On the other hand, the choice of the instruction set of the low 

complexity instructions is common to the RISC processors (Reduced 

Instruction Set Computer — RISC). In such an instruction set, both the 

opcode and the whole instruction should be of the constant length and a set of 

instruction formats should be small. The regularity of these instructions 

simplifies the instruction decoding and parallelization of their 

implementation. 

 

1.4.3 Instruction address fields 

In the address part of the instruction, the information about the 

addresses of operands and results, as well as the location of the next 

instruction are placed. There are 4, 3, 2, 1, and 0-address instructions. The 0-

address instruction assumes that the address is given indirectly. For example, 

the data is stored in a predetermined register, such as an accumulator. Then 

this register address is encoded in the opcode. The address can be implicitly 

specified by a stack pointer, or it is calculated using the instruction counter 

contents as well. The 0-address instruction of another type contains a so-

called immediate operand, that is a constant. This means that it does not 

contain the address at all. 
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The 1-address instruction assumes that one operand or result is stored 

in the specified address, and the other one is obtained as well as in the 0-

address instruction. The 4-address instruction has four address fields. Then in 

addition to three operand addresses, it can contain the address of the next 

instruction. 

The number of address fields in the instruction depends on the CPU 

address space. It is optimized during the design of the instruction set. On the 

one hand, one instruction with many address fields replaces a series of short 

instructions, providing high performance, and short programs. For example, a 

jump instruction was used in the computers of first generations, which 

provided for the branch to three addresses, depending on whether the result 

is greater, equal or less than zero. 

On the other hand, the address space of the modern computers 

requires the address word length of 4 and even 8 bytes. Therefore, the 

instructions with large address fields occupy a significant amount of memory 

and have the increased fetching time. As a result, the choice of the instruction 

format  is a complex optimization problem. 

One of the ideas of creating the RISC processor was the idea to divide 

the instructions into two categories. The first kind instruction works only with 

the datapath, fetching the data from the registered RAM using 3 or 4 register 

address fields. These fields length is usually equal to 4 or 5 bits and they 

address the 16 or 32 registers respectively. The second kind instruction 

provides the data exchange between registers and main RAM. It has the 

address fields of the data register and the register, which stores the address of 

the data in RAM. It implements the indirect addressing.  

The address field can represent either a direct address code, or code 

that plays a significant role in calculating such an address, for example, the  
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indirect address. More information about the address fields is presented 

below when considering the types of addressing modes  in computers. 

The address field does not necessarily indicate the direct address of 

the operand. In some instructions the address field contains the information 

about a set of RAM cells, or the range of addresses. For example, the LDM 

instruction in the ARM architecture loads up to 16 registers from the main 

RAM. Each of 16 registers in is indicated in it by the position of a one in the 

16-bit address field. 

 

1.4.4 Instruction set selection 

The processor architecture design is usually started by the instruction 

set selection. A good instruction set provides both the high processor perfor-

mance and minimized program length. However the processor performance is 

prevalent. 

The effectiveness of the instruction set is verified by simulation of the 

processor with this set and comparing the simulation results with the 

parameters of other processors (the results of the benchmark execution, the 

program length after compilation, etc.). Usually the standard benchmark is 

used, which is a set of programs written in C, and representing the common 

problems in different fields, for example, text processor, equation solver, data 

base handler, etc. 

 

1.4.5 Problems 

1) Propose the instruction set of a simple processor, which consists of 

only null address instructions. 

2) Propose the instruction set of a simple processor without the 

program counter. 
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3) Propose the instruction set of a simple processor, which data 

memory is a stack. 

4) Consider an instruction set of 60 instructions, 10 of them are used 

very often, 20 are used less frequently and 30 are rarely. Propose their opcode 

set. 

5) The conditions are the same as in the problem 4, but the inst-

ructions are divided in the groups of  7,  14 and 37 instructions, respectively.  

6) The RISC processor has 32 general purpose registers and the 

instruction set with the 32-bit instructions of two types.  The instructions of 

the first type are the one address instructions with the 28 bit address field. 

The instructions of the second type are the four address instructions 

addressing the registered RAM. How many instructions can contain this 

instruction set? 

7) The conditions are the same as in the problem 6, but there are 128 

registers, and the three address instructions. 

8) The instruction set has 254 instructions, which are coded by a 8 bit 

opcode field. The instructions have the variable length from 1 to 6 bytes. The 

designer has the solution to expand the instruction set by adding the prefix 

byte. How many instructions can contain the new instruction set? 

9) The conditions are the same as in the problem 8, but the instruction 

set has 250 instructions. 

10) The instructions have not the opcode at all. How is arranged the 

programming of such a processor? 
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1.5. Data formats and operations  

 

The data are the constructive objects of the computer architecture.  

They are always given in binary form in a certain format. The question of how 

to represent the data is complicated by the fact that the computers from 

different manufacturers often have the same data in different formats. In such 

computers, different word lengths and special character sets are used. Accor-

dingly, in old computers, different methods of storing integers and floating 

point numbers are used. This complicated both the software and data compa-

tibility between different machines. But the most of the microprocessor 

architectures obey the same data representation rules and standard data 

formats. 

 

1.5.1 Character representation   

For years, the same approach was used: a certain number of bits to 

represent a character was chosen, and a table of compliance of code and 

characters (letters, numbers, symbols, special characters) was built. For 

example, the first generation computers have used 6-bit characters to specify 

capital letters, numbers, operation signs. Now, to code the same symbols as 

well as the small letters the 7- or 8-bit codes are defined. The 8-bit codes 

represent both Latin and Cyrillic characters. In the world, the character code 

table is standardized.  

The most common standard of 7-bit codes is American Standard Code 

for Information Interchange, in shorts — ASCII. ASCII encodes only 95 

carefully selected printable characters, among them 94 glyphs and one space.  

The rest of the codes represent the “invisible” control characters. For example, 

the code 0 means Null, and is usually used to represent the empty objects or 

to construct the strings. The code 13 means the carriage return (CR).   
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The characters are numbered in the alphabetic order. This fact is 

usually used to substitute the alphabetic sorting to the sorting of natural 

numbers. The decimal digits from 0 to 9 are coded by integers from 48 to 57, 

or by hexadecimal numbers from 30h to 39h. Therefore, to select the decimal 

digit, the character code is usually ANDed with the mask 0fh. 

The extended ASCII (EASCII or high ASCII) refers to 8-bit encodings 

that include the standard 7-bit ASCII characters, plus up to 128 additional 

characters. 8-bit codes may not be adapted to display any alphabet. Therefore, 

in different countries the, so-called, national ASCII coding tables are used, 

which are fully supported by letters and distinguished figures in the national 

alphabet. That is, the first half of the table origin from the ASCII codes, and the 

second half is coding of the national alphabet. So, the Ukrainian extended 

ASCII code page has the number 866. Microsoft was introduced the code page 

1252 in its Windows operation system.  

In order to support such alphabets as Japanese, Chinese, as well as for 

the international coding of the table, the letters that look the same on all 

operating systems and Internet browsers, the much larger code table is 

needed. For these purposes, the 16-bit and even 32-bit Unicode encoding is 

distributed now. 

Some architectures support the characters so that they have the 

special instructions that distinguish the character codings. For example, in the 

Intel 80x86 architecture, there are instructions that provide arithmetic 

operations with bytes that represent the decimal digits. Eg. the instructions 

aaa, aas, aam, aad perform decimal correction after addition, subtraction, 

multiplication, and division of numbers provided by the ASCII-codes . 
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1.5.2 String representation 

The character strings are represented by a sequence of bytes, one or 

two bytes per character. The microprocessor instruction set typically sup-

ports the string processing, such as moving, comparison, pattern matching, 

filling by a symbol, input-output of the strings. The maximum length of the 

string, which can be represented and processed by an instruction, depends on 

the specific architecture of the processor and can reach 4 billion symbols. 

The string moving is usually implemented byte-by-byte. It is necessary 

to program the string moving carefully, when the source and destination 

address ranges overlap, as this can destroy the string, overwriting the bytes 

from one part of the string to another one. The strings have an arbitrary 

length so that the programming language must provide a way to determine 

the length of the string. For example, in the C language, the null byte signifies 

the end of the string. 

 

1.5.3 Representation of integers and operations with them 

In the first computers, as well as in the application specific processors, 

the basic representation of numbers was the binary fraction with the point, 

which stands between the sign bit and the most significant bit of the number. 

With such a representation, it is convenient to perform all arithmetic 

operations, rounding the results. But in that computers,  the addresses are 

represented by integers, which should enable other operations of 

multiplication and division than fractional numbers. It is inconvenient to 

handle two sets of operations for the numbers with the related 

representation. So in modern computers, the fractional numbers and 

respective operations with them are not used directly. 

Now the integers are represented in the computers only as two's 

complement binary codes. Although there was a time when such numbers 
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were represented by the decimal or even ternary codes. There have also been 

attempts to encode integers by the Fibonacci numbers or residue codes. 

For the positive numbers, the binary code representation is obvious. 

Each bit represents a value of 2 to the power of the bit number. According to 

the convention of the computer scientists, the highest bit in the number 

writing is on the left. Thus, the number 130 is represented by a byte 

1000 00102 = 82h or halfword 0000 0000 1000 00102 = 0082h, where h is the 

suffix indicating a hexadecimal number. 

There are several ways to represent negative numbers, but in all 

modern microprocessors the negative integers are represented as two’s 

complement numbers. In this representation, two equal in magnitude and 

opposite in sign numbers give the number of 2k as a result of their addition, 

where k is the number bit width. For example,  

А = 01012 = 5, and  −А = 10112 = −5; А + (−A) = 100002 = 24. 

Here −A is a complement of A to 24. At this condition, the highest four-

digit number is 0111 = 7, and the lowest  is 1000 = −8. 

Let the two codes are added: 0111 + 0111. The result should be 14, but 

we get 1110 = −2. So, we have an overflowed result in terms of the signed 

number representation. In most processors such overflow situation is fixed in 

the overflow flag V = 1 (oVerflow), as well as in the Carry flag C = 1. 

Otherwise, when performing, for example, 0011 − 0111 we get the right result 

−1100,  so for him V = 0, C = 1. Each computer also has a Zero result flag Z, and 

a Negative result flag N.  

When multiplying integers, the unsigned multiplication, and signed 

multiplication are distinguished. For example, in the first and second cases, 

we have 0001 * 1111 = 00001111 and  0001 * 1111 = 11111111, respectively. 

Accordingly, the unsigned, and signed multiplication instructions are 

distinguished. The same features are applied to the division operations. In 



 60 

many computers, the multiplication and division operations are performed as 

unsigned. Then the operand signs are taken into account by means of 

additional calculations, which require an appropriate excess of time. 

Similarly, we must distinguish signed, and unsigned comparison 

operations, because, for example, 1110 > 0111 (unsigned), and 1110 < 0111 

(signed). 

 

1.5.4 Shift operations 

The operation of the shift by k bits can be regarded as a multiplication 

by the coefficients of 2k when shifting to the left or by the coefficients of 2—k 

when shifting to the right. 

The arithmetic and logic shifts to the right are distinguished, of signed 

and unsigned integers, respectively. For example, the following instructions of 

the  I80x86 processor perform the following various shifts: 

mov DX, 8C00h; negative number is loaded  to DX register 

sar DX, 4; signed (arithmetic) shift right to 4 bits, result is  F8С0h   

shr DX, 4; unsigned (logic) shift right to 4 bits, result is  0F8Сh   

shl DX, 4; shift left to 4 bits, result is  F8С0h  

Also, the cyclic shift operation is used, when the bits shifted out are 

shifted in the same word but from the opposite side. 

The last shifted out digit is stored in a C flag for the further use as a 

condition in a conditional branch instruction. In some architectures like 

I80x86, several shifted out bits can be stored in a separate register, as in the 

instruction: 

shld AX, DX, 4; 4 bits, shifted out left from DX, are shifted in АХ   

In the simple microprocessors, the shift operation to k bits is used to 

normalize the mantissa when performing the floating point calculations. To 

speed up these calculations, the instruction set has a special instruction of 
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finding the left leading bit. This instruction returns the number of k bits to 

shift the operand for its normalization. 

 

1.5.5 Sign expansion operation  

The operations of the format conversion of short numbers to long 

numbers or calculations with the short numbers are often used. If the 

unsigned number is carried out, then zeroes are added to it on the left. And if 

the signed integer is an operand, then its sign bit is expanded, and this 

operation is called a sign expansion. Most processors have special 

instructions for this purpose. If they are absent, it is necessary to supplement 

the number by zeros, shift it to the left to make the appropriate number of 

digits, and then shift to the right, completing the signed shift.  

For example, consider the stored in memory byte: AAh, which means 

the signed number −86. Then the byte is loaded in the half-word register: 

00AAh. Then the half-word is shifted to the left by 8 bits: AA00h. And finally,  

it is shifted to the right by 8 bits: FFAAh, that means the same number −86. 

 

1.5.6 Storing numbers in the memory 

Usually, the multi-byte words are computed and stored in the registers 

of the processor core. There are two orders of their storing in the external 

memory. The first of them is named as big-endian, ie. the lower bytes are 

stored at the upper addresses, the second is little-endian, ie. these bytes are 

stored at the lower addresses. Examples of storing the four byte words in 

these orders are shown in Fig. 1.10. 

The multi-byte word is addressed, as a rule, by the address of its lower 

byte. So, in the architecture " big-endian", such as Apple, MIPS, the higher byte 

is read as the first one, and in the architecture " little-endian," the processor 

reads the lower byte first, as in the i80x86 architecture. 
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Fig.1.10. Storing a word into the memory in the big-endian order (а) and in 

the little-endian order(b), beginning at the address k 

 

It should be noted that in order to provide the rapid access to the word 

of the length 2k, it is written to the address in the whose code the k least 

significant bits are zero. In this case, we say that the word is aligned on a 

word boundary. Thus, typically 2k bytes can be read or written 

simultaneously. Otherwise, you need to read the word byte by byte or in its 

parts with the subsequent connection these parts in the whole word. 

 To ensure the architectures interoperability, the modern microproces-

sor architectures usually permit the proper read-write order to install before 

the starting the operating system. 

 

1.5.7 Address calculations  

The arithmetic of unsigned integers is usually used to calculate the 

data and instruction addresses. By this, a semantics acts, when the address 

word overflow is not taken into account. That is, the calculations are 

performed modulo 2k, where k is the address word length. 

Consider the base address is added to the displacement D. Then if the 

displacement is higher than 2k−1, then it operates as the code (2k − D) is added 

 

CPU register 

b a 
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to the base address. For example, if k = 16, D = 0FFFFh = 10000h − 1, then  

3456h + D = 3455h, ie. it looks like a one is subtracted from the address. 

For this reason, it is important to use the sign expansion operation, if 

the address displacement is a short negative number. 

 

1.5.8 Decimal number representation 

The decimal number can be represented as a string of letters. To do 

with such a number, it has to be converted to the integer before the 

calculations and to be converted back after the calculations. 

A decimal digit is represented by a byte in the ASCII coding. Such a byte 

has the binary code of the decimal (BCD) digit in its lower nibble, and the code 

3 in the higher nibble. For example, the number 25 is encoded as 3235h. Such 

a number is named as the unpacked BCD code. It is distinguished from the 

packed BCD code in that, that the bytes in the latter contain the couples of 

BCD digits.  

The I80x86 processor architecture has instructions for processing the 

unpacked BCD numbers that are represented by such codes. Some computer 

architectures, such as IBM370, have the instructions to operate with the 

packed BCD numbers. All processors can operate with packed decimal codes 

using the respective subprograms. 

 

 1.5.9 Floating point data  

The floating point data are widely used in scientific calculations since 

they provide the small error calculations without caring about the data  

scaling. The number in the floating point format consists of the sign bit S, 

exponent field E, and mantissa or fraction field M, so the number is equal to 

(−1)S⋅KE⋅M, where K is the exponent basis. In different computer architectures, 

the basis K is equal to 2, 4, 8, 10, or 16. 



 64 

Prior to the application of the standardized floating point data 

representation, the calculations in computers were imperfect. In some 

architectures, if two integers are divided entirely, the corresponding floating-

point numbers are not divided entirely. In other architectures, the result of 

A + A is not equal to 2.0⋅A. Also, the equation (A − B) = − (B − A) is not true in 

some processors. A small non-zero divisor X in the operation A / X could cause 

the interruption of "divide by zero" type. 

The IEEE-754 standard for binary floating-point arithmetic was 

published in 1985. It provides two basic formats: single with the 32 bit width, 

and double with the 64 bit width. Single and double formats are shown in Fig. 

1.11. In the single format, the minimum exponent is 0000 0001, which 

corresponds to 2−126, the maximum exponent is equal to 1111 1110 and 

corresponds to 2127.  The 24-bit fraction  is coded by the 23-bit field because 

the most significant bit of the normalized fraction is always a one and is not 

stored. 

 

 

 

                Fig.1.11. Single and double formats of the floating point numbers    

 

For example, code 1 1000 0000 100 ... 00 has a minus sign, the 

exponent field is E = 128, that is, the exponent is 2128−127 = 2 and fraction   is  

1.10 ... 0 = 1.510, that is, the decimal number is −3.0. 

The standard provides four rounding modes for the result: 
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Round to nearest. The processor chooses the nearer of the two 

possible outputs. If the correct answer is exactly halfway between the two, the 

system chooses the output where the least significant bit of the fraction  is 

zero. This behavior (round-to-even) prevents various undesirable effects. This 

is the default mode when an application starts up.  

Round up, or round toward +∞. The processor chooses the larger of 

the two possible outputs (that is, the one further from zero if they are positive, 

and the one closer to zero if they are negative). 

Round down, or round toward −∞. The processor chooses the smaller 

of the two possible outputs. 

Round toward zero, or chop, or truncate. The processor chooses the 

output that is closer to zero, in all cases. 

The code of the rounding mode is written in the control register of the 

floating point coprocessor, such as a register FPCR of the coprocessor i80x87. 

The standard also offers formats with extended accuracy. In the single 

extended floating point format, the fraction has a bit width 32, and the 

exponent has a bit width 11. These figures in the double extended format are 

64 and 15, respectively. These formats are used in the hardware accelerators 

which calculate the mathematical functions to keep all the exact digits of their 

results with a single or double precision. 

At present, a new version of the standard IEEE 754-2008 is 

propagated, which proposes the use of  quadruple precision binary floating-

point format: binary128. Such a format has 15 bits of the exponent and 113 

bits of the fraction. Even more exact format binary256 is possible. 

Traditionally, the floating-point ALU prevents the overflow situation 

causing an interrupt. The standard offers to replace the overflowed  data 

automatically to the special code E = 1111 1111 and M = 00 ... 0, which means 

the positive or negative infinity (+ INF, − INF). Then, when such a value occurs 
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in subsequent calculations, it behaves in a logical manner, for example: 

1.0 + ∞ = + ∞; 1.0 / ∞ = 0.0. 

But in some cases, the result of the operations with the INF numbers 

may have not any sense. This, for example, the result of operations: ∞ − ∞; 

0.0 / 0.0. In such cases, a transition to the exception or replacement of the 

result in the special value takes place. This special value is called "not a 

number", shortly, NaN (Not a Number), which is coded as E = 1111 1111, 

M ≠ 00 ... 0. 

The standard requires the use of two types of NaNs — signaling and 

quiet NaN. If one of the operands of the operation is a signaling NaN,  then 

ALU must cause a trap. When some data in the user program are not 

initialized, then the operation system usually initializes them as the signaling 

NaNs.  Then the calculations do not make a sense and do not begin. 

If one or both operands are quiet NaNs, then the result is also the quiet 

NaN, a trap does not occur and the calculations are continued. At the end of 

these calculations, the situation which causes the NaN numbers can be 

determined by analyzing the calculation flow.   

A special situation occurs when the result of the operation in absolute 

value is less than the smallest number that can be represented in the floating-

point format. This situation is called underflow or loss of accuracy. For 

example, the lowest normalized code is 0 00000001  0000 ... 0, which is equal 

to 2−126. If the result of calculations is the value 2−128,  then it is represented by 

the code 0 00000000  0100 ... 0. The exponent E = 00000000 in it means that 

this number (represented by the fraction bits) has underflow. Thus, the 

calculations can be carried out more accurately. 

For example, when the calculations  x − y + y take place, then if x ≈ y, 

the result of the step x − y is a zero when the operands are represented in a 
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conventional floating-point format, and the final result is y. Upon calculation 

of x − y as an underflow situation, then the result is correct and is equal to x. 

 

1.5.10 Problems 

1) The word ‘continue’ and the string “continue” in the C program after 

the compilation have the lengths of 4 bytes and 9 bytes, respectively.  Explain 

this. 

2) Why are the SMS messages in Cyrillic characters twofold larger than 

ones in Latin characters? 

3) Explain the behavior the AAA instruction, which is used after integer 

addition of the strings, representing the decimal numbers. 

4) The string “Example” is stored in the memory, beginning at the 

address X, and it is moved to the address X+3. Show the results of the moving 

in two situations: when the moving starts at the lowest address and at the 

highest address. Note, that the rest of the memory is filled with a sign ’#’. 

5) Why could not occur the symbol with the code 00h in the middle of 

the strings after the C compilation? 

6) All the modern computers have the 2-s complement integer data 

representation but not the fraction number representation. Why? 

7) The first computers had the decimal number data representation. 

Why were they substituted by the binary computers? 

8) For which features are the comparison of signed and unsigned data 

distinguished in the computers? 

9) Why are needed both the carry and overflow flags in the computers? 

10) Propose the addition algorithm of the very long integers 

represented by several words. 
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11) For which purposes have some instruction sets the multiplication 

instructions of three types: unsigned by unsigned, signed by unsigned and 

signed by signed? 

12) How to substitute the multiplication to the constant, say, 47, by the 

addition, subtraction and shifting instructions? 

13) How to add the signed byte to the signed word when the 

instruction set has not the sign expanding instruction? 

14) Often the free program memory is filled by the NOP instructions. A 

program is loaded in the highest addresses of this memory. What does happen 

when the last instruction of this program finishes its implementation? 

15) The jump instruction with the displacement code 20h is placed at 

the address 0fff0h of the 16-bit architecture. Where is the instruction stored, 

which is fetched as the next one? 

16) It is a method to calculate the sum of a large number of the floating 

point data. Firstly, the large and small numbers are added separately. Then 

the sums of large and small numbers are added together. What is the purpose 

of this method and why does it work?  

17) The single precision floating point number looks like the following: 

0100 0000 1010 1010 1010 1010 1010 1010. Calculate its decimal 

representation. Propose the operation, which result is such a number. 

18) Some scientific programs fill the initial data arrays by the NaN 

numbers. Explain, why? 

19) Translate the decimal number 0,1 into the floating point format. 

Estimate the error of the number representation. For which decimal fractions 

is this error equal to zero? 

20) The floating point data have the formats of 4 or 8 byte words. But 

till 90s the 6 byte floating point data were popular. Why this format of data 

becomes very rare format. 
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1.6. Addressing modes 

 

1.6.1 Address space of the CPU 

The architecture of each processor is characterized by its address 

space. The term of the address space means a numerical range of memory 

addresses that can be accessed by the processor core. The readout of the 

memory addresses, usually operates in bytes, starting with a null byte. Thus, a 

processor, that has the k bit address bus, addresses eventually space in the 

limits  from 0 to 2k−1. 

Typically, the address space is divided into specific areas, which are 

used to store data, programs, operating system, input-output data, and others. 

The division of the address space is called a memory map. 

Each processor provides a number of data addressing modes. When a 

set of addressing modes is selected, the problem of the instruction set 

effectiveness is solved. Complex addressing mode needs the complex 

instruction coding and implementation. Often there is a direct relation 

between the memory addressing modes and the programming language. On 

the one hand, the existing architecture influences the creation of the 

appropriate language and compiler. On the other hand, the development of 

new architectures is connected with features of the programming languages. 

 

1.6.2 Direct (absolute) addressing 

Most languages, such as Pascal, C, Fortran, allow the programmer to 

declare the static data, that is to each operand a single cell in the memory is 

assigned during the program compilation, which is unexchangeable during the 

program execution. In this case, the size and address of the datum can be 

determined before the start of the program execution, that is, at the time of its 

compilation. This means that the actual (logical) address is known before the 
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program running. Therefore, many processors have direct addressing, which 

allows the programmer to put a valid address directly into the instruction. 

The direct addressing is not directly implemented in many processors. 

But then the static address is the address within a specific memory segment, 

which beginning is set to the base address, ie., the direct address is actually 

the offset relatively the base address of the segment. Therefore, for example, 

in the architecture I80x86 the direct addressing is implemented  when a 16- 

or 32-bit offset d is set directly in the instruction, and the effective address 

(physical address) is the sum of d and of the address code stored in the 

segment register DS. OS loads the value in the register DS before the program 

execution, which means the address of the free memory segment, which is 

selected by OS for this program.  

So, the assembly instruction of this architecture mov AX, data is 

loading in the register AX the operand with the symbolic address data. Here, 

the operand reading is done with the direct addressing, and writing is done 

with direct register addressing (AX register address is set in the instruction 

as a code 0002, and the segment address is in the register DS). That is, the 

register addressing  is the direct addressing of the registered RAM. It should 

be noted that the data identifier is a symbolic address that receives a 

particular numerical value at compile time. 

 

1.6.3 Index addressing 

The data array is a special structure that is used in almost all program-

ming languages. Therefore, the modern computer hardware supports the 

array indexing. The indexing addressing is implemented in hardware as a 

scalable offset (stored in the index register), which is added to the starting 

address of the array, known at compile time. The arrays can store bytes, 

halfwords, words, etc. This means that the address is a multiple of 1, 2, 4, ... . 
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If the array index is stored in the index register, then it must be 

multiplied by 1, 2, 4 or 8, ie. be scaled just before the use. Scaling is performed 

by the shift left of the index word. It is provided by the compiler or by the 

hardware when the instruction with the indexed addressing is implemented. 

In the architecture I80x86, the index addressing is performed by 

adding the offset specified in the instruction to the scaled contents of the 

index register SI, or DI, for example, in Fig. 1.12. 

      

 

 

 

 

 

 

 

Fig. 1.12. Index addressing 

 

Here, the array consists of a four-byte elements, and the assembler 

provides the array address mem in the object code. Since the scale factor 4  is 

used, the SI register contains the array index, which is loaded into it, and is 

modified according to the user algorithm. For example, if the 10-th array 

element is read, then the number 9 is stored in the SI register, as the indexing 

starts with zero. 

 

1.6.4 Base addressing 

This addressing is similar to the index addressing. But instead of using 

the index register, the base register is considered containing the address of 

the memory block. This is an absolute address and it does not need to scale. 

 

Distance SI*4 
(calculated during implementation) 

 
Initial address mem (calculated 
during compilation) 
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This address is usually the dynamic one. In contrast to the static address, the 

dynamic address is unknown at compile time and is determined at runtime.  

Many computers do not use the direct addressing because of the need 

to have relocatable programs. In this case, the base addressing is implemented 

in hardware. In the base register, the starting address of the program module 

is placed, and the absolute address is calculated as the base address plus the 

direct (or other) address of the instruction. 

Also, the base address is used for procedure calls. With such a 

procedure call the parameters can be passed as the base memory address, 

where they are stored. In most cases, it is the address of the stack top with 

these parameters. 

The base addressing in the I80x86 architecture is performed by the 

addition of the displacement X set in the instruction, to the contents of the 

base register BX, or BP, such as: 

mov AX, [BP + Х] ; 

 

1.6.5 Base plus index addressing 

If the data array is the dynamic one, or if the data are placedin the 

stack with the offset from its top, then both the base and index addressing are 

required. Then the absolute address is equal to A = B + C*I, where B is the base 

address, I is the index, C is the scale factor. 

Many processors provide the hardware implementation of this 

addressing mode, which is often called as a dual-index addressing. Then the 

fetching, for example, an element of the array X(I) is carried out by a single  

loading instruction. In other processors, such an operation requires several 

instructions to be implemented. 
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Generally, the procedure parameters are transferred through a stack 

field. Therefore, when the procedure is called, the stack pointer, its base 

address, and scaled operand index are used to derive the parameter address. 

Such an addressing is used in the architecture I80x86 by adding the 

base register (AX, BX, CX, DX, BP) and scaled index register (SI, DI), as well 

as possible offset X, for example, in the instruction 

mov AX, [BX + SI * 4 + Х] ; 

 

1.6.6 Indirect addressing 

Indirect addressing occurs when the instruction refers to the operands 

not directly, but first reads the cell, where its address is written. For example, 

when the parameter is passed to the procedure, very often the parameter 

value is the address of the actual parameter rather than a copy of it. 

Consider Q procedure (Fig. 1.13). When it is called, then the parameter 

Dat is passed to the procedure. It is not a value, but the address where the 

value Dat is stored. Therefore, such indirect addressing is performed in two 

steps. 

 

 

 

Fig. 1.13. Example of the indirect addressing 

 

Firstly, the address of the parameter Dat is loaded into the base 

register. Then, the base addressing takes place, for example: 

mov BX, OFFSET Dat  

mov AX, [BX]  

Static address 
(known during 
compilation) 

RAM 

Address of Dat 
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where the first instruction loads the address of the operand Dat in the base 

register BX, and the second instruction loads the operand in the register AX. 

By the jump using the indirect addressing,  the address is specified 

indirectly as the value stored in a particular memory cell, or in a register. 

Therefore, we can write such instruction as 

jmp CX 

where the register CX stores the absolute address  of a jump. 

In some computers, the indirect addressing is performed by hardware. 

Although a single instruction is needed for the data access, but two 

consecutive accesses to the memory remains. In the RISC computers, the 

registered indirect addressing is widely used. The usual RISC instruction of 

the data loading contains the address of the register, which holds the address 

of the operand to be loaded. 

When the executing addresses are stored in the registers, which are 

pointed in the instruction, then such an addressing is named as the register 

indirect addressing. 

 

1.6.7 Indirect addressing with index addressing 

If the parameter which is passed in the procedure during its call is an 

array, then the indirect addressing has to be combined with the index 

addressing, as in the example in Fig. 1.14. 

By the use of the indirect indexed addressing, the conditional jump to 

multiple addresses is organized, as in the following code. 

Case:   mov AX, Njump;         jump number loading  

mov BX, AX;  

shl BX, 3 ;                index multiplied by 8 

jmp Jump_table [BX]; jump to Jump_table with the number Njump 
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Here the jmp operator performs an indirect jump to the address, which 

is equal to the base address plus the Jump_table index address, which is 

stored in the register BX.  

 

 

 

 

 

                Fig. 1.14. Indirect addressing with the index addressing example 

 

1.6.8 Base plus indirect addressing  

In the previous examples, it was assumed that the pointer of the  

indirect addressing is the static address. But in languages, which are oriented 

to the stack operations (C, Pascal), the pointer itself can be placed in the stack. 

Therefore, to access it is necessary to add a base addressing, as in Fig. 1.15. 

 

 

 

 

 

                     

Fig. 1.15. Base plus indirect addressing 

 

Now the addressing of the Dat operand includes a stack pointer offset 

addition to get a pointer to the Dat, and then this pointer is used to get the 

actual value of Dat. Such addressing may be implemented as a sequence of in-

structions, although some CPUs have a built-in base plus indirect addressing. 
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1.6.9 Indirect plus base and index addressing 

Finally, consider the example where the array is disposed in a dynamic 

stack, and is transferred into the procedure as a parameter. Then the access to 

the array element D (I) is performed in three steps (Figure 1.16.): 

 

 

 

 

   

 

 

Fig.1.16. Indirect plus base plus index addressing 

 

1.6.10 Stack  addressing 

In the addressing modes described above, the stack segment of the 

memory somewhere was considered. Really, the stack memory is used for the 

sake of the stack addressing. The stack memory is organized as a set of cells, 

which form the layers from top to bottom. Each operation with the stack is 

performed through its top layer, or shortly, top. Initially, the stack is empty, 

and has only a single top layer. When the operand is stored, it is written in the 

top. And the previously stored data are shifted down increasing the number of 

layers. When the operand is read from the top, it is pushed out, and the 

number of layers is decreased (see Fig.1.17). 

 The most of the programmable computer architectures have a couple 

of instructions, which deal with the stack: PUSH and POP. The first of them 

stores the data into the stack, and the second one reads the data. The main 

feature of the stack addressing consists in that, that the addressing is 

represented in the instruction implicitly. Therefore, the PUSH and POP 
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instructions are usually null or one address instructions, they are very short 

and very quick. 

Stack empty PUSH R1 PUSH R2 PUSH R3 POP A 

Top 

 

   

 

 

Bottom 

 

 

Fig.1.17. Stack addressing 

 

The PUSH and POP instructions are often used to save the processor 

register contents, named the program context, during the procedure calls, 

interruptions, program switchings. In many program language realizations, 

the parameters to the procedures are passed through the stack using these 

instructions. To speed-up the context saving and restoring, some 

architectures have the special instructions for the group transfer the data 

between registers and the stack. So, the PUSH, POP instructions can store the 

given group of registers in the stack in the ARM architecture.  

The stack handling is convenient during the expression calculating. 

Therefore, the mathematical coprocessor I80x87 has the stacked architecture. 

So, the arithmetical operation is implemented with the operands in the top  

register of the stack and in this register but the next one. 

Some architectures are organized around the stack memory. They are 

distinguished in the short instructions and programs, and in the frequent use 

of the procedure calls at the cost of the slowed performance. 

Usually, the stack is organized as a special segment in the main RAM.  

Therefore, the stack memory can have the access as the usual RAM. Then two 

pointers are held on the processor. The first pointer assigns the bottom of the 

stack, it is usually written by the operational system. The second one does the 

Null R1 R2 
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R2 
R1 
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top and is named as the stack pointer. Depending on the architecture or on its 

control, the stack pointer contents can be increased or decreased during the 

stack filling. This means that the bottom pointer can specify either the lowest 

or highest address of the stack segment.   

In the I80x86 architecture, the stack pointer register is SP (ESP) and is 

automatically incremented during the PUSH instruction implementation. The 

value of the increment +1, …,+8 depends on the width of the data pushed in. 

 

1.4.5 Problems 

1) What feature do the index and base addressings distinguish? 

2) What is the dynamic addressing? Why is the indirect addressing 

needed for its implementation? 

3) What kind of addressing  is needed for the dynamic array access?  

4) Propose the algorithm of the formula y = a*x2 + b*x + c processing 

using the stack as in the I80x87 coprocessor. 

5) How to program the case statement on the assembly language? 

6) Program in some assembly language the loading in the accumulator 

the array element a[i,j], which is a word, using the proper addressing modes. 

7) The attached addressing is the addressing mode, when the 

resulting address is formed by the concatenation of two address code words.  

To which kind of addressing does this addressing mode belong and why? 

8) What features has the register direct addressing? Why is it widely 

used in the modern computers? 

9) What features has the register indirect addressing? Why is it widely 

used in the modern computers? 

10) In many RISC processors, the register R0 stores a constant zero.  

What kind of the addressing mode does the instruction with the register R0? 

For which feature is such a register introduced in the architecture? 
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1.7   Intel 8051 architecture 

 

The Intel 8051 microcontroller was developed by the Intel company in 

1980 for the use in embedded systems. Its architecture is termed as MCS-51. 

The microcontrollers of original versions were popular in the 1980s and early 

1990s. Its enhanced compatible derivatives remain popular today and are the 

most popular 8-bit microcontrollers. Several companies offer I8051 deriva-

tives as Intelectual Property cores for the use in FPGA or ASIC. Despite its age, 

this architecture remains the actual, and will be in the use in the next decades. 

The I8051 architecture is worth to be familiarized in educational 

purposes because it is simple, contains the most of the features of the CISC 

processor architectures. The programming in the assembly language and 

modeling of this architecture helps to understand the essence of 

programmable computers. Let consider the architecture features, described in 

this chapter, in the short description of the I8051 architecture.  

 

1.7.1 Data types 

The I8051 microcontroller has only one data type. It is 8 bit word or a 

byte. And the size of each register is also 8 bits. The byte can represent both 

unsigned and signed integer in the ranges 0 — 255 or −128 — 127, 

respectively. But in the most cases, the data are considered as unsigned.   

The bytes can represent the characters as well. But this feature has not 

any relation to the architecture. 

The halfword data type is used exceptionally as the two byte address 

word. This hafword is stored to the 16 bit Data Pointer (DPTR) register  to 

have the access to the outer data memory.   

The I8051 architecture is intended for the frequent bit manipulation in 

the bytes. Therefore, a bit can be considered as a special data type as well. 
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1.7.2 Address spaces 

The 8051 architecture provides the user with three physically distinct 

memory spaces which can be seen in Fig. 1.18. The 8051 microcontroller's 

memory is divided into program memory and data memory. Program memory 

(CODE) is used for permanent saving program being executed, while data 

memory (DATA, XDATA, IDATA, SFR) is used for temporarily storing and 

keeping intermediate results and variables. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.18. Address spaces of I8051 

 

The first memory space is the CODE segment, in which the executable 

program resides.  This segment can be up to 64K (since it is addressed by 16 

address lines). The processor treats this segment as readonly. Many 

embedded systems these days are using EEPROM, which allows the memory 

to be overwritten by an external device.   

In addition to executable code, it is common practice with the I8051 to 

store fixed lookup tables in the CODE segment.  To facilitate this, the I8051 

provides instructions, which allow rapid access to tables via the data pointer 
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(DPTR) or the program counter with an offset into the table optionally 

provided by the accumulator. 

The second memory space is the 128 bytes of internal RAM on the 

I8051. This segment is typically referred to as the DATA segment. The RAM 

locations in this segment are accessed by the direct addressing. The variables 

stored in the DATA segment, can also be accessed indirectly via R0 or R1 

register. 

The DATA segment contains a subsegment, which consists of the four 

sets of register banks, which compose the first 32 bytes of RAM.  The 8051 can 

use any of these four groups of eight bytes as its default register bank. The 

registers of each bank are refereed to us as R0, R1,…,R7.  

The selection of register banks is changeable via the RS1 and the RS0 

bits in the Processor Status Word (PSW) register. The register bank 

switching allows not only for quick parameter passing, but also opens the 

door for simplifying task switching on the 8051.  

The Special Function Register (SFR) segment samples the ALU 

registers, control registers and the peripherals on the I8051 at locations 80h 

and above. Many of them are bit addressable. Such a register has the zeroed 

least significant nibble of its address. For example, the accumulator register 

ACC has the address E0h. The bits in the bit addressable SFRs can either 

accessed by name, index or bit address. Thus, using the bit accessing 

instructions, you can refer to the EA bit of the Interrupt Enable SFR as EA, IE.7, 

or 0AFH.   

A memory map of the SFRs is shown in Table 1.2. The bit addressable 

registers are marked in bold. The free cells of the map are usually filled by the 

special registers, which are added to the architecture in some expansion 

clones of the I8051. 

 



 82 

Table 1.2.     SFR segment map  

Address 0 1 2 3 4 5 6 7 

F8         

F0 B        

E8         

E0 ACC        

D8         

D0 PSW        

C8 T2CON  RCAP2L RCAP2H TL2 TH2   

C0         

B8 IP        

B0 P3        

A8 IE        

A0 P2        

98 SCON        

90 P1        

88 TCON TMOD TL0 TL1 TH0 TH1   

80 P0 SP DPL DPH    PCON 

 

Certain I8051 family members, such as the 8052, contain additional 

128 bytes of internal RAM, which reside at RAM locations 80h and above.  

This segment of RAM is typically referred to as the IDATA segment.  Because 

the IDATA addresses and the SFR addresses overlap, address conflicts 

between IDATA RAM and the SFRs are resolved by the type of memory access 

being performed, since the IDATA segment can only be accessed via indirect 

addressing modes. 

The final 8051 memory space is 64K in length and is addressed by the 

same 16 address lines as the CODE segment.  This space is typically  referred 

to as the external data memory space (XDATA). This segment usually consists 

of  some sort of RAM and the I/O devices or external peripherals, to which the 

I8051 must interface via its bus.  Read or write operations to this segment are 

performed using either DPTR, R0, or  R1 registers. 
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1.7.3 Structure and registers 

The processor structure is shown in Fig. 1.19.  The narrow rectangles 

in Fig. 1.19 represent the 8-bit data/address common bus and 16-bit address 

bus. The legend in it mean the following:  BUF – buffer, AR – address register, 

PROM – program read-only memory, DAR – data address register, DAA – 

decimal adjust, and constant unit, T1, T2 – temporary registers 1,2, SFRU – 

special function register unit, BSC – synchronization and control block. The 

other abbreviations are described below.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1.19. I8051 microcontroller structure 

 

This structure shows both the architecture and microarchitecture 

I8051. A set of, so called, architecture registers like ACC, Р0,…,Р3, SP, DPTR, 

memory units, which are used in the instructions, describe the architecture. 
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The registers, modules, which are invisible to the programmer, like IR, T1, T2, 

ALU, busses, oscillator (OSC), etc. describe the microarchitecture.   

The executed instruction, read from PROM, is stored in the Instruction 

Register (IR). The instruction decoder in BSC decodes the opcode and 

identifies the type of the instruction to execute. After that, a sequence of the 

control signals for the instruction execution is read from the microprogram 

memory of BSC.  

ACC is the accumulator register. The instructions, which access the 

accumulator, use frequently its short name ‘A’. For example, loading the port 2 

content to the accumulator is coded as MOV A, P2. The name ‘ACC’ is used, for 

example, for the bit-wise addressing of the accumulator. Thus, the symbolic 

name of the fifth accumulator bit is codes as ACC.5. 

B register is used for the temporary storing the operand, for example, 

during the multiply and divide operations.  

The Program Status Word (PSW) register contains information about 

the program state. Its structure is shown in Fig. 1.20. The meanings of its bits 

are shown in the annex to this book. The carry bit CY or C in it is widely used 

in computations. The bit OV means the result overflow. The bit AC means the 

carry from the 3-th bit to the 4-th bit of the result and is used in the binary-

decimal calculations. The parity bit P signales about the parity of any data in 

the accumulator. The bit F0 can be used as the programming flag. Bits RS1, 

RS0  set the working register bank. 

The 16-bit Address Register (AR) stores the address of memory 

segments  CODE or XDATA. 

 

7 6 5 4 3 2 1 0 
CY AC F0 RS1 RS0 ОV — Р 

 
Fig.1.20. PSW register 
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The Stack Pointer (SP) is the 8-bit register, whose contents is 

incremented before writing data to the stack when performing the 

instructions PUSH and CALL. Initial state of SP is 07h and it points to the stack 

area in data RAM, which is starting with 08h. By overriding SP, the stack 

region can be placed in any place of the data RAM, if necessary. 

The Data Pointer (DPTR) consists of a high byte (DPH) and the low byte 

(DPL). It stores a 16-bit address when accessing the external memory XDATA. 

It can be used as a 16-bit register or as two independent eight-bit registers. 

Special function registers P0, P1, P2, P3 are parts of the microcon-

trollers porst Port 0,…,Port 3, respectively.  

The Serial port Buffers SBUF are two separate registers: the trans-

mitter buffer and receiver buffer. When the operand is written to SBUF, then it 

enters the transmitter buffer, and this writing initiates its transmission 

through the serial port. When the operand is read from SBUF, it is fetched 

from the receiver buffer. 

The Timer registers are the pairs (TH0, TL0) and (TH1, TL1), which 

form the 16-bit registers of  the timer/counter 0 and timer/counter 1. 

Special function registers IP, IE, TMOD, TCON, SCON, and PCON are the 

control registers and contain control bits and bits of the system interrupts, 

timers/counters, serial port control, circuit energy supply switching. 

 

1.7.4 Datapath and control block 

In the I8051 microarchitecture, the datapath is formed by ALU, 

Decimal Arithmetic Adjust (DAA) unit, registers T1, T2, ACC, B, PSW, as well as 

the busses which connect them together. The registers ACC, B, PSW logically 

belong to DRAM and SFRU, because they are SFR registers, and they can be 

accessed as the DRAM cells. The temporary registers T1, T2 store 

intermediate operands, and could not be accessed by the program. 
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8-bit ALU can implement 51 different operations like addition, 

subtraction, multiplication, division, logic operations and cyclic shifts. It 

designed to operate with nibbles (4-bit operands), swaps nibbles in a byte, 

adjusts the nibbles when operating with the binary-decimal numbers.  

During a single instruction cycle, ALU can perform a sequence of 

operations, for example, incrementing the 16-bit coupled registers. During 

some jump instructions, ALU increments the PC register three times and 

compares two operands.   

ALU can operate with bits. For this feature, some people says about the 

“Boolean processor” built in I8051. This helps to design the control 

applications, which check and exchange the separate pins of the 

microcontroller chip. So, ALU can operate with four data types: Boolean (1 

bit), nibble (4 bits), byte (8 bits),  address word (16 bits).  

The control block BCS is intended for generating the synchronizing 

and control signals, which provide the coordination of the mutual operation of 

the microcontroller blocks in all their modes. BCS consists of the timing 

sequence generator, input-output logic, instruction decoder and program-

mable logic device (PLD). The words fetched from PLD represent the 

microinstructions which control all the units including datapath. 

The most of the instructions are performed for one or two cycles. The 

multiply and divide instructions last four cycles. A single instruction cycle has 

six states S1 - S6,  each of them contain two phases Р1 and Р2. A single phase 

lasts a cycle of the clock signal generated by the inner clock Oscillator (OSC) or 

enters the chip through the pin BQ. If, for example, the outer clock frequency 

is equal to fBQ = 12 MHz, then the instruction cycle lasts 

ТMC = 12/12 MHz = 1 µs. 
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1.7.5 Addressing modes 

The immediate, direct, indirect and implicit addressing modes are used 

in I8051. The immediate byte or halfword operand is present in the 

instruction word. Some operand addresses are present in it implicitly. They 

are accumulator A, registers B, DPTR, PC,  carry bit C.   

The access with the direct addressing can be performed only to the 

DATA segment and to SFRs. During the indirect addressing of the DATA 

segment, eight bits of the address are fetched from the index register R0 or 

R1. The indirect addressing is performed through the registers DPTR, PC, R0 

and R1 to the  IDATA, XDATA segments as well.  

To get the data from the CODE segment, the PC relative addressing is 

used. Then the offset code D is loaded in the accumulator, and the instruction 

MOVC A, @A + PC  loads to the accumulator the data at the address, standing 

at a distance D from the address in the PC register. 

The I8051 instructions allow many combinations of addressing modes, 

making them flexible and versatile, which is shown below. 

 

1.7.6 Instruction set 

The I8051 instruction set contains 111 instructions, which are distin-

guished by their functionality to five groups: data transfers, arithmetic opera-

tions, logic operations, jump-type instructions and Boolean operations. The 

most of the instructions have one or two byte width and are implemented for 

one or two instruction cycles. The first instruction byte contains the opcode. 

The second and third bytes contain either operand addresses or direct 

operands. Below some instructions are considered, which formats are shown 

in Fig.1.21. A list of all instructions is represented in the addendum. 

Data moving instruction examples, except AJMP, are represented in 

Fig.1.21. We can see the variety of instruction codings and address modes on 
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these examples. Due to the assembly language syntax, the first word of the 

instruction is its mnemonic, the second and third words, separated by a 

comma, represent the operands. The first of them is the destination address, 

and the second one is the source address of the operand to be moved.  

MOVX A, @DPTR 11100000   
     

MOV A, Rn 11101 rrr   
    

MOV A, @Ri 1110011 i   
    

MOV A, ad 11100000 ad  
     

MOV Rn, #d 01111 rrr #d  
    

MOV ad, @Ri 1110011 i ad  
    

MOV add, ads 10000101 add ads 
    

MOV DPTR, #d16 10010000 #d16 
    

AJMP ad11 a10a9a8 00001 a7…a0  

 
Legend:  Rn — register from R0 to R7 
  rrr — three bit register address 
  i — index register address 
  ad — eight bit data address in DATA segment 
  #d, #d16 — eight and sixteen bit immediate operands 
  add, ads — destination and source addresses in DATA segment 
  ad11 = a10…a0 — twelve bit jump address in CODE segment 

 

Fig. 1.21. Instruction formats 

 

The instruction MOVX A, @DPTR loads a byte from the segment 

XDATA to the accumulator. The prefix character ‘@’ means the indirect 16-bit 

address, which is stored in the DPTR register in this example. It is the null 

address instruction and has the implicit indirect addressing. 
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The instruction MOV A, Rn loads the register content to the accumula-

tor, is one address instruction, and has the implicit and direct addressing. The 

instruction MOV A, @Ri loads the DATA memory cell content with the 

address, which is stored in an index register R0 or R1, to the accumulator. It is 

one address instruction, and has the implicit and indirect addressing. 

The instruction MOV A, ad loads the operand from the DATA segment 

to the accumulator, is one address instruction, and has the implicit 

(accumulator) and direct addressing. The instruction MOV Rn, #d loads the 

constant #d to the register. Here the prefix ‘#’ means the immediate operand, 

and d can be any eight-bit number. Therefore, it is the direct and immediate 

addressing instruction. 

The instruction MOV ad, @Ri  moves the operand from the DATA 

segment by the address, stored in register Ri , to the address ad in the same 

segment. It is the two address instruction with the direct and indirect 

registered addressing. 

The instruction MOV add, ads transfers the data from one to another 

cell of the DATA segment, and is two address instruction with the direct 

addressing. The instruction MOV DPTR, #d16 loads the 16-bit constant to the 

register DPTR. 

The variety of data moving instructions is formed by exchanging the 

types of the first and second operand of the MOV instructions. All of them are 

represented in the addendum. Among them are the instruction 

MOVC A,@A + PC, that loads the data from the CODE segment, stack handling 

instructions PUSH and POP, instructions  XCH, which swap the data as well. 

The programmer usually selects the proper moving instruction trying to 

optimize both the performance and the length of the program. 

24 instructions form a group of arithmetic operations (see 

Addendum), performing the addition, decimal correction, increment, 
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decrement bytes. Some instructions perform subtraction, multiplication, 

and division of bytes. 

ADD and ADDC instructions allow the addition the accumulator 

with a large number of operands. Similarly to ADDC, there are four SUBB 

instructions that make it easy to calculate a subtraction of multi-byte 

binary numbers. The I8051 implements an expanded list of instructions 

of incrementing / decrementing bytes, including the increment of 16-bit 

data pointer register DPTR. 

The group of logic instructions is formed by 25 instructions, 

implementing the logical operations on bytes. It is possible to make the "XOR" 

operation with the contents of the port registers. The XRL instruction can be 

effectively used to invert individual bits of a port. 

A distinctive feature of the bit instructions is that they operate with the 

one-bit operands. As such operands, the individual bits of some SFR registers  

can serve, as well as 128 software user flags. To address these bits, the 

straight eight-bit address is used. There are the bit reset (CLR), set (SETB) and 

inversion (CPL), as well as conjunction and disjunction of the carry flag 

instructions.  

This group of jump-type instructions includes the instructions of the 

conditional and unconditional branch, subroutine call and return, and the no 

operation NOP instruction as an exclusion. The most instructions use the 

direct addressing. There are 3 types of jump instructions which are 

distinguished in the branch code width.  

There are two long jump instructions: jump instruction LJMP and 

routine call LCALL. In these three byte instructions, the full 16-bit address 

occupies two bytes. This address is loaded in the PC register during the jump 

or call. The absolute jump occurs within a program memory page with the 
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volume of 2048 bytes. These instructions, like AJMP in Fig. 1.21, have the 11-

bit absolute address code ad11 in the 2-byte code. During the jump, the 11 

least significant bits of the PC register are substituted by this code.   

Short relative jump performs the branch in the range from —128 to 

127 bytes relatively to the next instruction address. There are the short 

unconditional jump instruction SJMP and a set of jump instructions under the 

condition of zeroed accumulator (JZ), not zeroed accumulator (JNZ), carry bit 

is one (JC) or zero (JNC), selected bit is one (JB) or zero (JNB).  

The decrement and jump instruction (DJNZ) is usually used for the 

loop programming. It decrements the selected memory cell, and if the result is 

not zero, performs a jump. 

The instruction JMP @А + DPTR provides a jump to the indirect 

address, which is calculated as a sum of addresses in the accumulator and 

DPTR register. This instruction is useful to make a jump to several directions 

as in the Case operator of the programming language.  

The instructions LCALL and  ACALL perform the subroutine calls to 

the long and short address respectively. The instruction RET implements the 

return from the subroutine, and the instruction RETI does the return from the 

interrupt routine. 

The other features of the I8051 architecture are considered later. 

 

1.7.7 Architecture summary 

The I8051 architecture is distinguished in the following. 

This is the CISC-architecture. It has a set complex instructions of 

different lengths. For example, the instruction JBC performs a jump if the bit 

is set, then this bit is cleared, which affords a lot of machine cycles to perform. 

Moreover, during this operation implementation, the access to some SFR 
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control registers is prohibited (from outer processes, timers, etc.), because the 

selected bit control can cause the unintended behavior. 

This is a 8-bit architecture. The byte is the main data format, however, 

the selected bits and halfwords take part in the calculations.  

The architecture has the powerful addressing mode set. The large set 

of data moving and arithmetical-logic instruction has multiple possibilities to 

select the sources and destinations of the data including the direct, indirect, 

implicit, immediate addressing. This signs to the CISC nature of the 

architecture as well. 

The architecture has several fixed memory segments like DATA, 

XDATA, CODE. For the fact, that instructions are stored in the CODE segment 

and are fetched independently on the data access in the DATA segment, it is 

named as the Manchester architecture. This provides the immunity to the 

program damage because it is stored in the independent ROM. In the highest 

variations of the I8051 architecture, this improves the instruction speed 

because instructions and data are accessed in parallel. 

The memory segments, mentioned above, have comparatively small 

volume, which is less than 65536 cells. This disadvantage demonstrates itself 

in recent times when the embedded operation systems, the data arrays and 

files become megabytes of the volume. But in the new microcontroller models, 

the memory volume is enlarged by the addition of the page registers, which 

something decreases this disadvantage. 

The I8051 microcontroller remains the “working horse” in the embed-

ded systems for its small hardware complexity, small program length, high 

reliability, and energy effectiveness, huge ecosystem (accessible compilers, 

libraries, development and debugging tools, the infrastructure of the chip 

production, distribution, engineer education). This is mostly due to its 

effective architecture. 
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 1.7.8 Problems 

1) Why is the memory space in the I8051 architecture divided to the 

separate DATA and CODE segments? 

2) What advantages to the architecture does the four register banks 

give, which are placed in the DATA memory?  

3) For which purposes is the PC relative addressing effectively used? 

4) For which purposes are the MOVC instructions used? What cons-

traints are applied to the parameters of the instruction MOVC A, @A+PC? 

5) How to add some new registers to the SFR segment of the memory 

of the I8051 architecture? 

6) Why the bit addressable SFR registers have the lowest address bits 

which are equal to 0h or 8h? 

7) How to program the access to the IDATA segment? 

8) How can the page register, which is added to the I80x51 

architecture, increase the XDATA memory volume? 

9) Propose an assembly program piece, which implements the moving 

the array from the XDATA segment to the DATA segment. 

10) Propose an assembly program piece, which implements the 

function y = f(x),  where x is the one byte data. 

11) Propose an assembly program piece, which tests the 0-th bit of the 

port P0, and if it is equal to 1, resets it.  
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1.8 RISC and CISC  processors  

 

1.8.1 History of the RISC processors 

In 60-80 years, the architects of new CPUs have tried to add in the 

instruction sets the instructions, which were supposed to accelerate the im-

plementation of some calculations, word processing, compilation. These inst-

ructions have been difficult to perform and they were performed by multi-

cycle microprogrammes. Therefore, the instruction set for each new computer 

generation was characterized by more and more complex instructions. 

On the other hand, the interests of programmers differed from the 

computer developer’s ideas which are built in the instruction set on many 

issues. Many instructions (for example, the TRT instruction of the string 

checking, decimal arithmetic instructions in IBM-360) did not take part in the 

compilation. They could be used only in certain cases, and the additional 

conversion of data formats was needed. It was also found, that for the 

processors with such an instruction set, it is difficult to perform the automatic 

optimization of the programs under compilation. 

To support the software portability, the instruction sets became more 

complicated with each new processor generation. To minimize the hardware 

volume, the rarely used instructions were implemented using subroutine call  

using the TRAP instruction. 

Thus, the computer with the complex instruction set (CISC-processor) 

always has the excessive complexity of the control blocks, and as a 

consequence, it has the relatively low speed to hardware volume ratio. 

Through the nonoptimality of the compiled programs, it is also characterized 

by large hardware downtime. 

The idea of the RISC processor is based on the fact, that the complex 

multi-cycle instructions can be substituted by the chains of one-cycle simple 
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instructions. Hence their name — Reduced Instruction Set Computer — 

means, that their instructions have reduced complexity. 

For the first time, the principles of the RISC processor were introduced 

in the CDC 6600 computer in the early 60-ies. When S. Cray, the  creator of 

this computer, has found that in the scientific calculations he can use the  

simplified instruction set, which is easy to decode. It helped to create an 

effective Fortran compiler as well. The novelty was that: 

—  only data read-write instructions can access the RAM, the RAM 

address is stored in the register, and the indirect addressing is used; 

— the arithmetic instructions operate with the two source and one 

destination registers; 

— the instruction format is simple and uniform; 

— several functional modules process the data in parallel, and the 

instruction execution is pipelined, to perform the parallel instruction 

implementation, the functional modules loading is dispatched. 

The IBM-801 project was the first attempt to develop an RISC 

architecture intentionally. The aim of the project was to create a computer 

that can quickly switch the context during interrupts. Its development began 

in 1974 and in 1980 the prototype was ready. This scientific development had 

a great influence on the formation of RISC architectures in the world. 

In 1980-1983 in Berkeley the first RISC microprocessors RISC I and 

RISC II have been developed under the direction of D. Paterson. At the same 

time, at Stanford, the another RISC microprocessor named MIPS 

(Multiprocessor without Interlocked Pipeline Stages) was developed. The 

ideas, which have been laid out in these microprocessors, were then 

introduced in a series of SPARC and  MIPS processors, respectively. 
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1.8.2 Principles of the RISC processor design 

The RISC processors are designed on the base of a set of following 

principles. 

One instruction per a clock cycle. Simple instruction has to be 

executed in a single clock cycle. This principle is contradictory to the 

functioning of the von Neumann processors. According to it, the beginning of 

the next instruction is due to the result of the previous instruction. The 

instruction could not begin before the end of the previous one, it must pass 

four successive stages of its implementation (see. Von Neumann architecture). 

Therefore it can not be executed in a single cycle, from start to finish. But the 

following architectural features of the RISC processors are intended to 

support the processor speed which is equal to one instruction per a cycle. 

Pipelining. Each instruction goes through several stages: instruction 

fetching (IF), instruction decoding (ID), reading the operands (RO), the opera-

tion with operands (OP), writing the results (WR). If the neighboring instruc-

tions are independent on each other, these steps may be performed in an 

instruction pipeline — one step per cycle as in the timing diagram in Fig. 1.22. 

 

n n+1 n+2 n+3 n+4 n+5 n+6 

IF ID/ RO OP WR    
Instruction 

address 

        
 IF ID/ RO OP WR    
        
  IF ID/ RO OP WR   
        
   IF ID/ RO OP WR  

 

Fig. 1.22. Implementation the instructions in the 4-staged instruction pipeline 

 

Register memory. If the operands of the neighboring instructions are 

placed in the register memory, then these instructions can be executed in a 

single cycle, not to take into account the fetching and decoding these 
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instructions. Then the result, calculated in this cycle, may participate as an 

operand for another instruction in the next cycle. This phenomenon is 

referred to as the operand forwarding (Fig. 1.23). 

  IF ID/ RO OP WR  
ADD R1,R2,R3 

ADD R4,R1,R5 
   

R1 
  

  IF ID/ RO OP WR 
 

Fig. 1.23. Operand forwarding from one instruction to the other 

through the register R1 

 

Therefore, the instruction set of the RISC processor is divided into a 

subset of registered data processing instructions, a subset of the data transfer 

instructions  and a subset of control instructions. 

Suppose we have a program: 

L R2, A  

L R3, B  

NOP  

ADD R4, R2, R3  
L R5, C  

L R6, D  

NOP  

ADD R7, R5, R6   

Here the empty NOP instructions (No OPeration) are inserted to per-

form the delay, during which the data A, B, C, D have time to be read from the 

external memory by the load instruction L. To do without the NOP instruc-

tions, the instructions are rearranged so that the delays are filled naturally: 

L R2, A  
L R3, B  

L R5, C  

L R6, D  

ADD R4, R2, R3  

ADD R7, R5, R6  
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Here the instructions are performed with the overlapping. The 

compiler optimizes the instruction order, so the instructions in the chains 

perform the software pipelining without the interlocking the data. This 

means that the data are pre-loaded into the registers, so, the data arrive in 

time the instructions, which use them. Besides, the results are uploaded from 

the registers on the computing background. Also, the operation schedule is 

performed in such a way, that the data are processed and the intermediate 

results are longer stored in registers and not copied back to the RAM to 

minimize the exchanges between the registers and memory. 

Running the instructions during the jump instruction processing. 

When the jump instruction is performed, after its decoding, the program 

pipeline has to be cleared. I.e. the instructions that follow it, and were loaded 

into the pipeline, should be rejected, since these are not the instructions that 

are executed in accordance with the program flow. This raises the jump delay 

and the pipeline stall, while the correct instruction is loaded to the pipeline.  

So, the branch delay slot occurs during the branch-type instruction execu-

tion. But in some RISC processors, the pipeline is not cleared during jumps 

and implements up to N instructions after the jump instruction, which are 

named as the delayed branch instructions (see Fig 1.24). 

n n+1 n+2 m m+1 m+2 m+3 

IF ID/ RO JMP     
Instruction 

address 

        
 IF ID/ RO NOP   
      
  IF ID/ RO NOP  

N executed 
instructions 

        
   IF ID/ RO OP WR  

 

Fig.1.24. Running the jump instruction in the RISC instruction pipeline 

 

To preserve the semantics of the program, these N instructions have 

nothing to do, then they are the NOP instructions. But in many cases, the 
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compiler can replace them by a chain of instructions that perform the useful 

actions. For example, after the subroutine call instruction it can insert the first 

N instructions from the called subroutine. Then the call branch is performed 

round the removed instructions. Then the return from the subroutine is done 

to the instruction, which stays after the chain of these N instructions. 

The another way is to place the instructions of the parameter transfer 

to the subroutine after the CALL instruction to it as in the following example: 

L R1, par1  

L R2, par2  
CALL proc  

NOP   

NOP 

CALL proc  

L R1, par1  
L R2, par2 

As a result, at the cost of the delayed branch, the branch instructions 

can be performed averagely for a single clock cycle. 

Simplified addressing. The simplified instructions must have the 

simplified addressing. First of all, the data in the memory must be aligned to 

the address boundary. For example, the address of 4-byte words always has 

two zeroed least significant bits. Then the reading of this word can be 

performed by a single instruction, performing only one transfer via the data 

bus. If the word is not aligned to the address boundary, then it has to be read 

in three steps: lowest and highest parts are read and then assembled together. 

Furthermore, this feature simplifies the cache RAM handling. Note that 

the cache RAM always stores the copy of the data string from the main 

memory. And this string is always aligned to the address boundary. When 

some word is not aligned then the conflict situation is possible, when only a 

part of this word is stored in the cache RAM.  

So as a direct address can not fit into the instruction as a whole (32-bit 

address of a 32-bit instruction), the indirect addressing is most commonly 

used in the RISC processors. The indirect addressing is performed rather 

simple. One instruction loads or modifies the executing address in some 
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register, and other instruction makes the memory access with it. This couple 

of instructions is implemented more quickly and simple than the equivalent 

complex instruction in the CISC-processor.  

Simple instruction format. Simple, even logically redundant, 

instruction format, including an opcode, address fields, immediate operands, 

provides a simple and therefore, fast decoding of instructions and addresses. 

Thereby this minimizes the period of the clock interval. 

All instructions in the RISC processors tend to have the same length 

and the minimum instruction formats. In this case, the position of the opcode 

and  address fields in the neighboring instructions is known in advance. This 

makes it possible not only to simplify the decoder but to decode multiple inst-

ructions simultaneously. This simplifies the forecasting the access to the RAM, 

so the processor can read the operands and instructions from it in advance. 

The RISC processors have the progressive architecture, which provides 

a high performance — power, performance — hardware costs ratios and 

therefore, it is ideal for its realization in modern chips. 

 

1.8.3 Comparison of RISC and CISC processors 

Since the decoding of complex instructions is difficult, then they could 

not be quickly fetched from the RAM and their execution parallelization is 

complex or impossible. Therefore, the CISC processors tend to have a low 

speed in comparison with the RISC processors. As a result, the perfect  CISC 

architecture Intel-432, as well as the architecture DEC VAX, were unable to 

compete with the RISC architectures in the mid-80s. 

The CISC-architecture Intel 80x86 is an exception that proves the rule. 

This architecture loses the RISC architectures, such as PowerPC, PARISC, 

MIPS, SPARC for speed. But, firstly, at a time, when the RISC machines 

appeared on the market, the personal computers with the I80x86 processors 
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have already gained a leading role in the PC market. Besides, tens of 

thousands of applications for them were expanded over millions of PC users. 

Therefore, the vast majority of PC users have chosen the I80x86 architecture, 

as it was uncomfortable and unprofitable to move to the RISC architecture. 

The exceptions were the workstation users, which were few. Secondly, the 

architecture I80x86, since I80486, has evolved with the purchase of attributes 

of the RISC processors, by increasing the number of registers, the addition of 

simplified instructions, pipelining the datapath. 

It is important to evaluate the influence of the compilers to the 

architecture choice. The fastest program is a program written in assembly 

language. But now it is rarely used programming language. Therefore, the 

computer performance depends not only on its hardware speed as from the 

compiler effectiveness. The principle of the compiler operation is recognition 

of operations (or idioms) in the program and substituting them by the library 

procedures, described by the machine codes. The optimizing compiler  selects 

such substituting procedures, which must comply with the minimum number 

of executed instructions. That is, the program optimization problem is 

considered as the difficult combinatorial problem, which complexity 

substantially increases with the increase of the set of the objects to be 

selected. I.e., if the instructions are complex, then the number of instruction 

chains, that must be selected, becomes very huge. 

This optimization problem is simplified if the instruction set has a 

small number of instructions. Thus, it was found that the C compiler for the 

CISC processor 68020 uses only 30% of all the instructions of the set. In 

addition, the similar CISC instructions usually use the different operand types. 

Then the compiler must always monitor the consistency of types of executed 

data and have a large set of library routines with a variety of input and output 

data types. 
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The RISC architecture has a simple instruction format, minimized 

instruction number, a lot of data registers, which use is uniform, etc. All this 

makes it possible to construct a simple compiler, and to do the software 

optimization more efficient and deeper. 

 

1.8.4 Problems 

1) Why is the clock frequency of the RISC processor much higher than 

one of the CISC processor? Estimate the ratio of these frequencies. 

2) Propose the situations, when the von Neuman processor could not 

start the next instruction implementation before the finish of current one and 

explain why. 

3) Propose the methods which increase the clock frequency of the RISC 

processor to the extremum values. 

4) Two RISC processors have the 4 and 8-staged pipelines and operate 

at 1 and 1,5 GHz, respectively. Compare the throughputs of them in the 

situations, when they perform the program without the branch instructions 

and the program, in which each 4-th executed instruction is the branch. 

5) Take an example of the program pipelining in some PC program. 

6) Propose the algorithm of the 4-byte word reading when this word 

position is not aligned to the address boundary. 

7) Propose the instruction set of the RISC processor, which has the 

indirect registered addressing in the 3-address instructions. The instruction 

number is 32, the register RAM has 16 registers. 

8) Why are the delayed branch instructions used in some RISC 

processors and why are they overrided in other processors? 

9) For which features was the MIPS processor named as the 

Microprocessor without Interlocked Pipeline Stages ? 
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1.9. Interrupt system    

 

1.9.1 Concepts and purpose of the interrupt system  

In the 60s of the last century, the introduction of the interrupt system 

in the computer architectures was an extremely important step in the 

development of the computer technology. Through the use of an interrupt 

system, it was possible not only to compute the response to external events 

but also to implement automatic control of the computing process by the 

operating system, as well as to implement a number of parallel computational 

processes in a single processor. 

The interrupt system is a hardware and software system, which 

provides the computer response to a variety of events (interrupts) that are 

internal or external to the computing process. This reaction is performed as 

the transition to the instruction sequence, that calculates it and as the return 

to the interrupted process. To understand precisely the essence of the 

interrupt system the next common definitions are introduced. 

The dispatcher is an operating system software which is used to 

control the interrupt signal processing, to analyse the interruption causes and 

storing the information, which is necessary for the restoration of the 

interrupted program operation. The dispatcher is also engaged in the dynamic 

allocation of tasks or software threads between computing resources. 

The real time processor operation is the implementation of user 

tasks in the processor so that the user requests (interruption signal) were 

fulfilled immediately or with a permissible delay. Here, the user is considered 

not only the computer operator but also the controlled object (if the computer 

is included in the control system circuit), peripheral device (eg., disk drive 

controller), resident process (for example, the keyboard driver service, WEB-

browser), and the like. 
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The time-sharing processor operation is the simultaneous processing 

of multiple processor tasks, which are initiated by different users. However, 

users are waiting for responses to their requests in coordination with the 

work in real time. That is the processor "shares" its CPU operation time 

between users. 

Thus, the real-time operation requires that the service of the i-th type 

interrupt request requires the minimum permissible time delay TPi 

considering that multiple requests may occur simultaneously. For example, 

when the interrupt signal is inputted from the keyboard, then TPi can be less 

than 0.1 s but the reading from the magnetic hard disk requires TPi = 10 µs. 

When a set of interrupt requests with the equal priority occur simultaneously, 

then these requests are queued. This queue can be serviced for the average 

time TQ. Then if the computer works in real time, then the requirement to its 

performance is TPi ≤ TQ. 

 

1.9.2 Interrupt signal classification 

Hundreds of thousands of signals that cause the interrupts may be 

involved in the computers. All these signals are not equal to each other, and 

they require the different algorithms of their service. The classification of the 

interrupt signals is below. 

1. Signals about the events that occur in the computer (both in the 

hardware and in programs). They are the signals of failures in a variety of 

devices, which are fixed by the special detectors. For example, this is the 

signal of the reducing of the supply voltage, which causes the interrupt of  the 

state saving before the computer is turned off. When the failure occurs in the 

transmission channel or by the memory reading,  an error interrupt program 

is called, which retransmits the data or repeats the memory reading. 
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The software interrupts are associated with certain events, which are 

caused by the program implementation, for example, with the errors in the 

programs. They are caused by the signals like incorrect instruction code, 

incorrect addressing, division by zero, number overflow, impaired memory 

protection conditions, the use of the prohibited instructions in the program 

(for example, privileged instructions). 

The programmable interrupt  is the software interrupt that is caused 

by the implementation of special instructions (traps), which are intended for 

the detection of certain specified conditions. For example, such an interrupt  is 

executed when debugging or by executing instructions that are not implemen-

ted in the hardware. When the user program makes the access to the OS reso-

urces via the interrupt instructions, such interrupt is called the programmable 

interrupt as well. For this purpose, the interrupt instruction INT 21h is widely 

used in the architecture I80x86, for example, for the input-output operations. 

2. Signals from the timers. Such signals are used to arrange the real 

time operation of the computer in the time division mode or when the 

computer controls the objects. Such a timer is the clock IC or the pulse 

generator. To prevent the program deadlock,  the tracking sensor named as a  

watchdog is used. When the main program does not load periodically the 

watchdog counter, then it is considered to be deadlocked. Then the watchdog 

counter, which is overflowed in some period of time, interrupts the computer, 

and it falls in the restart mode. 

The software timer is a memory cell that is incremented by OS and 

cause the interrupt in the case of equality of its content to a given value.  For 

example, such a timer controls the planned running of some programs like 

updating the software. 

3. Signals from the input-output devices. These signals are generated 

by the synchronization signal receiving from the input-output devices. Such 
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signals indicate the readiness, failure of the peripheral device, or the 

operator's inference to the computer operation. The specific interrupt routine 

corresponds to a particular I/O device, and it reacts to these interrupt signals.  

Such a routine is called a driver of the I/O device. 

4. Request signals. These signals arrive into the computer from 

various external sources. In the control systems, they are the signals of events 

in the controlled objects. In the multiprocessor systems, they are the 

synchronization signals from other processors. 

 

1.9.3 Interrupt system algorithm  

The interrupt register and the priority encoder are specific elements of 

the interrupt system. The first of them stores the interrupt flags and second 

one selects the interrupt source. They are defined as follows. 

The interrupt flag is a hardware element, which latches a separate 

interrupt signal. It is set to 1 when the interrupt signal occurs and is set to 0 

after the interrupt service. 

The interrupt register is a register, combining the outputs of all the 

interrupt flags. Unlike the ordinary register, this one changes the states of its 

bits independently at arbitrary moments of times. 

The priority encoder is a hardware or hardware-software unit that 

decides which of the fixed interrupt source should be served first. 

The common interrupt handling algorithm is shown in Fig.1.25. The 

following actions are performed during the algorithm implementation. 

1) One or more bits of the interrupt register capture the interrupt 

signal presence. 

2) The program stops its execution. The moment of the permitted 

interrupt can be set by one of these methods: the instruction code indicates 
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whether it is possible to interrupt this instruction; interrupt is possible at the 

end of any instruction; interruption in any cycle of the instruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.25. Interrupt service algorithm 

In the RISC processors, when the interruption occurs, the instruction 

pipeline must be stopped and the states of its stages must be stored, or the 

interrupted instruction must be computed to its end, not to load the next 

instructions. That is, in the RISC processors, the interrupt handling 

mechanism is much more complicated. 

3) At the time of interruption of the program, the states of the main 

registers are stored in order to restore correctly its operation. The data in 

these registers are named as the program context.   

4) The cause of the interruption is determined and the interrupt 

handling program is selected for a particular interrupt flag. If there are several 

1) Interrupt condition occurs, 
interrupt flag is set to 1 

2) Executed program is interrupted 

3) Storing the context of the 
interrupted program 

5) Interrupt service routine is 
executed  

4) Interrupt source is recognized 

2) Interrupt flag is reset to 0  

7) Return the interrupted program or to 
one, which is pointed by the dispatcher 
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interrupt sources (hundreds or thousands), then the hardware selects a group 

of sources, using the priority encoder, and the particular interrupt source is 

determined by the software. 

If there are several interrupt requests, they should be served in the 

manner specified by the priorities. The decision, which of interrupt signals to 

serve first, makes the priority encoder under the dispatcher control. The 

discipline of the interruption service, which is incorporated in the dispatcher 

and the priority encoder, sets the sequence of handling multiple interrupt 

flags in the interrupt register. 

5, 6) The implementation of the identified interrupt routine. Resetting 

the corresponding interrupt flag, i.e. the cause of the interruption is 

eliminated. 

7) The dispatcher provides a continuation of the interrupted program 

by using the recovery of the processor register contents or starts handling the 

next interrupt request (depending on the circumstances, the interrupt service 

disciplines, etc.). 

 

1.9.4 Methods for storing of the interrupted program 

When using the software method of the interrupt handling, the 

contents of all registers, i.e. the program context, is stored by the dispatcher in 

a separate memory segment. The contents return to the registers is also 

performed by software. 

To speed-up this process, the storage area is made as the high speed 

RAM. This process also speeded up, if not to save the state of all registers, but 

only those that can be changed at the interrupt handling. 

By the hardwired saving method, the contents of registers are 

automatically rewritten th the stack memory or to the specialized memory 

segment. In the I80x86 architecture, during the interruption, more than 104 
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bytes of data from the main registers are automatically saved in the task state 

segment (TSS). In many RISC-systems, the data and address registers are 

duplicated. And during the interrupt, one group of registers, that store the 

context of the interrupted program, it switches to another group of registers, 

which are used for the interrupt processing. The advantages of this method 

are in high speed. But the shortcomings are the lack of flexibility, limited 

number of parallel interrupts, increased hardware expenses. 

In the hardware-software method, the basic registers (accumulator, 

state register, program counter, etc.) are saved by the hardware, and the rest 

of the context is save by the software. 

 

1.9.5 Main characteristics of the system interrupts 

interrupt system determines the overall computer performance. 

Therefore, to optimize the architecture for speed, it should determine the 

characteristics and parameters of the interrupt system. The timing diagram of 

the interrupt handling process is shown in Fig. 1.26. 

It identifies the following time characteristics of the interrupt system: 

ТRand — reaction time;  

ТSSi — state storing time;  

ТDand – time for the interrupt source discrimination;  

ТPrand — preparation, response time, is equal to the absolute delay of 

the interruption, and characterizes its speed; 

 ТIPand — interrupt processing time;  

ТIi  — common time of the interrupt service. 

The derivative parameter is the loss factor  КL = ТIPand / TIi which 

characterizes the relative performance of the interrupt system. 
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Fig. 1.26. Timing diagram of the interrupt service 

 

The interrupt system saturation is the state, when the flow of 

interrupt requests could not be served in time, that is, when ТIi  >  TPi. 

 

1.9.6 Interrupt service disciplines 

The interrupt system should be able to allocate one interrupt flag 

among the plurality of simultaneously occurred flags according to the 

established discipline of interrupt service. The interrupt requests may have 

varying degrees of importance, depending on the particular circumstances, 

which may vary. Ideally, the system allocates a request (flag), which is the 

most important. The optimum service is a service when the interrupt system 

correctly and quickly responds to the importance of requests and switches the 

processor to process the most critical situation. 

In computers, the following interrupt service disciplines are the most 

common. 

1. The discipline of service with the cyclic queue is a cyclic polling of 

all flags of the interrupt register. The first not zeroed flag is serviced. After 

processing of the i-th flag, the i + 1st flag is tested and is serviced if it has the 

 

i-
th

 r
eq

ue
st

 
oc

cu
rs 

P
ro

gr
am

 
in

te
rr

up
t 

Context of the 
interrupted program 
is stored 

i-th inter-
rupt is  
distin-
guished 

Interrupt routine is 
executed, the context is 
loaded back E

nd
 o

f t
he

 i-
th

 
re

qu
es

t 
co

m
pu

tin
g 

Time 

ТRі ТSSi 

ТPrі 

ТIi 

ТIPі 
ТDі 



 111 

value one. If the polling time is sufficiently small, a synonym of this discipline 

is first-come, first-served. 

2. The discipline of service with the relative priorities. At this discipli-

ne, the most important request is selected from a plurality of queries in accor-

dance with the assigned priorities. If during its handling even more important 

request (with the higher priority) comes, it waits until the end of this request 

processing. The next request, which is handling, is the most important request 

in the moment of time of the previously processed request finishing. 

3. The service discipline with absolute priorities means that each time 

the most important request is processed, no matter how many less important 

requests are waiting for their processing. That is, the interrupt of another 

interrupt is possible. 

The priorities are assigned to either individual requests or groups of 

similar requests. The highest priority is given to the hardware failure inter-

rupts, then to the timer interrupt. The requests from the high-performance 

units are given the higher priority than the requests from the slow units. 

If the computer is running with dynamic priorities, the priorities can 

be re-evaluated and reassigned depending on the situation. 

The interrupt protection is a mechanism for the temporary disabling 

of the interruptions from the selected sources. It is performed using the 

interrupt mask register. The code 0 in the i-th bit of this register disables the 

i-th interrupt flag. Such a protection is used to prohibit the interruptions 

during the critical application running, such as recording in the HDD or the 

privileged task of the operating system. 

As a rule, a separate bit of the mask register controls the disabling of 

all interrupts, that is a bit of a global interrupt enabling. 
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1.9.7 Interrupt system classification 

The most characteristic feature of the interrupt system is a rule about 

the organization of choice for service the interrupt request. On this basis, 

these systems are divided into the systems with: 

— polling (eg., cyclic or priority selection); 

— an absolute priority; 

— the relative priorities; 

— the mixed priorities. 

Interrupt source selection systems are divided to the systems with: 

—  the software implementation of the priority scheme; 

—  the hardware implementation of a priority scheme; 

— th hardware and software priority scheme; 

— the multi-staged interrupt system, when there are a lot of interrupt 

sources. 

The interrupt register fixes the request in the flag p. The code in the 

interrupt mask register masks some or all the bits of the interrupt flags. The 

priority encoder selects the highest priority number p among several 

established and unmasked flags and generates the common interrupt request 

signal. The selected interrupt number p to be serviced is used in the  

formation of the input address, which is fed in the interrupt vector table. This 

formation consists in adding the base address of the interrupt vector table  to 

the  scaled code p, i.e. the code 2kр . 

 

1.9.8 Hardware implementation of the interrupt service 

Hardware implementation of the interrupt — is an essential condition 

for ensuring high performance system interrupts. A typical hardware 

implementation of the interrupt circuit shown in Fig. 1.27. 
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Fig. 1.27. Hardware implementation of the interrupt service 

 

The p-th row of the interrupt vector table stores the short 2k-byte 

routine of the interrupt service, the instruction of the interrupt routine call or 

the absolute address of the routine. Such a routine is located in a residential 

area of the OS. In the latter case, the interrupt subroutine call is implemented 

in hardware, and the address of the subroutine code is, in fact, the interrupt 

vector. After the end of the interrupt subroutine, the interrupt return 

instruction returns the control to the program, which was interrupted. The 

effect of this instruction is different from the action of the usual return 

instruction, at least, by the fact that after it the p-th flag, which caused the 

interrupt, is automatically reset to 0. 

In the architecture I80x86, when working in real mode, the base 

address of interrupt vector table is zero. The table stores the addresses — the 

4-byte interrupt vectors. The number of vectors is 256. Table 1 shows the 

sources of standard hardware interrupts I80x86 architecture. 

When working in protected mode, the architecture I80x86 has the 

interrupt descryptor table. Each descryptor in it contains not only the 

entering address to the interrupt routine but the information about the access 
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rigts to it which serves to the resource protection. More detailed description 

of the interrupt service in this architecture is represented in the second part 

of this teaching book. 

   Table 1. DOS hardware interrupts  

№  Interrupt source  

IRQ 0  System timer  

IRQ 1  Keyboard controller  

IRQ 2  Video clock signal, in connection with 9-th  

IRQ 3  СОМ2 / СОМ4  

IRQ 4  СОМ1 / СОМ3 

IRQ 5  Free  

IRQ 6  FDD controller  

IRQ 7  LPT1  

IRQ 8  Real Time Clock   

IRQ 9  Video clock signal, in connection with 2-nd 

IRQ 10  Free 

IRQ 11  Free 

IRQ 12  Mouse controller PS / 2  

IRQ 13  Mathematical coprocessor 

IRQ 14  Controller IDE HDD (first channel)  

IRQ 15  Controller IDE HDD (second channel) 

 

1.9.9 Interrupts in the I8051 microcontroller  

The 8051 provides 5 interrupt sources. The external interrupt signals 

INT0
——

 and INT1
——

 enter the chip throug the port pins P3.2 and P3.3. They can 

each be either level-activated or transition-activated depending on bits IT0 

and IT1 in the Timer Control register TCON (Fig.1.28). These signals are fixed 

in the flags IE0 and IE1 of the register TCON. The overflows of the Timer 0 and 

Timer 1 are fixed in the flags TF0 and TF1 of the register TCON. The Serial 

Port generates the interrupt signals RI and TI just after receiving and 

translating a data byte, respectively, which are fixed in the Serial port Control 
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register SCON (Fig. 1.28). These signals are ORed and then considered as the 

interrupt flag RI+TI.  

So, the bits IE0, IE1, IT0, IT1 and RI+TI form the flags of the interrupt 

register. They are set by the interupt signals and reset after the interrupt 

computing by the hardware. They can be set or reset by the user program 

providing the software interrupt as well. 

Each of these interrupt sources can be individually enabled or disabled 

by setting or clearing a bit in the SFR Interrupt Enable register IE (Fig.1.28). 

Then the bit ES enables the serial port, ET1 does the first timer, EX1 does 

INT1
——

 and so on. IE contains also a global disable bit, EA, which disables all 

interrupts at once. 

Each interrupt source can be individually programmed to one of two 

priority levels by setting or clearing a bit in the SFR  Interrupt Priority register 

IP. A low priority interrupt can itself be interrupted by a high-priority 

interrupt but not by another low-priority interrupt. 

 

TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 
 
SCON SM0 SM1 SM2 REN TB8 RB8 TI RI 

 
IE EA — — ES ET1 EX1 ET0 EX0 

 
IP — — — PS PT1 PX1 PT0 PX0 

 

Fig.1.28. Registers TCON, SCON, IE and IP 

 

If two requests of different priority levels are received simultaneously, 

the request of higher priority level is serviced. If the requests of the same 

priority level are received simultaneously, an internal polling sequence 
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determines which request is serviced. Thus within each priority level there is 

a second priority structure determined by the polling sequence, as in Fig.1.29. 

 

№ Source Priority within level Vector address 

1 IE0 highest 0003h 

2 TF0  000Bh 

3 IE1  0013h 

4 TF1  001Bh 

5 RI + TI lowest 0023h 

 
Fig. 1.29. Interrupt flags, their priorities and vector addresses 

 

The interrupt flags are sampled at the end of every machine cycle. The 

samples are polled during the following machine cycle. If one of the flags was 

in a set condition at the end of the preceding cycle, the polling cycle will find it, 

and the interrupt system will generate an artificial LCALL instruction. This 

LCALL instruction calls the appropriate service routine. But it is blocked by 

any of the following conditions: 

— an interrupt of equal or higher priority level is already in progress; 

— the current (polling) cycle is not the final cycle in the execution of 

the instruction in progress, i.e. the instruction must be finalized before the 

interruption; 

— the instruction in progress is RETI, or any write to the IE or IP 

registers, i.e. by this conditions, at least one next instruction must be executed 

before the interruption. 

The polling cycle is repeated with each machine cycle. Note, if an 

interrupt flag is active but not being responded to for one of above conditions, 

and is cleared before this blocking condition is removed, this interrupt will 

not be serviced. In other words, the fact, that the interrupt signal was once 
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active but not serviced, is not remembered. The polling cycle and LCALL 

sequence are illustrated by Fig.1.30.  

INT0
——

 

 

      

IE0       

Cycle C1  
⇑

 C2 C3 C4 C5 … Cn 

Interrupt 
latched            

Interrupt 
polled 

LCALL to interrupt 
vector address 

Interrupt routine in 
progress  

IRET 

 

Fig. 1.30. Interrupt response timing diagram 

 

The hardware-generated instruction LCALL in most of cases also clears 

the flag that generated the interrupt. But it never clears the RI+TI flag. This 

has to be done in the user’s software. It clears an external interrupt flag IE0 or 

IE1 only if it was transition-activated. The LCALL instruction pushes the 

contents of the program counter PC onto the stack and reloads it with an 

address that depends on the source of the interrupt being vectored to, as 

shown in Fig. 1.29. Note, that LCALL does not save the PSW or other program 

context. This task must be done by the interrupt software. 

This software execution proceeds from that location until the RETI 

instruction is encountered. The RETI instruction informs the control 

hardware that this interrupt routine is no longer in progress, then pops the 

top two bytes from the stack and reloads the PC. The execution of the 

interrupted program continues from where it left off. 

So, if an interrupt request is active and conditions are right for it to be 

acknowledged, the hardwired LCALL to the requested service routine will be 

the next instruction to be executed. It takes two cycles. Therefore, a minimum 

of three complete machine cycles elapse between activation of an external 

…

…
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interrupt request and beginning of execution of the first instruction of the 

service routine, as shown in Fig. 1.30. 

The interrupt vector table (see Fig.1.27) consists of sets of eight 

memory cells. This volume is enough to put there a simple interrupt 

subroutine, which, for example, updates an event register-counter. If the 

longest subroutine is programmed then the jump instruction is placed in the 

vector table cell, which performs a jump to the long subprogram. 

A longer response time would result if the request is blocked by one of 

the 3 previously listed conditions. If an interrupt of equal or higher priority 

level is already in progress, the additional wait time depends on the nature of 

the other interrupt service routine. If the instruction in progress is not in its 

final cycle, the additional wait time cannot be more than 3 cycles, since the 

longest instructions, like MUL, DIV, are 4 cycles long. If the instruction in 

progress is RETI or an access to IE or IP, the additional wait time can not be 

more than 5 cycles (one to complete the instruction in progress plus 4 to 

complete the next long instruction like DIV). Thus, the response time ТPrand  is 

more than 3 cycles and less than 9 cycles (see Fig. 1.26).  

 

1.9.10 Conclusions 

The operating system media contains only the basic interrupt routines 

including ones for the drivers of the most popular I/O devices. But the system 

programmers often need to develop a special program for the specific inter-

rupt service to the computer, providing the optimum performance, functiona-

lity, when attaching the specific modules. Therefore, they need to know and be 

able to use and modify the interrupt  system of the target architecture. 

 

1.9.11 Problems 

1) The interrupt system distinguishes the computer speed. Prove it. 
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2) Three interrupt requests have the permissible delays of their 

service, which are equal to 10, 20, and 30 ms, respectively.  What is the 

average interrupt service time if the computer is working in real time?  

3) Why is the interrupt from the watchdog not the usual interrupt but 

does cause the reset mode? 

4) Give the examples of the interrupt sources which need the priority 

services. 

5) What are the purposes of the driver program? 

6) How to arrange the processor architecture, which provides the long 

instruction execution interrupt? 

7) What data represent the program context of the I80x51 

architecture? In which registers are they stored? 

8) The program context of some program of the I80x51 architecture is 

stored in 8 data registers and in PSW. How much time is needed to save and 

restore this context? 

9) Why is the first interrupt vector address in the I80x51 architecture 

equal to 0003h ? 

10) Calculate the maximum average frequency of interruptions per 

second of the microcontroller i8051. The clock frequency is 60 MHz. The 

interruption of the first type is executed by 2 jump instructions and 1 data 

transfer instruction. The interruption of the second type is executed by a 

single jump instruction. The likelihood of the first type interruption is equal to 

90 %, while of the second type — 10%. The average interrupt execution time  

must not exceed the average execution time of the main program.  

11) The i8051 microcontroller operates at 60 MHz clock frequency. 

The impulses of the frequency Fs enter its input INT0
——

. What is the maximum 

frequency Fs of the impulses, which can be counted by the two-byte counter 

programmed in the microcontroller?  
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2. PROCESSOR ENVIRONMENT ARCHITECTURE   
 

2.1. Interface basics  

 

2.1.1 Data movings in the computers and interfaces 

The first generation computers had a centralized structure in which all 

the blocks, such as memory, magnetic disks, tapes, drums, input-output 

terminals were attached directly to the central processor unit (CPU) and  were 

working under its control. Since the speeds of the CPU and peripheral devices 

were relatively small, the CPU spent a greater part of its time on data 

exchanges with peripheral devices. In the development of the second and 

third generations of computers, it became clear, that the high-speed CPU does 

not perform useful work most of the time, serving the slow peripherals. An 

idea occurred to share the tasks between a CPU and peripherals, and allow 

them to work more independently. This problem was solved by introducing 

the concepts of the system interface and the system interrupts. 

The common bus interface was first introduced in the PDP-8 computer 

in 1965. The common bus made it possible to operate the CPU and peripheral 

devices independently, as well as to send data to each other. In this interface, 

all devices are connected to the same bus in the same way through a standard 

hardware interface. These devices should be subject to the same rules when 

sending signals to the bus and receiving them from it. These rules are called 

the interface protocol. 

With the introduction of the multiplexed and selector interfaces 

(channels), the IBM-360 architecture has allowed the unified attachment of 

ten different models of the CPU with four dozen different types of peripheral 

devices as desired. This was one of the reasons for the high commercial 

success of this architecture. 
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Thus, the history of the first three generations of computers has shown 

the need for interfaces. It allowed: 

— efficient use of the CPU and peripheral devices; 

— changing the structure of the computer (and sometimes even during 

operation), depending on the needs; 

— through the standardization, to develop and produce a variety of 

computer devices at an arbitrary time by different manufacturers, as well as 

complete the computers optimally. 

The interface is considered as the hardware means, which are serving 

for the uniform connection of several blocks, and provide reliable communica-

tion therethrough and connected these blocks to the system. The interface 

description consists of descriptions of its hardware and protocol. 

The hardware part of the interface is described as a structure 

comprising a set of hardware connectors, units, and links between them, as 

well as the requirements for connectors and electrical signals, which are 

distributed in the links. 

The communication link is called as the interface bus. Its description, 

as a rule, is the interface connector description. Also, there are physical limi-

tations on the design of the bus, i.e. the design of its wires and their maximum 

length. The other physical limitations apply to the design of the bus signal 

generators and receivers. These are the levels of voltages and currents in 

wires that represent bits of information, as well as the timing diagrams of the 

signals in them. 

The interface bus consists of the address bus, data bus, control bus, 

power bus and the reserve wires. 

The interface protocol is a system of rules to handle with the interface 

in time. They are the rules for the interface connection, arbitration, and trans-

mission of data in it. The protocol is given as an algorithm of sending 
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(receiving) the signals through the address bus, data bus, as well as of the 

power management. 

 

2.1.2 Common bus, masters, and slaves 

The common bus is one of the simplest interfaces. The access to it is 

shared among all devices connected to it. Its advantages are low price and 

versatility. At the same time, only a single data source can be connected to it.  

Among the bus sources and destinations are the masters and slaves. The 

master is the initiator of the data transfer. It sends a request to the interface 

for one act of using the interface (the transaction) and after the request 

confirmation, it seizes  the interface control. The slaves are the separate units, 

which are connected to the interface and perform the instructions of the 

master like reading or writing a single data word or a data set for the given 

address.  

After the reading or writing operation, the master is disconnected from 

the bus and finishes its management, i.e. it completes the transaction. If the 

common bus is connected to the multiple masters, the arbiter unit is used in 

this interface. The arbiter decides, whom of the masters to give the control 

when the simultaneous requests occur from multiple masters. 

The main drawback of the common bus is its limited throughput, since 

it is impossible to perform the transactions of  several masters at the same 

time. This drawback is removed in more complex interfaces. But the 

categories of the master, slave, arbiter and transaction are used in the most of 

computer interfaces. 

 

2.1.2 System and local interfaces 

Traditionally, the interface busses are divided into the busses, which 

connect the processor with the memory, and input-output (IO) busses. The IO 
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bus may be longer, to maintain the connection the devices of many types. As a 

rule, such a bus corresponds to one of the standard interfaces. The processor 

— memory bus, on the other hand, is relatively short. It is often specialized 

and therefore, it provides the maximum bandwidth. At the stage of 

development of the computer system, all the types and parameters of devices, 

which are connected to the processor — memory bus, are known in advance. 

Therefore, the maximum required bandwidth is provided. However, the input-

output bus developer has to deal with devices that have different, often 

unknown delays and other parameters. 

In order to reduce the hardware cost, some computers have a single 

bus both for the memory and input-output devices. It is often called as a  

system bus. The personal computers of the first generations were based on a 

system bus in an ISA or EISA standard. 

The need to maintain a balance between the speed of CPU and 

throughput of IO devices has led to a two-staged organization of the busses in 

the personal computers based on the local bus. The local bus is electrically 

connected to the CPU core. It integrates the processor, memory, buffer to the 

system bus, as well as some auxiliary circuits. Typical examples of the local 

bus is VLBus and PCI. 

 

2.1.3 Bus implementations 

Consider a typical bus transaction. The bus transaction has two parts: 

sending the address by the master to the slave, the reception (or 

transmission) of the data. 

The bus transactions are defined by the interaction with the memory: 

the "read" type transaction transfers the data from memory (CPU or IO 

device), the "write" type transaction writes data to the memory or in the 

register in a peripheral device. In the "read" type transaction, firstly, the  
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memory address together with control signals are transferred, indicating that 

it is the read transaction. Then the memory responses by the outputting the 

required data to the bus with the appropriate control signals. During the 

"write" type transaction, the CPU sends to the memory the address and data 

and usually does not wait for the completion of the recording.  

Two types of the interface busses are distinguished depending on the 

switching method: the circuit-switched bus and the packet-switched bus. 

In the circuit-switched bus, the master requests the bus, after the 

arbitration sets the data address, and blocks the bus until the end of the 

request service. The bus switching system makes a route from the source to 

the destination for the whole transaction. But most of the time, spent in this 

case, may be the memory delay. That is, the circuit-switched bus may be used 

inefficiently. 

When transmitting data messages via the packet-switched bus, the 

data packet is divided into two or more packets, which are transmitted 

sequentially. Moreover, the packet forwarding routes may not be the same. 

That is, several packets can be forwarding simultaneously, which provides the 

high network throughput. 

The minimum message consists of address and data portion. The data 

transfer transaction can be divided into two parts: a bus request with the 

address forwarding and reply with the data transfer. This technique is called  

as the split transaction. So, the read transaction is divided by the request 

subtransaction, containing the address, and the memory response subtransac-

tion,  containing the data. Each transaction must be marked (tagged) for the 

purpose that the CPU and memory can recognize the transaction type.  

In the advanced busses, the long data transfer transaction can be 

splitted to a set of subtransactions. Between them, the short transactions with 

the higher priority can be hold.  
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The bus is often performed as the pipelined bus. The pipeline  

registers are set along the data and addres transfer routes in such busses. Due 

to this, the bus clock frequency can raise to the extreme values.  The split 

transactions can fully load such a bus providing both the high throughput and 

the high hardware effectiveness. But the latent delay, i.e. the delay from the 

beginning to the end of the transaction, is increased in such busses.  

If the bus is synchronous, it includes the synchronization signals in the 

bus lines and the fixed control protocol, which specifies the location of 

address signals and data signals with respect to the synchronization signal.   

Fig.2.1 illustrates the interaction of a master and a slave in the 

synchronous bus. The master generates clocks C and sends them through a 

separate line to all the slaves. It sets the slave address on the bus AB strobing 

it by the address acknowledge signal AAK, and then it sends the request signal 

RRQ for data reading or writing.  AAK and RRQ can be combined in time. The 

slave outputs the data in the data bus DB as a response to the master's signals. 

The synchronous mode in this example consists in that, that all the signals 

have to appear precisely in accordance with the common clock signal.  

 

 

 

 

 

 

 

Such a bus can be quick and cheap.  But it has two disadvantages. Firstly, 

all the acts in it must be performed with the same synchronization frequency, 

i.e. with the maximum speed of this bus. If the slave could not output the data 

in time, then it has to activate the line "wait" and deactivate it if the data is 

Fig.2.1. Synchronous bus timing 
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ready.  

Secondly, because of the phase skew of the signals, occurring in 

adjacent bits of the parallel bus, the synchronous bus can not be long, and it 

could not be connected to many devices. In general, the processor — memory 

bus is synchronous one. 

In the modern high-speed serial busses, such as PCI-E, SATA, USB, 

Ethernet, the synchronization signal is implicitly specified in the data signal, 

and it is reproduced precisely in the special receiver circuits of the bus. 

Therefore, such busses can be considered as synchronous ones. 

The asynchronous bus is not clocked. It uses a start-stop transmission 

mode and the handshaking protocol. By the handshaking, the receiver after 

the message reception sends an acknowledgement signal back to the 

transmitter, which reports that this receiver has received the message and is 

ready to receive the next one. This scheme makes it possible to easily adapt 

the devices to different performance to the bus and increase the length of the 

bus wires without the synchronization problems. 

Fig.2.2 illustrates the interaction of units attached to the asynchronous 

bus. The master unit outputs address to the line A and the reading request 

RRQ. The last one is simultaneously an acknowledge signal of the address 

correctness.  

 

 

 

 

 

 

 

 
Fig.2.2. Asynchronous bus timing 
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The master activity is marked as UM. All the slave units, which activity is 

marked as US, decode the address. Only selected unit, which address satisfied, 

outputs the data D to the bus DB, and it acknowledges the data correctness by 

a signal in the line DAK. This signal strobes the data input in the master. 

After data receiving, the master resets the signal RRQ signaling that the 

data is already not affordable. By this signal, the slave releases the bus, setting 

it in the state of the high impedance, and it resets the signal DAK. It shows that 

the reading transaction is finished.  

The examples of the asynchronous bus is the serial bus COM, as well as 

the bus PS2, which are running in a start-stop mode. The source is transmitted 

a single byte as the 10-bit character. The first and the last bits are the start of 

the character (zero) and the stop of it (one), and the rest bits are the byte bits, 

starting with the least significant bit (LSB). The duration of each signal pulse  

in the bus is determined by a predetermined symbol transmission frequency. 

This frequency is set the same in all the COM interfaces with an error of not 

more than 3%. For example, at 9600 baud rate (i.e., 9600 symbol bits per 

second) the pulse duration is equal to 1/9600 s  or 104 microseconds. That is, 

the maximum transfer rate is  equal to 960 bytes per second. 

The synchronous bus usually has the increased bandwidth comparing 

to the asynchronous one due to the lack of the synchronization overhead  

(acknowledgment), and to the possibility of the pipelining. The bus type selec-

tion (synchronous or asynchronous) affects not only the throughput but also 

the capacity of the input-output system (the bus length and the number of 

devices that can be connected to the bus). Consider next the common system 

busses, which had improvement with the development of the personal 

computers. 
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2.1.4 System bus 

One of the most popular PC busses was the system bus XT-Bus, i.e. the  

XT architecture bus, which was installed in the first personal computers IBM 

PC. It supports the movings of 8-bit data in the 20-bit address space and 

operates at the frequency of 4.77 MHz. 

ISA (Industry Standard Architecture) is the main bus of the PC AT-type 

computers. It is the extension of the XT-Bus bus. Its bitwidth is 16/24 (16-bit 

bus and 16 MB address space), the clock frequency is equal to 8 MHz and the 

maximum bandwidth  is 5,55 MB / s. 

EISA (Enhanced ISA) is a functional and meaningful expansion of the 

ISA bus. The bit width is 32/32 (32-bit bus, address space is 4GB), clocked at 8 

MHz. The maximum throughput is 32 MB / s. In contrast to the previous 

busses, which are only controlled by the processor, this bus supports the Bus 

Mastering mode. 

This mode provides control of the bus by the arbitrary device 

connected the bus, due to the arbitration system and the possibility of the IRQ 

channel separation and the direct memory access (DMA) mode. This mode is 

used to release the processor from the forwarding operation commands and / 

or data between two devices on the same bus. For example, in the DMA mode 

PC AT architecture processor performs DMA controller, which is common to 

all devices. When the Bus Mastering, each device-master has its own 

controller. 

VLB (VESA Local Bus) is a 32-bit addition to the ISA bus. Its clock 

speed is 25—50 MHz, the maximum transfer rate is 130 MB / s. 

PCI (Peripheral Component Interconnect) is the modification of the 

VLB. Its expanded version has the bitwidth 64/64 and clock speed reaches 66 

MHz. This provides the throughput up to 528 MB / s. The bus is divided to the 

segments which are connected via the bridges. The number of connections to 
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a single segment is limited to four. The segments may be connected with a 

different structure topology (tree, star, etc.). At present, it is the most popular 

bus system.  

PCI-X,  i.e., PCI eXpanded, is the high-speed parallel bus with a packet 

switching mode, which is the modernization of the PCI bus. The PCI-X device 

can be inserted into the PCI connection and vice versa, since these interfaces 

have the interchangeable hardware and software. The signals in the PCI-X 

pass through the pipelined registers and the signal edges are reproduced by a 

phase locked loops (PLL), thereby obtaining a high data rate. The throughput 

of this bus is limited by 1064 MB / s. Such a throughput is achieved when the 

most of transactions are the block transfers, which length is higher than 128 

bytes. 

The system that requires a speed of more than 1 GB/s, is implemented 

in the version PCI-X 2.0, which implements the protocols Dual Data Rate 

(DDR) and Quad Data Rate (QDR). PCI-X 2.0 has the clock frequency of 133 

MHz. Thanks to the additional pulse strobes, two (DDR) or four (QDR) data 

are transferred per clock cycle. Due to this the throughput reaches up to 4256 

MB / s. But at the high speed the bus user number is reduced to two, which 

makes the bus connection like point to point. The additional generation and 

verification of the control bits allows to correct the errors during the 

transfers, which allows to maintain both the high speed and high reliability. 

PCMCIA (Personal Computer Memory Card International Association) 

is the external bus for the NoteBook class computers. The another name for  

the PCMCIA module is PC Card. This simple bus supports the address space 

up to 64 MB, the automatic setup and the possibility to connect and 

disconnect the devices while the computer. 
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2.1.5 peripheral interfaces (IO busses) 

AGP bus. The PC busses which output the image data are constantly 

being improved. Thus, an accelerated graphics port (AGP) is an extension of 

the PCI bus to process the large data sets of the 3D-graphics. Intel has 

developed the AGP to solve two problems. Firstly, for the playback of the 3D-

graphics, as much memory is needed for the texture map storing and the z-

buffer handling. Under normal circumstances, the z-buffer contains the 

information about the three-dimensional image and uses the same memory, 

as the texture maps. This creates a conflict with the CPU. Secondly, the 

graphics performance and memory throughput are limited by the physical 

characteristics of the PCI bus. 

The AGP bus performs the point to point connection between the 

graphical subsystem and the system memory, and the subsystem shares the 

memory with the CPU. 

USB bus. USB (Universal Serial Bus) is designed to provide the data 

exchange between the computer and the connected peripheral device under  

the dynamic (hot) system configuration changes. When designing this 

interface the next features were taken into account: 

• easy system configuration changes; 

• low cost solutions; 

• adaptation to the existing infrastructure and PC software; 

• stimulate the development of new classes of PC devices. 

The USB capabilities come from its technical specifications: 

• high exchange rate of 12 Mbit / s; 

• maximum cable length for the high exchange rate up to 5 m; 

• maximum number of connected devices (including hubs) is 127; 

• possibility to connect the devices with different throughput rates; 

• the supply voltage through the bus for the peripheral devices is 5 V; 
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• the maximum supply current to the device is 500 mA. 

At the physical layer, the bus topology has the tree structure like the 

multi-level star. At the root of the tree is the root hub, which provides the 

communication of the peripherals with the computer (host). The host has a 

set of point to point connections to other nodes of the tree.  

The developers of the unusual peripheral units should include their 

drivers in the level of the USB bus software. The configuration and 

identification software system is supplied by the OS developer or other 

software vendor. This system controls all the network nodes. The USB driver 

from the OS developer performs the scheduling of the bus activity.  

The USB bus utilizes the time division multiplexing (TDM) to provide 

the parallel access to several devices. The data are transmitted in the packets. 

The packet size is variable and  depends on many factors. The host controller 

combines the packets, which are transmitted to multiple devices, in the 

frames with a duration of 0.001 s.  

The USB-2 bus is the upgrade of the USB bus with data transfer speeds 

of up to 480 Mbit / s. Now the third generation of the USB bus, i.e., the USB-3 

is gradually introduced, which speed is increased in ten and even twenty 

times depending on the version. 

IDE and SCSI busses. Under the term IDE (Integrated Drive 

Electronics), which is the synonym of ATA (AT Attachment) a simple and 

cheap interface to the PC AT computer is understood. The IDE devices are 

usually the HDD or other high volume peripheral memory devices. A built in 

controller  provides the functions of storage management, and the 40-bit cable 

performs the simplified segment of the AT bus (ISA). The simplest IDE adapter 

has only the address decoder, and other signals are repeated from the ISA slot.   
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The main IDE mode is the programmable input-output (PIO) under 

control of the CPU. But all the HDD support the data moving in the DMA mode  

using the bus mastering. 

Under the term SCSI (Small Computer System Interface), the standards 

developed by the American National Standards Institute (ANSI) is understood 

that sets the mechanism for implementing the data transmission line between 

the CPU system bus and the peripheral devices, like HDD. The main its feature 

is the placement of an intelligent SCSI controller in the peripheral subsystem. 

The SCSI-1 standard peripheral bus is based on the 50-wire cable.  

PCI Express, shortly, PCI-E is the third generation of the input-output 

busses for the peripheral device connection. Remember, that  ISA, EISA, VESA 

and Micro Channel busses belong to the first generation of such interfaces,  

and  PCI, AGP and PCI-X  belong to the second one. But in contrast to the 

multi-bit bus of the previous generations, in which multiple users are 

connected in parallel, PCI-E is organized as a point to point connection with 

serial data lines. Due to the high clock frequency and special encoding, the 

typical transfer rate achieves 2.5 Gbit / s and higher. 

 Multiple devices are connected to the bus using the built-in 

multiplexers. Serial data transmission makes it possible to significantly reduce 

the number of contacts in the connector and of wires in the cable to four, as 

well as perform many port VLSI circuits. PCI-E consists of point-to-point 

connections in the multiplicity of x1, x2, x4, x8, x12, x16, or x32. Each 

connection is called as a lane. One lane consists of a pair of wires, which 

transmit signals in the forward direction and the other pair, which transmits a 

signal in the opposite direction. 

During its transmission through the lane, the byte is encoded by ten 

bits that are transmitted sequentially, i.e. by the 8b/10b encoding. This 

encoding is characterized in that the bitstream sequence contains no more 
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than five equal neighboring bits, and the difference between the counts of 

ones and zeros in a string of at least 20 bits is no more than two. Due to this, 

as well as to additional polynomial convolution of the bit sequence, the signal 

in the lane becomes a noise-like signal with the reduced electromagnetic 

interference (EMI), has a low power, high noise immunity and ensures 

reliable recovery of the synchronizing clock signal in the receiver. 

Furthermore, the transmitter and receiver are electrically 

disconnected. The signal has no DC component, and therefore, it passes 

through the capacitors mounted near the connections. This increases the 

reliability of the communication and makes it possible to perform the hot-

plug or hot-swap connection of peripheral devices.  

Some combinations of ten bits or symbols are prohibited and are 

evidences of the transmission error, and some of them are control symbols. 

For example the control symbols NACK, ACK serve as the acknowlege signals, 

the symbol IDLE means that the bus is free. Thus, PCI-E bus signal is 

transmitted continuously, which allows the receiver to quickly synchronize  

the data reception. 

The data transmission via the serial interface is performed using a 

packet protocol. During the hardware initialization, the connection is 

initialized with the automatic selection of the number of lanes and the clock 

frequency without the intervention of the operating system. 

SATA or Serial ATA is the standard interface, which replaces the IDE, 

SCSI and ATA busses for the connection of the HDD. Its structure at the 

physical and logical levels is very similar to the structure of the PCI-E bus. 

Unlike the USB bus, SATA provides significantly increased response  of the 

peripheral device and, accordingly, a large bandwidth due to the fact that it 

has no temporal data multiplexing. 
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2.1.6 AMBA interface  

A new approach to SOC designs is the use of platform technology. The 

platforms can be implemented both in ASICs and in FPGAs. These platforms 

have libraries that contain pre-designed and pre-verified intellectual property 

(IP) cores. An IP core is a documented project of a module, which can be 

adapted to the customer needs when it is customized in the SOC. Users can 

mix-and-match the functional IP core from the library to assist in design of the 

SOC. To connect IP cores together successfully, they have to be arranged with 

the standardized interfaces and communicate with a particular bus protocol.  

At present, the Xilinx Zynq and Altera hard processor system (HPS) as 

the SOC platforms are well-known. Both platforms are based on the two-core 

processor Cortex™-A9, FPGA fabric and the AMBA interface of the fourth 

generation. Below the AMBA interface is described as a bright representative 

of on-chip busses, which are widely used in the SOC design. 

The ARM processor is a most widely used RISC architecture built in the 

SOC. The ARM processor is provided with the AMBA bus, which is an open 

specification from the ARM corporation. This bus can be used not only with 

the ARM CPU but also with another CPU cores and application specific devices. 

The properties of the AMBA bus are similar to ones of other standard busses 

like IBM CoreConnect bus, Altera Avalon bus, VSIA Virtual Component 

Interface, and others. In the AMBA bus architecture there are three distinctive 

busses: advanced system bus (ASB), advanced peripheral bus (APB), and 

advanced high-performance bus, called the AHB.  

Several masters and slaves can be connected to the AHB, but at a time 

only one master is allowed access. The master to be allowed access is selected 

by an arbiter. The AHB-APB bus bridge serves as a slave on the AHB, and the 

only master in the APB. The various low performance peripherals on the APB 

serve as the APB slaves. ASB is an alternative system bus suitable for use 
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where the high-performance features of AHB are not required. Below the AHB 

is considered, which shows the main properties of the AMBA bus. Its signals 

are the following: 

HCLK – bus clock. All signal timings are related to the rising edge of 

HCLK; 

HRESETn – bus reset signal, is active low and is used to reset the 

system; 

HADDR[31:0] – 32-bit system address bus, which is given by the 

master; 

HTRANS[1:0] – transfer type. Master indicates the type of the current 

transfer, which can be Nonsequential (code 10), Sequential (code 11), Idle 

(code 00) or Busy (code 01); 

HWRITE – transfer direction, when high, master indicates a write 

transfer and when low – a read transfer; 

HSIZE[2:0] – transfer size, master indicates the size of the transfer, 

which is typically byte (code 000), halfword (code 001) or word (code 010). 

The protocol allows for larger transfer sizes up to a maximum of 1024 bits; 

HBURST[2:0] – burst type, master indicates if the transfer forms part 

of a burst. Four, eight and sixteen beat bursts are supported and the burst 

may be either incrementing or wrapping; 

HPROT[3:0] – protection control, master provides additional informa-

tion about a bus access, which intended for use by any module that wishes to 

implement some level of protection. The signals indicate if the transfer is an 

opcode  fetch or data access (HPROT[0] = 0 or 1), as well as if the transfer is a 

privileged mode access or user mode access (HPROT[1] = 1 or 0). For bus 

masters with a memory management unit these signals also indicate whether 

the current access is cacheable (HPROT[3] = 1) or bufferable (HPROT[2] = 1); 
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HWDATA[31:0] – write data bus. It is used to transfer data from the 

master to the slaves during write operations. Minimum data bus width of 32 

bits is recommended. However, this may easily be extended up to 1024; 

HSELx – slave select. Decoder each AHB slave has its own slave select 

signal and this signal indicates that the current transfer is intended for the 

selected slave. This signal is simply a combinatorial decode of the address bus; 

HRDATA[31:0] – read data bus. It is used to transfer data from bus 

slaves to the bus master during read operations; 

HREADY – transfer done. When high, slave indicates that transfer has 

finished on the bus. This signal may be driven low to extend a transfer; 

HRESP[1:0] – transfer response. Slave provides additional information 

on the status of a transfer. Four different responses are provided, Okay, Error, 

Retry and Split (HRESP = 00, 01, 10 and 11, respectively); 

HBUSREQx – bus request. Master x signales to the bus arbiter that it 

requires the bus. There is such an signal for each bus master in the system; 

HLOCKx –locked transfers. When high, master indicates that it requires 

locked access to the bus and no other master should be granted the bus until 

this signal is low; 

HGRANTx – bus grant. By this signal the arbiter indicates that bus 

master x is currently the highest priority master. Ownership of the address or  

control signals changes at the end of a transfer when HREADY is high, so a 

master gets access when both HREADY and HGRANTx are high; 

HMASTER[3:0] – master number. These signals from the arbiter 

indicate which bus master is currently performing a transfer and is used by 

the slaves, which support split transfers to determine which master is 

attempting an access; 

HMASTLOCK – locked sequence. Arbiter indicates that the current 

master is performing a locked sequence of transfers; 
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HSPLITx[15:0] – split completion request. This 16-bit split bus is used 

by a slave to indicate to the arbiter which bus masters should be allowed to 

re-attempt a split transaction. Each bit of this split bus corresponds to a single 

bus master. 

Some bus lines can be absent, if needed. For example those, which 

support the split transfers, can be removed. 

The AMBA AHB bus protocol is designed for the use with a central 

multiplexor interconnection scheme. All bus masters drive out the address 

and control signals indicating the transfer they wish to perform and the 

arbiter determines which master has its address and control signals routed to 

all of the slaves. A central decoder is also required to control the read data and 

response signal multiplexor, which selects the appropriate signals from the 

slave that is involved in the transfer. Fig.5.3 illustrates the structure required 

to implement an AHB design with two masters and two slaves.  

The multiplexor MUXA selects address and control information from 

the masters to the slaves, the multiplexers MUXDW and MUXDR transfer the 

data when writing and reading, respectively. 

 

 

 

 

 

 

 

 

 

 

 
Fig.2.3. AMBA interface structure 
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All transfers must be aligned to the address boundary equal to the size 

of the transfer. For example, word transfers must be aligned to word address 

boundaries (that is A[1:0] = 00). For transfers that are narrower than the 

width of the bus, for example a 16-bit or 8-bit transfer on a 32-bit bus, then 

the bus master only has to drive the appropriate byte lanes (upper or lower 

halfword, 3-th,…, or 0-d byte). The slave is responsible for selecting the data 

from the correct lanes. 

The AMBA protocol allows the burst transfers by a master, which has 

been granted the bus access. The individual transfers within a burst are called 

as beats. Four, eight and sixteen-beat bursts are defined in the AMBA AHB 

protocol (HBURST = 010,…,111), as well as undefined-length bursts (HBURST 

= 001) and single transfers (HBURST = 000). Both incrementing and wrapping 

bursts are supported in the protocol. Incrementing bursts access sequential 

locations and the address of each transfer in the burst is just an increment of 

the previous address. For wrapping bursts, if the start address of the transfer 

is not aligned to the total number of bytes in the burst (size⋅beats) then the 

address of the transfers in the burst will wrap when the boundary is reached. 

For example, if the start address of the transfer is 0x34, then it consists of four 

transfers to addresses 0x34, 0x38, 0x3C and 0x30. Bursts must not cross a 

1kB address boundary. The first beat of the burst transfer has to be of 

Nonsequential type, and the others – of Sequential type. 

The address and data of the different beats in a single burst are 

transferred in a pipelined fashion. A write burst which writes data D1, D2, D3 to 

addresses A1, A2, A3 respectively is shown in Fig.2.4. Note that data Di and 

address Ai+1 are transmitted in the same clock cycle on the HADDR and 

HWDATA lines. Thus the address and data phases of consecutive beats within 

a burst can overlap. 
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The protocol allows a slave for inserting the wait cycles by deasserting 

a HREADY signal if the slave is not ready to service a transfer. This extends the 

data phase of a transfer. Due to the pipelined nature of the bus, the address 

phase of the next transfer also has to be extended. Fig.2.5 shows the writing of 

D1, D2, D3 to addresses A1, A2, A3 with the insertion of a single wait cycle in the 

transfer of D2. 

In order to prevent an excessive number of wait cycles, the protocol 

allows the release of bus access to the other masters. This is co-ordinated by 

the slave which either informs the arbiter of its temporary inability to service 

a master (a Split response) or informs the master to retry the transfer (a Retry 

response). The provision of split transfers, that is, temporarily suspending a 

transfer and resuming it later when the slave is ready, raises many important 

questions. The pipelined nature of the AMBA bus further complicates the 

situation.  

The AHB protocol specifies a certain behaviour that must be respected. 

Firstly, the master must perform pipelined accesses: every transaction must 

be performed in two phases. First comes an address phase during which the 

address and control signals are driven. At the end of this phase, the slave 

selected by the address samples the address and control signals and begins its 

response during the data phase. The response includes the driving of certain 

control signals and either the emission of the read data or the sampling of the 

write data at the end of the cycle. This rule is referred to as the Pipeline rule. 

Fig.2.4 
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Then the slave can drive HREADY low to stretch the length of a bus 

cycle. The master must be able to stall its execution to respect the slave's 

request. This is the Stretch rule. The AHB protocol also has provisions for 

several bus masters: only one master can have access to the slaves at a given 

time. All of the other masters must wait until the bus is assigned to them. This 

is the Arbitration rule. 

Several accesses must be made in an uninterrupted, or atomic, fashion. 

The AHB protocol offers the possibility of performing locked access sequen-

ces, that the arbiter cannot interrupt to grant the bus to another master. 

Before the first address phase, the master must warn the system that the 

locked transfers are about to begin by asserting the HLOCK signal. The signal 

must be de-asserted during the address phase of the last access. This is the 

Lock rule. 

Finally, a slave can issue various responses to a master's request. The 

Error response indicates that the access has failed. The Retry and Split res-

ponses must be handled in a special way: every clock cycle, the master must 

observe the status of HRESP. If one of the two aforementioned responses is 

given, then the master must immediately drive the Idle value on its HTRANS 

output. This cancels the address phase that followed the one that caused the 

response. On the following bus cycle, the master must retry the access that 

had caused the unusual response. This rule is referred to as the Exception 

rule.  

 

2.1.6 Problems 

1) What factors does the length of the interface busses infer and why? 

2) What does occur when two sources are connected to the common 

bus simultaneously? 

3) What is the role of the arbiter in the interface? 
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4) For which purposes have the modern high-speed interfaces the 

point-to-point configuration? 

5) Why have the interfaces with the split transactions much higher 

throughput? 

6) Why does the DMA mechanism increase the overall computer 

speed? 

7) The high-speed serial interfaces like PCI-E, SATA, Ethernet, USB are 

robust and provide the hot plug-in mode. Explain, which features provide it. 

8) Why is the common bus architecture of the modern 

microprocessors based on a set of multiplexers but not on the tristate buffers? 

9) Why have the high-speed serial interfaces much higher throughput 

than the parallel interfaces have? 

10) The high-speed serial interfaces can have much longer bus wires 

than the parallel interfaces. Explain, why. 

11) The high-speed serial interfaces can have much longer latent delay 

than the parallel interfaces. Explain, why. 
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 2.2 Memory in computers  

 

2.2.1 Memory types and their properties  

All the computers require the variable storing in the memory cells and 

reading therefrom as required. These cells are registers, or they form blocks 

called memory units which can store millions of data bits. There are different 

types of memory units with different characteristics depending on their 

application. The memory unit with the writing and reading modes, which 

stores the data indefinite period of time at the arbitrary address, and 

frequently outputs it, if necessary, is a random access memory (RAM). 

The read-only memory (ROM) stores the information for a long time, 

and often before the ROM is used in the system. There is a kind of memory, 

called the programmable ROM (PROM), where the user can store the desired 

data using the recording procedure. But it requires the use of a special 

electronic writing device and is executed within a certain time. If PROM 

erasure is performed electrically, such a memory is called an electrically 

erasable programmable ROM, (EEPROM). 

Increasing the memory volume increases its cost and reading-writing 

delay. Therefore, the computers use the memory units having the different 

volume, speed, which form a hierarchical system. The main memory unit in 

the computer is the RAM. It is usually built on the dynamic RAM chips 

(DRAM) or on the static RAM (SRAM). The prices for the memory chips of the 

equal volume are reduced by about 30% per year. The DRAM  is typically five 

times cheaper than SRAM of the same volume. 

Also, the DRAM power consumption is about four times less. But as a 

rule, the SRAM speed is 2—3 times higher than the speed of DRAM. In the 

modern synchronous DRAM (SDRAM) the DRAM of the large volume and the 
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high-speed SRAM buffer are combined. Thanks to the pipelined burst mode, 

the SDRAM provides the average access time less than 2 ns. 

There is a tendency that the RAM speed doubles every five years. But 

the speed of the CPU increases more rapidly. Thanks to the Moore's Law, the 

CPU speed doubled for two years. This leads to an increase in the gap between 

the slow RAM and high-speed CPU. A compromise solution to this problem is 

the use a small intermediate memory with the high speed. This memory is 

called as the cache memory or cache RAM. The cache RAM speed depends on 

the distance to the CPU. The most effective way is placing this RAM near the 

CPU on the same chip. The amount of such cache RAM is limited by the IC 

technology and is equal to near 0.1 — 10 megabytes. To increase the efficien-

cy of the cache RAM, it is performed as a hierarchical RAM. The RAMs, which 

are integrated into the chip, are the first and second levels of the cache RAM. 

When CPU requires data and it does not find them in the cache RAM of 

the first level, the data are copied to it from the second level cache RAM. To 

increase the speed of data transmission, the cache RAMs are operating in 

parallel at different levels:  the portion of data is read from the RAM of the 

first level, while another portion of data is rewritten to it from the second 

level cache RAM. 

Most often, the instructions and data are located in different memory 

areas. After reading, they are loaded into the various parts of CPU: the instruc-

tions enter the control unit, and data enter the datapath. Therefore, the cache 

RAM is often divided into two parts: data cache RAM and instruction cache 

RAM. This separation allows the CPU to read both data and instructions simul-

taneously. In addition, the protection of data and programs is going on in 

different ways. The architecture, in which the data and instruction RAMs are 

formed as separate units, historically was named as the Manchester 

architecture. 
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The large amounts of data are stored in the external storage, which 

store them after the power is turned off, i.e. in the non-volatile RAM 

(NVRAM). Such a RAM has a large volume (1010 — 1016 bytes), but it has a low 

speed. They are often based on the magnetic disks and sometimes on the 

magnetic tapes. Many modern NVRAM in portable devices, such as mobile 

phone, digital camera, based on the flash EEPROM. 

The hard disk drive (HDD), which is still referred to as the 

Winchester, is the most common NVRAM. Its access time is equal to 1—10 ms, 

and the data transfer speed is 2—200 MB / s. In order to equalize the speed of 

RAM and the speed of the NVRAM, the HDD uses a buffer memory of average 

volume and average performance, which is called as HDD-cache. 

The system of all the memory units, which are used by the CPU 

architecture, is called as the computer memory. This memory consists of 

several levels, which is seen by the user as the virtual memory. Each layer of 

such a memory is controlled by a special control unit, which provides  the 

automatic data transfer between different levels of the memory. Such a unit 

usually uses some strategy, that minimizes the average data access time. In 

accordance with some access strategy, the virtual memory behaves as a  

memory unit with the volume of some NVRAM (~ 1012 bytes) and the access 

time of  SRAM (~ 10 ns). 

 

2.2.2 Static memory 

The integrated memory circuit may be part of the CPU or a system on 

the chip. The memory cell in it is implemented as a trigger, which network is 

shown in Fig.1.5 or in Fig.2.4. Therefore, such a memory unit could not have a 

large amount (more than 106 — 108 bytes), and it spends most of the system 

energy. This is the reason that the large volume memory is usually 

manufactured as the separate chips. Thanks to a special technology, special 
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design of the memory cell, read-write amplifiers, multiplexers and decoders, 

the separate memory IC has the minimized power consumption, high speed 

and volume up to ~ 109 bytes. The memory chips are divided into SRAM, 

DRAM and EEPROM, according to their properties and technology. 

The abbreviation RAM means that the memory access is random, i.e.  

any address can be accessed at any time. Recall that in the computers of the 

first generation, the memory units were formed by the delay lines, that is they 

had the sequential access mode. 

Title static RAM (SRAM) has the property that as soon as the data is 

stored in RAM they are save there until power is turned off. Fig.2.6 illustrates 

the CMOS SRAM with the volume of 2 kbytes. The principles of designing of 

such a memory are the same to SRAMs of other construction.  

 

 

Fig.2.6. The SRAM structure with the volume of 2 kbytes 

 

2.2.3 Dynamic memory 

DRAM is similar to SRAM in that the data are stored under the same 

cell addressing law. On the contrary, in DRAM it is necessary to organize the 

periodic restoration of the memory state (refresh), to keep the data from 

being lost. The difference between the two types of the memory is the cell 

structures, which are shown in Fig. 2.7 and 2.8, respectively. The dynamic 

memory cell consists only of one transistor and a storage capacitor CS. This 
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enables the high integration density and large circuit volume that achieves 

~ 1010 cells. 

 

 

Fig. 2.7. SRAM cell                         Fig. 2.8. DRAM cell 

 

When the line selecting signal is WLi = 1 (see Fig.2.8), the transistor 

operates as a closed switch and allows the memory to read or write. Storage 

condition is activated when this signal is WLi = 0 and the path between the 

data line D and the capacitor CS is terminated. The closed transistor, having a 

small, but significant leakage current, promotes the discharge of the capacitor. 

Therefore, the data can be stored in the DRAM for only a short period of time 

(< 1000 ms), and therefore they must be periodically restored. 

The restoring operation (refresh) is performed by a special circuit 

which amplifies the charge in CS. The refresh period is usually should be no 

more than a millisecond. For one refresh cycle, one row of the memory array 

is restored. To restore the DRAM, the refresh procedure has to go through all 

the rows. Therefore, the lines in a large DRAM are looked over with a 

frequency of several megahertz. To ensure the automatic refresh, the DRAM 

has a refresh counter,  which counts the recoverable lines and is a part of the 

row address register. 

When accessing the DRAM, the row addressing and column addressing 

is performed separately. Suppose we have a DRAM with the structure like one 

in a Fig.2.6. The Fig. 2.9 shows the timing diagram for the writing therein. The 

RAS and CAS signals indicate the line selection (Row Address Select) and the 
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column selection (Column Address Select). When ⎺⎺⎺RAS = 1, the circuit stores 

data. When ⎺⎺⎺RAS = 0, ⎺⎺⎺СAS = 1, then the row address bits are stored in the 

internal register address. At the same time, all the relevant cell lines are 

refreshed. When ⎺⎺⎺СAS = 0, then the column address bits are decoded, and the 

writing or reading operation is performed, depending on the signal ⎺⎺⎺WE. This 

operation is ended when ⎺⎺⎺СAS = 1. 

 

 

 

 

 

 

Fig. 2.9. Timing diagram of the DRAM writing  

 

As we can see, the address is loaded in the DRAM in two cycles. Thanks 

to this, the address pin count in the DRAM chip is twice less than in the SRAM. 

The disadvantage of this mode is the need for an external address multiplexer, 

which generates the row address and column. The access time to the DRAM 

cell is minimized when the row address is stored once, and then all the cells of 

the selected row are available at the different column addresses.  

The microprocessors usually have a special DRAM controller, which 

provides the proper flow of addresses and control signals, as well as the 

control of the time slots, chip initialization, corrupted data recovery. 

Therefore, the DRAM flaws are "invisible" to the user. 

Due to the large address decoding circuitry, the signal amplifier delay 

and the two-cycle addressing  mode, the DRAM has an access time of tens of 

nanoseconds. The modern DRAM ensures its increased speed due to the 
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following improvements. A number of memory banks which are placed in the 

chip has the independent control circuits and decoders. Then the address 

word is the concatenation of the row, column, and bank address fields. The 

bank address can be changed rather quicker than the access to the selected 

cell. Therefore, the series of N accesses to the same cell but in the different 

banks can be fulfilled in N adjacent clock cycles.  

In the SDRAM the pipelined access is performed, that is input data, 

address, read data, and even data arrays are read by the row address and are 

stored in the pipelined buffer registers. Therefore, the read operation requires 

2 — 10 cycles. But thanks to this, the clock frequency can be increased up to 

several hundreds of megahertz. 

The DRAM chips have the bi-directional data bus with the bit width of 

36 and more bits. To provide the quick access to a portion of the data (byte, 

nibble) the data bit mask (DQM) is used. 

If a set of equal operations is performed, such as the sequence of 

readings, then the average speed can be rather high. For this purpose, the 

fast-page mode (FPM) or the burst mode is used. In this mode, the row 

address is stored and the access is performed for a sequence of adjacent 

column addresses. This is provided by the column address register, which is 

implemented as a counter. Therefore, when the CPU writes or reads the array 

of data, then the burst mode is usually used.   

To control the FPM mode, the access delays are programmed in the 

DRAM by the specification of four numbers. For example, a set of 5-1-1-1 

means that the first access requires five clock cycles, and the other accesses 

one clock cycle do. The DRAM control unit must distinguish, that the DRAM 

operates in different modes (initialization, reading, writing, fast-page mode, 

refresh, downloading, etc.) the corresponding sequence of control signals is 

provided. The signals RAS, CAS, WE, DQM and others form the control word,  
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which is directed to the address bus and is stored in the DRAM by the front of 

the clock signal.  During the computer initialization, the DRAM is initialized as 

well. By this process, all the DRAM cells must be refreshed during several 

milliseconds. Only after that, the DRAM is guaranteed to work properly. 

 

2.2.4 Read-only memory 

EPROM is an Erasable-Programmable ROM. The EPROM programming  

consists in the charge transfer to the gate area of the MOS transistor, which 

serves as a memory element, due to the increased voltage on the gate and the 

electron tunneling effect. 

If this charge is present, then the transistor is permanently opened. 

This charge is stored for a long time, because it is "stuck" in the gate dielectric, 

or the auxiliary gate, which is immersed in a dielectric, the so-called floating 

gate. In the devices of this type, the data erasure occurs when these 

transistors are irradiated with the ultraviolet light for several minutes.  

The Electrically Erasable ROM (EEPROM, E2PROM) have the 

advantage that the data can be erased in the circuit. To clear the bit, the 

voltage is applied with the reverse polarity to the gate of the storage 

transistor. The new technology makes it possible to perform a large number 

of erasing and write operations (up to a million) in a short time. For the high 

erasure rate as compared to EPROM, these devices are called as flash EPROM, 

where "flash" means the speed with which the data can be erased. Today, a 

single transistor can store 2 or even 3 bits, which are coded as the voltage 

level, which was programmed in it. 

This kind of the memory is very advanced. At present, the 3D chips of 

the flash EPROM are manufactured, which have up to 64 layers of the storage 

transistors. The capacity of such a chip achieves hundreds of gigabytes. Its 

structure is similar to one of the SDRAM — the static RAM buffer provides the 
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high speed of the data reading.  Therefore, the flash EPROM is the base chip of 

the solid-state drive (SSD), which substitutes the HDD in the applications, 

where the high speed, small dimensions, and high reliability are needed.   

But the erasing in the flash EPROM is performed with the whole blocks 

of the memory. After some set of writings (several thousand) such blocks start 

to degrade and after some period of time, this ROM failures.  

Ferroelectric RAM (FRAM) retain the advantages of DRAM (high 

volume and speed) and the NVRAM (the data is saved after a power failure). 

The RAM cell resembles a DRAM cell. But the bits of data stored in it is not a 

charge, but a sign of the dielectric polarization. To do this, the capacitor is 

made of a ferroelectric. When the bit reading is performed, then the capacitor 

is recharged. And if the capacitor while the recharging changes the 

polarization, it is considered, that a bit one was written. But this process 

changes the polarization. Therefore, the reading process is completed with the 

writing this bit back. 

 

2.2.5 High-speed memory 

The access time in the high-speed memory is less than in conventional 

RAM. Such a memory is connected between the RAM and CPU to reduce the 

average access time. This increases the speed of the CPU, because it directly 

accesses the high-speed memory. Furthermore, the access to the high-speed 

memory and an ALU operation can be implemented in parallel. 

The memory types of immediate, associative, pipelined and stack 

addressing are distinguished. The memory with the direct addressing has the  

cell addresses 0 to m — 1. The cell address is placed directly in the address  

field of the instruction. When m has a small value (up to 128 — 256), the  

memory is called as the Registered RAM (RRAM). 
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In the associative addressing mode, the operand has not the address, 

but the label, tag or keyword. When the tag is inputted to the associative RAM, 

it outputs one or more words, which coincide with the input tag, or nothing if 

the tag does not match. This addressing mode is used in the cache memory, 

which is discussed hereinafter. 

Two or more processor units are often connected through the memory 

buffer with the pipelined addressing mode. Such a memory is formed a set of 

registers, which are connected to the pipeline. The source writes the data to 

this memory, and the receiver reads these data in the same order in which 

data is supplied to the memory. This mode is called first-in first-out (FIFO). 

Therefore, this kind of the memory is referred to as FIFO. 

FIFO is often used when the source provides the data at irregular 

intervals, or at a different frequency than the receiving unit receives them, for 

example, in the communication systems. 

In the stack mode, the memory unit is considered as a register stack. 

The user only has the access to the top register of the stack and can push data 

to it or remove (pull) the data from it. The read operand is that has been 

written in the stack as the last one, and therefore, this kind of the memory is 

called as Least Recently Used (LRU). Often we have  the access not only to the 

top register, but also to the next one, or to the arbitrary register (by its 

address). For example, so the stack of the I8x87 floating point coprocessor is 

constructed. 

 

2.2.6 Cache memory 

The automatic exchange of data between RAM and the high-speed 

memory is achieved in the associative addressing mode. The structure of the 

cache RAM is shown in Fig. 2.10. It has a data memory block M, a context 
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associative memory (CAM), an address comparator CMP, a control unit CU, 

an address register RGA, and the data register RGD. 

 Each data, which is written in M, has a tag, which is equal to its 

address, and which is stored in the CAM. When the CPU performs the data 

reading or writing,  the data address is written in RGA, the read RD and write 

WR signals enter the CU. The address in RGA is compared with the addresses 

in the CAM using the comparator CMP. If the address is equal to a certain 

address in the CAM, then we see about the cache hit. In this situation, the  

data read from M is written in RGD or from RGD is stored to M. If the address 

is not equal to any address in the CAM, we talk about the cache miss. Then CU 

organizes the access to the external RAM. 

 

Fig. 2.10. Cache RAM sructure 

 

When the cache miss, the data from the RAM is written to RGD and in 

the empty cell of the block M, and its address is stored in the respective cell of  

CAM. By the next reading of this address, the real reading occurs from the 

cache RAM but not from the outer RAM.  

When the data is written, the writing process is performed due to some 

cache consistency strategy. Due to the write-through strategy, the data is 

stored both to the outer RAM, and to the respective cell in the cache RAM.  The 

write-back strategy is also called store-in or copy back one. In contrast to the 

write-through strategy, write-back only modifies the cached data. By the use 

of the dirty-bit, that cache line can be marked as dirty, the cashe memory 
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indicates for the CU, that the line, when being replaced, must be written back 

to the next level of the memory. 

When the cache memory is in action, all its cells are filled. Therefore, to 

access the new address, some cache memory cell must be released. It is 

natural, when the cell is released, which has the smallest number of the access 

times. To determine it, the CU has a network that selects it according to some 

strategy. 

The next strategy is commonly used. Let the latch Ti is associated with 

the i-th cell of the САМ. Initially Ti = 0 for all i. If the access to the i-th cell hits, 

then Ti = 1. This means that at least a single access to this cell occurred. If it 

misses, then the nearest cell is selected for the release, for which Ti = 0. When 

Ti = 1 for all addresses i, then all the cells are released, and for them Ti = 0 

except one cell which is selected for the current access.  The strategy of the 

random cell selection or the round-robin discipline are used for the cell 

release as well.  

A disadvantage of the associative memory is its hardware complexity 

when the address number is large. Its effectiveness increases when the set 

associative mode is used. Many microprocessors have the set associative 

cache RAM. When a cache miss occurred, then not a single word is moved 

from the outer RAM but a set of bytes which form the whole line of data. This 

minimizes the hardware for the tag comparing and storing. Besides, in many 

cases, the address sequence has the natural order or the addresses of a set of 

accesses belong to the same RAM line. For example, the data form an array, 

the next instruction in the program usually has the near location. Then only a 

single miss occurs for the whole line of data or instructions, which is moved 

using the high-speed burst mode. As a result, the average access time can be 

reduced several times.  The length of the cache line is equal to 64, 128 or 256 

bytes.  
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2.2.7. Problems 

1) The fast memory usually has the small volume, the high volume 

memory usually is slow. What is the cause of this situation, and how is it 

resolved in computers? 

2) The memory splitting is a method of its speed increase. It is based 

on parallel access to several memory units. Consider the i-th array data are 

stored in the memory units  with the number i mod 4. Then up to 4 adjacent 

data can be read simultaneously or with the small time shift. I.e., the memory 

speed is increased up to 4 times. Declare the limitations of the splitted 

memory use. Where can we find it now? 

3) Which features make the throughput of DRAM be increased? 

4) The Micron company has proposed the Hybrid Memory Cube (HMC) 

DRAM architecture. Such a memory unit consists of a set of DRAM chips which 

are connected to the CPU through the lanes of the PCI-E-type interface.  

Explain, which features has this kind of a memory contra the usual DDR3 

DRAM and why.  

5) Why the SSD drive has much higher speed as the HDD drive has? 

6) The hash function is a function, which maps homogeneously the N-

bit argument to the n-bit result, N >> n. How to build the associative memory 

using the hash function? 

7) The coprocessor i8087 is based on the 8-level stack, the top and the 

next register of them are forwarded to ALU. Propose the algorithm for this 

coprocessor, which calculates the formula y = a⋅x2 + b⋅x + c. Show the states of 

the stack.  

8) The stack segment of RAM is usually used for the context saving 

when the subroutine calls occur. Explain, why. 
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9) Consider a program, which computes the large square array of data. 

When the rows of the array are computed then the computing speed is much 

higher than when the columns are. Explain, why. 

10) The experience shows that the programs which have preferably 

short jumps are executed much quicker than ones which have long jumps. 

Explain, why. 

11) For which purposes is the program optimized to have the 

minimized number of accesses to the RAM? 

12) Why does the cache RAM occupy more than 50% of the micropro-

cessor chip surface? 

13) A flash memory of the volume 8 GB is attached to the computer, 

which makes approximately 10 writes per second to it of files with the 

average length of 16 kB. Estimate the time of the reliable operation of this 

memory.  

14) RAM has the volume of 16 GB, the HDD speed is 50 MB/s. Calculate 

the period of time to save the RAM content to HDD. 
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2.3. External storage devices  

 

2.3.1 Peripheral devices 

The computer peripheral devices are divided into input-output devices 

and external storage devices. A common characteristic of the input-output 

device is the data rate (the maximum rate at which data can be transferred 

between the input-output device and the main memory or CPU). Table. 2.1. 

represents the basic peripheral devices, which are used in today's computers, 

as well as the approximate rate of data movings, which are provided by them. 

Consider the most rapid of these devices — the magnetic disks. 

 

  Table 2.1. Examples of the peripheral devices  

Type  Data transfer direction Transfer speed (Kbytes/s) 

Keyboard  Input  0.01  

Input  Input  0.10 

 Voice input-output  Input-output  20.00  

Scanner  Input  200.00 

 Laser printer Output   500.00 

 Graphical display Output  100000 

 Magnet tape  Input-output  2000.00 

 Optical disc   Input-output   5000.00 

 Magnet hard disc  Input-output  50000 — 500000 

    

2.3.2 Magnetic disks 

The hard disk drive (HDD) is composed of one or several, most 

commonly, aluminum disks with the magnetic layers on both sides. The track 

is the circular sequence of bits on the disc, which are written for its full turn. 

Each track is divided into sectors of fixed length. Typically, one sector 
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contains 512 bytes of data. Now there are 2048 and even 4096-byte sectors, 

providing high performance of the hard drive. 

Before the data, the sector header is written, which allows the HDD 

controller to synchronize the magnetic head before reading or writing the 

data. The sector address and a set of flags are written in the header, including 

the sector corruption flag. After the data in the sector, the cyclical control code 

is written. This is typically a convolution code with a 32-bit polynomial that 

can reliably identify the corrupted data in the sector. This code is named as  

the cyclic redundancy check (CRC) code. Also in today's hard drive at the end 

of the sector, the error correction code (ECC) is placed. This Reed-Solomon 

code allows the HDD controller to fix some corrupted bytes. Between the 

adjacent sectors, the intersectoral gaps are placed. 

The track structure is formed during the HDD physical formatting. It 

occurs during the HDD manufacturing. Due to the sector headers, CRC, ECC 

and  intersectoral gaps, the volume of the formatted HDD is at ca. 15% less 

than the unformatted volume. 

The magnetic disks are placed on a single spindle, which spins at a 

speed of 5400, 7200 or 10,000 rpm. depending on the HDD design (Fig. 2.11). 

 

 

Fig. 2.11. The HDD drive with four heads 
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The magnetic heads are mounted on the block of light consoles, which 

can position the heads precisely and quickly over a certain track by the 

electromagnetic motor (averagely for 5 ms, the transition to an adjacent track 

lasts less than 1 ms). Thus, the track is a series of concentric circles, the center 

of which coincides with the center of the spindle. The width of each track is a 

fraction of a micron. The collection of tracks located at the same distance from 

the center referred to as a cylinder. 

The density of the recorded bits in the tracks differs depending on 

their distance from the disk center. The recording density depends also on the 

quality of the disc surface layer and the head,  on the air purity, and it reaches 

10000 bits/mm. To ensure the long life of the HDD, it is manufactured in a 

rigid sealed casing, the interior of which is connected to the outside air 

through a dense filter. 

On the part of the operating system the hard drive is perceived as a 

fixed set of drives with the number Nh of heads, the number of cylinders Nc, 

and the number of sectors Ns. And the numbers of heads, cylinders, sectors are 

written in the preamble of the relevant sectors as the sector addresses during 

the physical formatting. The cylinder and head numbering start from 0 and 

the sectors — from 1 does. 

The system LBA (Logical Block Addressing) limits the cylinder 

number bit width with Nc = 16 bits, head number — with Nh = 4 bits and 

sector number — with Ns = 8 bits. This allows making a hard drive capacity of 

up to 216+4+8+9 = 131 GB. In order to substantially remove the boundaries of 

the maximum amount of hard drive capacity, in 2002 the protocol UltraDMA 

has approved the access to the hard drive. According to it,  the sector address 

bit width is limited to 48 bits, which provides the capacity up to 140 000 TB. 

HDD has its own controller, which receives the data and instructions 

via a hard drive interface (ATA, SATA, or SCSI).  Also, the controller performs 
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a correction of the reading errors. In addition, the controller has a cache 

buffer with the capacity a few megabytes, and the DMA device. Thanks to 

them, the average access time to the selected sector is decreased and the data 

transfer speed is increased up to several tens of megabytes per second. 

To compress the storing information, the number of sectors on the 

outer cylinders is increased compared to the number of sectors in the inner 

cylinders. Also, the number of physical sectors per track is increased up to 

several thousand, which is in contradiction with the LBA addressing system. 

Therefore, the HDD physical disk may have up to four logical drives and the 

mismatching of the addresses of logical and physical sectors. 

The HDD controller performs the mapping of the logical sectors 

addresses in the physical sector addresses. I.e. it keeps the conversion table to 

convert the physical sector addresses in the logic ones and vice versa. 

Furthermore, the controller periodically checks the integrity of the sectors. In 

the case of finding the damaged sector, it replaces it with a sector of the 

reserved area of the disk with the appropriate correction of the conversion 

table. This table is stored in a special EEPROM. 

 

2.3.3 Solid-state drive  

The solid-state drive (SSD), also known as a solid-state disk, really 

contains neither an actual drive nor disks. The SSD is based on the EEPROM 

integral circuits. But its architecture at the logical level repeats the HDD 

architecture. The SSD interface is equal to the HDD interface as well.  

Due to the absence of both the moving parts and the sequential 

manner of the sector finding, the SSD provides the high-speed data access and 

the high operation reliability. The cost of SSD is many times higher than the 

HDD cost. But it is decreased due to the flash ROM technology improvements.  
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The high-speed SSD substitutes the HDD in the data centers due to its 

increased throughput and lower energy consumption. SSD in the form of the 

separate integral circuit substitute the HDD in the hand-held devices.   

The SSD user has to take into account that before the writing to the 

EEPROM, the respective 256kB block must be erased for ca. 2 ms. Therefore, 

SSD can provide the high-speed reading (up to 500 MB/s) and slow writing, 

especially when the files are short. To improve that, the operations are 

implemented in parallel, the EEPROM is sometimes supplemented by the 

DRAM buffer. As a result of the buffering, the average access time is decreased 

from ca. 100 µs to 10 µs and is much less than one in the HDD (3—10 ms). 

It must be mentioned, that the number of reliable writings to the same 

address of the modern flash ROM is limited by 3000—10000 times. Only some 

special reliable blocks of that ROM provide up to 0,1 mln of write cycles. To 

keep the SSD reliable, the wear leveling technique is used. According to it, 

each time, the writing to the same logical sector is implemented to different 

physical addresses, which are selected randomly by some special algorithm. 

As a result, the numbers of writings to the different logical sectors are 

averagely equal to each other. The sector mapping table is stored in the 

reliable blocks of ROM. 

 

2.3.4 Compact Disc 

The Compact Disc (CD) or the optical disc is developed by Philips, 

together with Sony in 1980 for storing and expanding the audio information. 

The overwhelming majority of CD has a diameter of 120 mm, the thickness of 

1.2 mm, and the diameter of the middle hole of 15 mm. A thin aluminum layer, 

which is deposited on a transparent polycarbonate base, has a spiral track. On 

it there are recesses (pits), smaller than a µm and surface areas (lands), 

which encode the ones and zeros of data. The pits are less than a µm in 
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diameter, which provides the high information density. When playing the 

records, the focused laser diode beam illuminates the track, and the 

photodiode matrix receives significantly less light from the pits than from the 

lands. It also ensures that the beam is focused in the center of the track. The 

positive and negative transitions of the detected light level are recorded as 0 

and 1, respectively. 

Since 1984 the CD began to be used for the computer data storing, and 

it is called as CD-ROM (Compact Disc — Read Only Memory). While the data 

recording, every byte is encoded by the 14-bit Hamming error-correcting 

code. Every 24 coded bytes are stored in the 588-bit frame, of which 396 bits 

are used for the error correction and control. Every 98 frames form one 

sector. The sector begins with a 16-byte preamble, which accommodates the 

synchronization sequence, a three-byte sector number, at which the driver 

finds the sector, and the sector encoding type. Totally, a sector holds 2048 

bytes of data and 228 bytes of the Reed-Solomon error correction codes. 

Also, the bytes of the neighboring sectors are shuffled. Therefore, if the 

wide scratch occurs on the disk surface, it spoils a few dozen of neighboring 

bytes. Then, during the reading the corrupted surface after inverse shuffling, 

the bad bytes are evenly spread among unspoiled sectors. And these bytes can 

be recovered by using the Reed-Solomon decoding algorithm. But due to the 

implementation of a three-level error correction system (in bytes, frames, and 

sectors), the volume of recorded information is increased by 3.6 times. 

To implement the capability of CD-ROM recording by the user, a 

Recordable CD (CD-R) become popular.  Such a disc has an additional 0.6 mm  

wide groove, which directs the laser beam for the recording. A layer of dye, 

which darkens under the laser heating, is filled in this disc between the metal 

reflection layer and the disc substrate. 



 162 

In the ReWritable CD (CD-RW), instead of the dye, the fusible alloy of 

silver, indium, antimony and tellurium is used, which has a crystalline and 

amorphous states with varying degrees of reflection. 

CD-ROM has a capacity of about 700 Mbytes. In order to increase their 

capacity several times, the Digital Versatile Disc (DVD) has been developed. 

The sealing of the recording density therein to 4.7 GB or more is achieved by 

halving the size of pits, the track pitch and manufacturing a multilayer disc. 

Besides, the infrared laser was substituted by the red laser. In recent years, a 

proliferation of Blue Ray drives take place, the volume of which reached up to 

70 — 128 GB by using a blue laser, which was the reason for the origin of their 

name. 

The CD discs of the large volume are widely used for the archive data 

storage in the data centers. For this purposes, the glass or sapphire disks start 

to be used. Such discs can store up to several TB of information. They are 

immune to the mechanical damages, fires and therefore, they are able to store 

the data for millenniums. 

 

2.3.5 Logical structure of HDD with FAT 

Most of the OS modules and custom software access the hard drive, not 

addressing the certain sectors, cylinders and heads, but using the file system. 

HDD logical structure specifies the mapping files into a set of clusters. 

The cluster is a predetermined number of neighboring sectors (1,2,4, 

..., 128), which determines the minimum size of the file. 

The file consists of one or more clusters, which optionally have a 

sequence order. 

The file directory is a file that specifies the file name, its attributes and 

the number of the initial cluster, as well as a branch to the subsidiary 

directory. 
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The root cluster is a cluster that contains the root directory. 

File Allocation Table (FAT) is a table, which contains the records, 

representing  the clusters in the HDD logical drive. Each record corresponds 

to a single cluster, and can be signed as the file end, if it is the final cluster of 

the file, the number of the next cluster. It can indicate that the cluster is free, 

or that it is corrupted. Fig. 2.12 illustrates the state of the FAT, which stores 

the records of two files. 

 

Root               
   123 124 125 245    BAD     
       . . .        

 243 246 BAD 248 247 EOF 253     EOF   
        . . .       

 

Fig. 2.12. Two files represented in FAT. 

EOF – end of file cluster, Root – root directory cluster, BAD – bad cluster 

 

The most common standard logical structure of the hard drive are FAT 

and NTFS. There are three varieties of FAT system with different recording  

measurements: FAT12 with the record bit width 12, which provides 

maximum 4093 clusters; FAT16 with the record bit width 16, that is, the 

maximum of 65533 clusters; The FAT32 with the record bit width 32, that is, 

the maximum of 232− 3 clusters. 

Thus one HDD may have from one to four logical partitions (logical 

disks) with their different FAT tables. 

Consider the structure of the logical disc. The first sector of a physical 

disk is the master boot sector, which contains the parameters of the physical 

disk. It is located on the side 0, cylinder 0 and sector 1, and contains the 

following information: 

— sector size (usually 512, sometimes 2048 or 4096); 
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— number of sectors in the cluster; 

—  number of sectors per track; 

— number of cylinders; 

— error message; 

—  information about the dividing the physical drive into logical drives 

(partitition table); 

— placement of the initial sections of the logical drives and indication 

of the place where the operating system is stored. 

The master boot sector is followed by one to four logical drives. The 

logical drive includes: 

— boot record; 

— reserved sector; 

— first and second FAT table; 

— root cluster  directory; 

— data clusters (files); 

— reserved sectors. 

The boot record contains the following data: 

— the jump instruction, which directs to the bootloader program; 

— DOS version; 

— number of bytes per sector; 

— number of sectors in the cluster; 

— number of sectors before the FAT table; 

— number of FAT tables; 

— maximum number of rows in the root cluster; 

— number of sectors that store DOS; 

— number of sectors which are stored in the FAT table; 

— number of sectors per the track; 

— number of heads; 
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— number of hidden sectors. 

Due to the lower recording density in the track zero, its reliability is 

the highest. Therefore, the boot sector, boot record of the logic drive C: and its 

FAT table are placed on this track. 

The search for the file locations is performed by the first FAT table. If 

this table is corrupted, then the second FAT table is used as a duplicate. But if 

the first sector is damaged, which contains the master boot sector, the 

operating system could not be able to reproduce the logical structure of the 

hard drive, and the writing-reading of the files becomes impossible. 

The logical structure of the HDD system NTFS 

 File system New Technology File System (NTFS) appeared with 

Windows NT in 1993. and took over all the positive properties of the Unix 

filesystem. The NTFS file system data presented in the form of files with the 

same structure. Smaller file occupies one cluster, and always has fields such as 

title, field of standard information, the file name of the stored data, and at the 

end of the file — the security descriptor. 

The system is based on a system of official files, most of which is a 

directory of files, called the Master File Table (MFT). All service files are 

stored in the MFT-zone at the beginning of the disk, which occupies 1/8 of the 

entire disk volume. When the disk is full, this area is also filled with user files, 

resulting in delayed access. 

 

2.3.6 Logical structure of HDD with NTFS 

The file system New Technology File System (NTFS) has appeared 

with Windows NT in 1993 and took over all the positive properties of the Unix 

file system. The data in NTFS is presented in the form of files with the same 

structure. The smallest file occupies one cluster, and always has the fields 



 166 

such as title, the field of standard information, file name, stored data. At the 

end of the file, the security descriptor is placed. 

The system is based on the system files. The main system file is a 

directory file, called the Master File Table (MFT). All system files are stored 

in the MFT-zone at the beginning of the disk, which occupies 1/8 of the entire 

disk volume. When the disk is full, this area is also filled with user files, 

resulting in delayed HDD access. 

The main file, named $ MFT, is an array of file records, each of which 

describes the corresponding file or directory. One record has a length of 1 KB 

and includes file name, file attributes, and file indexes. The index marks the 

first file cluster, the length of the chain of clusters and other information. If the 

file is located in the chains of clusters, it indicates a reference to the first 

cluster, indicating the continuation of the chain length of the chain. If the file 

description does not fit into a single record, the reference is made to the 

record continue. Perhaps the file is continued in several chains so that the file 

has the tree form. This makes it possible to read the file in parallel flows.  

The maximum cluster number is 264, although the actual length of the 

file does not exceed 2 terabytes. To compress the cluster coordinate 

encodings, they are coded by the Huffman codes. Thus, the file directory is a 

hierarchical list of records sorted in a tree. Then, the cluster address is 

searched not using the FAT table but traversing the cluster tree. 

In the system files $Bitmap and $BadClust the free and bad clusters are 

marked, respectively.  And the table of the free clusters takes as much bits as 

the number of clusters in the hard drive. Consequently, the fact that this 

cluster is a free one,  is approved by the bit, marked as a zero. The file $Boot 

stores the system bootloader. 

The four main files of the MFT-area are stored in two copies for the 

reliable functioning of the HDD. The first of it is stored in the initial clusters, 
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and the second one is somewhere in the middle of the disc in the place, which 

is specified in the boot sector.  

When some file operation runs then OS writes the parameters of this 

operation in the system log file $LogFile. Then, if a computer failure occurs 

when performing a file operation, then during the restoring the computer, the  

operating system repairs the corrupted files and entries. In addition, only the 

OS software with the highest priority has the right of access to the system 

files. Thanks to these features, the NTFS file system is much more reliable 

than the FAT system. 

 

2.3.7 RAID storage system 

The reliable high-speed hard drive is significantly more expensive than 

conventional HDD. Because of this, the architecture array of inexpensive hard 

disks has been proposed in 1988, at which, due to its redundancy, it provides 

both the storage reliability and high-speed access. Therefore, it is called as the 

Redundant Array of Inexpensive Disks (RAID). In the RAID array, from 4 to 

15 HDDs are connected in parallel to a single controller, so that the OS treats it 

as a single large hard drive. 

There are several ways to organize the RAID array, which are called  

the levels. For example, in one of the levels, all the sectors of HDD are divided 

into the strips, and these strips are duplicated in the HDDs. Because of this, 

the file writing lasts the same time as in a conventional hard drive. But the 

reading is done in parallel with multiple HDDs, and its speed is much higher. 

In the case of the damage of any strip, it is recovered from its copy. If one of 

the hard drives is failed, the RAID array does not stop the operation, and the 

failed HDD may be replaced with the non-defective hard drive without the 

power turning off. 
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Now in many chipsets, the RAID controllers are embedded, enabling 

the RAID array widespread use. 

 

2.3.8 Problems 

1) The 32-bit CRC code provides the finding the corrupted sector with 

the probability of 1.0 − 0.5⋅10-9. How many corrupted sectors, which could not 

be found, can be stored in the 6 Tbyte HDD? 

2) Consider the files in HDD are of the length of 1 MB and are fully 

fragmented, when their sectors are placed in the random order on the disc 

surface. How much does the HDD speed increase after the defragmenting the 

files? Note, that one track contains 256 sectors, the cache buffer is not taken 

into account. 

3) Consider the application, that makes the reading-writing operations 

to the HDD 10 times during its implementation period. These operations take 

50% of its working period. How much does the speed of the application 

increase, when the cache buffer of the proper volume is added to HDD?  

4) In some application, the HDD transactions occupy ca. 50% of the 

whole application time. How much is this time decreased when HDD is 

substituted by SSD?  

5) The OS implements the substantial writings to the SSD with the 

average period of 0,1 s. The average file length is 1 MB. SSD has no buffer and 

its volume is 64 GB. Estimate the maximum live time of SSD. 

6) Estimate the width of the scratch, which can permanently damage 

the information in the CD-ROM. Note, that the scrach runs radially, 16 

neighboring sectors are shuffled, and the Reed-Solomon algorithm can 

recover every 20-th byte of data. 
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2.4 Computer console 

 

2.4.1 The concept of the console 

The operator console, which has appeared in the first computers, was a 

computer control and display panel, which was cantilevered on the cabinet 

with the mainframe. Using the console, the data have inputted and the results 

have displayed. The operator started and stopped the computer operation 

using its console. 

Since then, the traditional set of devices for direct computer control, 

manual input-output of the data and programs are called the console. All 

algorithmic languages have a separate set of functions and procedures for 

entering numeric and text data from the console and for the console output. 

Also, the traditional OS string instructions are entered from the console and 

OS displays the results of its reaction in the console. 

The first computer console consisted of a set of switches and lamps or 

electric typewriter. Now, as a rule, the console is considered as the display 

with the keyboard and mouse-type manipulator. 

 

2.4.2 Keyboard and mouse 

 The keyboard is used for manual input of the data and text. The 

keyboard differs on the emplacement of letters on its keys. The standard Latin 

keyboard emplacement is the location of "QWERTY" (by location of letters on 

the top key line), and the Cyrillic one is "ЙЦУКЕНГ". The standard keyboard 

has 101 keys. 

Now the keyboard is connected to the processor through the 

connection PS/2 or USB. Accordingly, such a keyboard is called the keyboard 

of the PS/2 type or USB type. When the key is pressed, then the appropriate 
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letter code is generated and sent to the processor. The PS/2 type keyboard 

letter codes are not equal to the ASCII code but are, so-called, scan-codes. 

Once the key is pressed, then the respective scan-code is transferred to 

the processor and is stored in the BIOS port with a number 60h. If it is pressed 

and held, then the scan code is issued approximately every 100 ms. After 

releasing the key, the keyboard sends a release prefix code "F0", after which 

the scan-code of the released key is sent. By pressing some keys, called 

extended keys, the prefix code "E0" is sent  before the scan code. 

The mouse is a hand-held device, which in its traditional design 

comprises a rubber bulb at the lower side and several buttons at the upper 

side. The mouse was invented by D. Engelbart in 1967 during research on 

finding the effective interface between humans and computers. 

If the mouse moves, then the ball makes a rotation, which is proportio-

nal to the distance. The codes of the distance and the button pressing events 

are sent to  PC through the four-wire cable and the PS/2 or USB connector. 

The ball is replaced by the optical system of the image sensor and LED  

in an optical mouse. Such a mouse microcontroller calculates its movement if 

the motion of the LED beam is reflected from a surface with different spatial 

light absorption. 

At each time, when the mouse is moved, it sends three consecutive 

code bytes, which satisfies the standard RS-232 connection, when it is 

connected to a PS/2 connection. These bytes define the state of the mouse and 

its relative moving distances along the x and y axes. In the state byte, the 

direction of the movement, the event that the movement speed exceeds a 

certain limit, as well as the button click event are set. If the mouse is moved 

without stopping,   then it sends the codes approximately every 50 ms. 
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2.4.3 Video Display 

The video display or monitor is based on the cathode-ray tube or a 

liquid crystal panel, and the control unit. 

The electron gun in the Cathode-Ray Tube (CRT) generates a beam of 

electrons. Its vertical and horizontal deflection systems form a magnetic field 

in the path of the electron beam so that it is deflected and scans the phosphor 

screen according to the raster the left-right and top-down. The electrons, 

which are trapped in the screen, illuminate the phosphor to the brightness,   

which is proportional to the beam current. The modulation of the beam 

current in time corresponds to the brightness of the screen image. To obtain a 

color image, three electron guns and the phosphor screen of spots of three 

colors: red, green and blue (R, G, B) are used. The special mask front of the 

screen provides that the electrons of only one gun hit the phosphor of a 

certain color. 

A colored dot on the screen is called a pixel (picture element — pixel). 

One pixel is often encoded by three-byte word. A byte in it sets the brightness 

of the respective color. The submission of information on the screen is 

controlled by the clock sync with the frequency Fc. 

Thus, the words of the display pixels are supplied to the CRT 

modulator with the frequency Fc. This pixel stream is accompanied by a clock 

signal (SI), vertical VS and horizontal HS scanning signals. The signal 

parameters for a standard VGA (Video graphic Adapter) display with the 

image size of 640 by 480 pixels for a frame rate of 60 Hz and Fc = 25 MHz are 

presented in Table. 2.2. 

The display control unit provides accurate horizontal and vertical 

scanning of the beams that are synchronized according to the vertical and 

horizontal synchronization impulses. It also provides the correct shape and 

sharpness of images and correct reflection of the color gamut. 
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Table 2.2. Timing parameters of the VGA display  

Vertical scanning VS Horizontal scanning  HS  

Parameter Time  Cycles Fc Rows Time Cycles Fc  

Signal period  16.7 мс  416800  521  32 мкс 800 

Time of the image  15.36 мс  384000 480  25.6 мкс  640  

Impulse width 64 мкс  1 600  2  3.84 мкс 96    

 

As a rule, there is the possibility of adjusting the display settings. The 

modern display control unit has the ability to transfer the information about 

the display state to the CPU using the І2C by bus. Using this information, the 

OS is able to perform the appropriate settings of the display controller. 

The Liquid Crystal Display (LCD) panel includes a light source and a 

liquid crystal light modulator. The light source is based on a luminescent 

lamp, LED panel or electroluminescent lighting with uniform luminosity. The 

light modulator has a multilayer construction. Its main layers are polarizing 

filters, a layer of liquid crystal cells and the color filter layer in the form of 

raster triples segments red, blue and green colors, which number is equal to 

the number of pixels. 

Polarizing filters, which are placed front and back of the LCD cells, have 

the orthogonal polarization planes. The liquid crystals between them in the 

usual condition rotate the polarization plane, whereby the light penetrates the 

cells. When a control signal is put to the cell, then the liquid crystal by an 

electric field ceases to rotate the polarization plane, and in the front 

polarization filter stops the light in the area of the cell. If the width of the 

control pulses and their amplitude are modulated, then the average filter 

throughput is adjusted over a wide range, whereby it is possible to set an 

arbitrary brightness and color of the corresponding pixel. 

To control all the cells in parallel, the control signals are fed to them 

from the distributed decoder formed in a thin-film transistors layer based on 
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organic semiconductors. Therefore, the LCD panel is often named as the Thin 

Film Transistor (TFT) display. 

In recent years, the displays based on the Organic Light Emitting 

Diodes (OLED) arrays, called OLED-displays, are widely spread. Their pixels 

are made up of tiny colored OLEDs. 

 The graphic or video signal is fed to the display of each type through a 

standard connection. The most common connection is the Video Graphic 

Array (VGA) connection, through which three analog signals of the colors R, 

G, B  brightness, vertical VS,  and horizontal HS sync signals, and signal DE of 

the pixel presence are transmitted in the display. When receiving a video 

signal over the VGA connection, the liquid crystal display converts it to the 

digital form by the analog-to-digital converters with a clock frequency Fc. 

Another standard connection is a connector DVI (Digital Video 

Interface). This connection is a digital serial interface with the same principle 

of operation as in the PCI-E interface described above. Unlike VGA, the DVI 

connector provides a clear reproduction of the image with arbitrary 

dimensions (up to 4000⋅2000) and the high frame rate because the digital 

signal is not converted into an intermediate analog form. 

The HDMI (High Definition Multimedia Interface) on the wiring 

diagram is similar to the DVI connection, but it is capable of transmitting not 

only the image but also coded sound and control signals. In addition, the 

image is limited to a rectangle of 1920 by 1080 pixels. 

 

2.4.4 Display Controller 

The display controller is a block that provides information for the 

display in accordance with the selected display mode. The structure of a 

typical display controller shown in Fig. 2.13. 
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When working in a graphics mode, the frame buffer stores the images 

that are displayed in the form of arrays with the same size as the display 

raster, for example, 640⋅480. A single word of this array contains the 

information about the brightness of the pixel colors with the appropriate 

coordinates. According to the settings of the display controller, the bit width 

of the pixel word varies from 8 to 32 bits. 

 

 

 

 

 

 

 

 

Fig.2.13. Display controller structure 

 

The horizontal scanning Counter HS (see Fig. 2.13) iterates the pixels 

in the image line addresses with the clock frequency Fc. The information 

about a pixel brightness is read from the image buffer to the Digital-Analog 

Converter (DAC), where it is converted into the luminance signals of three 

colors. Also, this counter forms the Horizontal Scanning pulses (HS) and 

counting pulses for the Vertical Scanning (VS) counter. The last addresses 

the image line, which is pixel by pixel outputted through the DAC. It generates 

the VS impulses as well. 

The frame buffer is a dual-port high-speed RAM, which stores several 

image frames in the corresponding pages. The dynamic change of these pages 

provides a continuous display of complex multimedia scenes on the screen. 

Therefore, the buffer volume can be hundreds of megabytes. Regardless of the 
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reflection on the display frame, the buffer provides to the access from the CPU 

through a graphical interface. The graphical interface of modern display 

controllers is based on the PCIe bus with up to 16 lanes. The parallel transfer 

of the large volumes of the image data is supported by the DMA mechanism. 

The display controller may operate in a text mode, for example, in the   

OS boot mode of the processor operation. At that time, a separate text page 

buffer contains the text strings in the ASCII coding, at 80 characters per line. 

The one character word accommodates the character code byte and the byte 

of information about its color, background color, presence of the cursor in the 

position of the character. In a separate area of the memory (RAM and ROM), 

the character generator firmware is stored, which contains the character 

image table, wherein at the address of the ASCII character the bitmap table is 

stored, for example, in the rectangle of  16⋅8 pixels. 

The operation of the character generator consists in that during the 

displaing the page on the screen, the words of the frame buffer bits are substi-

tuted by the character images, which are selected from ROM or RAM. The cha-

racter generator RAM is filled when booting the operating system, depending 

on the preset number of the ASCII table, such as Cyrillic ASCII table. 

The luminosity of the pixels is usually non-linear. For the luminance 

linearization, in the simplest case, the gamma correction is used. It consists in 

the exponentiation of the pixel brightness code V in the power of γ. For 

example, the 8 bit luminance value, that is supplied to the LCD display after 

the linearization is equal to 256(V/256)γ, where γ = 2,0 — 2,6 is set separately 

for each color channel and display type. 

Modern display controllers have a complex structure. In order to 

accelerate the multimedia applications and graphic games, namely, for the 

acceleration of the implementation of standardized graphics functions from 

libraries such as DirectX, DivX, they include parallel application specific 
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processors. Their structure will be discussed in the next section. Also the RAM 

frame buffer of the large volume (several hundred megabytes) is used for 

storing intermediate data, scenes and textures, and is required for rapid 

implementation of these library functions. 

 

2.4.5. Problems 

1) How does the computer recognize that a button is pushed and then 

is released? 

2) Consider the mouse has the resolution of 400 points per inch. 

Estimate the highest mouse movement speed, when it translates the distance 

codes without their saturations. 

3) The display controller in the text mode stores each symbol in the 

two-byte word, the first of them is the ASCII code. For which purposes is the 

second byte used? 

4) The LCD display has the HD resolution, i.e. the resolution of 

1920⋅1080 pixels, the frame rate of 60 frames/s. Estimate the impulse 

frequency in its DVI interface.  

5) The Ultra HD display has the resolution of 3840⋅2160, the frame 

rate of 120 frames/s. To transfer the videostream to it through the usual HD 

DVI interface, the compression algorithm is used. Esitmate its compression 

rate. 
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2.5. Structure of a single processor computer 

 

The connection of CPU and the PC environment via an interface system 

is considered as the computer structure. To understand such a connection, it 

is appropriate to consider the general structure of a typical single-processor 

computer, which is shown in Fig. 2.14. Here CPU is connected with the fast 

peripherals buffer (FPB) via a high-speed local bus, which is traditionally 

called as FSB (Front Side Bus). The FSB bus is a wide bus, which includes an 

address bus and bidirectional data bus, wherein the bit width is usually 64.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14. Typical one processor computer structure 

 

The bridge of the fast peripheral devices due to its position on the 

scheme is named as a North Bridge. The north bridge connects CPU with the 

RAM and the display controller, which transfer the largest data streams. It 
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connects CPU with the buffer of the slow peripheral devices too, which is 

named as a South Bridge. The clock frequency FТ of the North Bridge 

distinguishes the computer speed. To increase the throughput of the FSB bus, 

the clock period is divided into four phases, during that the data are moving. 

As a result, the FSB bus has the throughput up to 4⋅8⋅FТ bytes/s. The inner 

clock frequency of CPU is derived by the multiplication of the frequency FТ to 

the coefficient which is proportional to 0,5. For example, if FТ = 400 MHz, then 

the FSB throughput is equal to 12800 Mbytes / s, and the CPU clock frequency 

is equal to 3?6 GHz when the multiplication coefficient is 9. 

The South Bridge contains a set of standard interfaces like  PСI, PCIe, 

USB, SATA, EIDE. Through these interfaces, the CPU is connected to HDD and a 

set of peripheral devices. The bus LPC (Low Pin Count bus) is a separate 

interface, which is intended to connect the low-speed peripheral devices like 

ROM with the Base Input-Output System (BIOS), non-volatile RAM, which 

stores the basic settings of the computer structure (Setup RAM). The South 

Bridge also includes a real time clock, DMA controller, interrupt controller, 

and the power supply control unit with the Power Management input PM. 

This unit supervises the switching on of the computer, putting a value of the 

supply voltages for the motherboard chipset, saving computer power, calling 

interrupt on power failure. 

The integral circuits of the North and South Bridges are usually 

designed and manufactured together and serve as a Chipset of the 

motherboard of the computer. Due to their high hardware complexity and 

high performance, they as well as the CPU dissipate a lot of energy. Therefore, 

for the reliable operation, they have the cooling systems. One of these bridges 

or both of them are integrated to the recent CPU chips due to the increased 

integration level and decreased energy consumption of them. 
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A chip of slower peripheral interfaces called the Super I/O controller is 

also connected to the LPC bus. Its outputs are such interfaces like  PS/2, LPT 

(old-style printer bus), COM1, COM2 (serial ports on the RS232 standard). 

These interfaces connect the mouse, keyboard and other devices to PC. Often 

an audio multimedia interface is built in it. 

 

2.6 Conclusions 

In this teaching book, the computer architecture is considered as a 

model of a computer intended both for computer engineering and 

programming. As a basic architecture, the von Neuman architecture is studied. 

This architecture was a foundation of three computer generations. It is clear 

for achieving the essence of programmable computers. The most of the 

modern algorithmic languages are based on the principle of this architecture. 

The explanations of the architectures are based on considering their 

main features like instruction set, data representation, addressing modes, 

interrupt system, etc. The architectures of peripheral devices and interfaces 

which connect them to the cental processing units are considered as well.  

The von Neuman architecture as such is intended for sequential, 

atomic implementation of the program instruction. In is not intended for the 

high-speed computer implementation. Moreover, it hampers the computer 

speed-up. Besides, its principle of handling both the data and the instructions 

in the same memory provides the most of computational errors and 

deadlocks, prevents the multiprogramming operation. 

The contemporary architectures have the signs of the von Neuman 

architecture as well. But their features are expanded to the direction of the 

parallel computational processes.  The organization of these processes can be 

many-sided and is permanently optimized. The goals of this optimization are 

high computer speed, multiprocessing, high reliability, low energy 
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consumption, programming conveniences.  The computer architectures from 

the parallel processes point of view are studied in the next part of the teaching 

book.    
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ANNEX 1 
I8051 instruction set 

Data moving instructions 
Instruction name Assembly code OPC B Operation 

Moving from register(n = 0 — 7) in accumulator  MOV A, Rn  11101r r r  1   (A) = (Rn) 
Moving from address in accumulator   MOV A, ad  11100101  2   (A) = (ad) 
Moving byte from DATA (i = 0, 1) in accumulator  MOV A, @Ri 1110011 i  1  (A) = ((Ri)) 
Loading of a constant in accumulator  MOV A, #d  01110100  2   (A) = #d 
Moving accumulator to register   MOV Rn, A  11111r r r  1   (Rn) = (A) 
Moving byte with address в register   MOV Rn, ad  10101r r r  2   (Rn) = (ad) 
Loading of a constant in  register   MOV Rn, #d  01111r r r  2   (Rn) = #d 
Moving accumulator to direct address   MOV ad, A 11110101  2   (ad) = (A) 
Moving register  to direct address  MOV ad, Rn 10001r r r  2   (ad) = (Rn) 
Moving byte in direct address to direct address  MOV add, ads 10000101  3   (add) = (ads) 
Moving byte from DATA to direct address MOV ad, @Ri 1000011 i  2   (ad) = ((Ri)) 
Moving a constant to direct address   MOV ad, #d  01110101  3   (ad) = #d 
Moving accumulator to  DATA   MOV @Ri, A  1111011 i  1   ((Ri)) = (A) 
Moving byte in address to  DATA   MOV @Ri, ad  0110011 i  2  ((Ri)) = (ad) 
Moving of a constant to  DATA   MOV @Ri, #d  0111011 i  2   ((Ri)) = #d 
Loading in data pointer  MOV DPTR, #d16 10010000  3   (DPTR) = #d16 
Moving in accumulator a byte from CODE  MOVC A, @A + DPTR  10010011  1   (A) = ((A) + (DPTR)) 
Moving in accumulator a byte from CODE  MOVC A, @A + PC  10000011  1  (PC) = (PC) + 1        (A) = ((A)+(PC)) 
Moving in accumulator a byte from XDATA  MOVX A, @Ri  1110001 i  1   (A) = ((Ri)) 
Moving in accumulator a byte from XDATA  MOVX A, @DPTR 11100000  1   (A) = ((DPTR)) 
Moving in XDATA from accumulator MOVX @Ri, A  1111001 i  1   ((Ri)) = (A) 
Moving in XDATA from accumulator  MOVX @DPTR, A 11110000  1   ((DPTR)) = (A) 
Loading in stack  PUSH ad  11000000  2  (SP) = (SP) + 1 ((SP)) = (ad) 
Fetching from stack POP ad  11010000  2  (ad) = (SP)      (SP) = (SP) – 1 
Exchange accumulator from регістром  XCH A, Rn  11001rrr  1   (A) <—> (Rn) 
Exchange accumulator from байтом with address  XCH A, ad  11000101  2   (A) <—> (ad) 

 
 

Arithmetic instructions 
Instruction name Assembly code OPC B Operation 

Adding register to accumulator (n = 0 — 7)  ADD A, Rn  00101r r r 1  (A) = (A) + (Rn) 
Adding byte with address to accumulator  ADD A, ad 00100101 2  (A) = (A) + (ad) 
Adding byte from DATA  to accumulator (i = 0, 1)  ADD A, @Ri  0010011 i 1  (A) = (A) + ((Ri)) 
Adding of a constant to accumulator  ADD A, #d 00100100 2  (A) = (A) + #d 
Adding register and carry to accumulator  ADDC A, Rn 00111r r r 1  (A) = (A) + (Rn) + (C) 
Adding byte with address and carry to accumulator  ADDC A, ad  00110101 2   (A) = (A) + (ad) + (C) 
Adding byte from DATA  and carry to accumulator   ADDC A, @Ri  0011011 i 1   (A) = (A) + ((Ri)) + (C) 
Adding of a constant and carry to accumulator   ADDC A, #d  00110100 2   (A) = (A) + #d + (C) 
Decimal correction of accumulator  DA A  11010100 1  If A0—3>9 \/ ((AC)=1), then A0—3=A0—

3+6,  A4—7>9 \/ ((C)=1),  then A4—7=A4—

7 + 6 
Subtraction register and borrow from accumulator  SUBB A, Rn 10011r r r 1   (A) = (A) — (C) — (Rn) 
Subtraction byte in address and borrow from accumulator   SUBB A, ad  10010101 2   (A) = (A) — (C) — ((ad)) 
Subtraction byte DATA  and borrow from accumulator  SUBB A, @Ri  1001011 i 1   (A) = (A) — (C) — ((Ri)) 
Subtraction of a constant and borrow from accumulator  SUBB A, #d  10010100 2   (A) = (A) — (C) — #d 
Incrementing accumulator  INC A  00000100 1  (A) = (A) + 1 
Incrementing register  INC Rn 00001r r r 1   (Rn) = (Rn) + 1 
Incrementing byte with address  INC ad  00000101 2   (ad) = (ad) + 1 
Incrementing byte in DATA   INC @Ri  0000011i 1   ((Ri)) = ((Ri)) +1 
Incrementing data pointer  INC DPTR 10100011 1  (DPTR) = (DPTR) + 1 
Decrementing accumulator  DEC A  00010100 1   (A) = (A) – 1 
Decrementing register  DEC Rn  00011r r r 1  (Rn) = (Rn) — 1 
Decrementing byte with address  DEC ad  00010101 2  (ad) = (ad) — 1 
Decrementing byte in DATA   DEC @Ri  0001011 i 1  ((Ri)) = ((Ri)) —1 
Multiplication accumulator to register B  MUL AB 10100100 1  (B)(A) = (A)*(B) 
Division accumulator to register B DIV AB 10000100 1  (A).(B) = (A)/(B) 

 
OPC – OPeration Code 
B – instruction length, bytes 
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Logic instructions 
Instruction name  Assembly code  OPC B  Operation 
Logic AND accumulator and register  ANL A, Rn  01011r r r  1  (A) = (A) /\ (Rn) 
Logic AND accumulator and byte with address  ANL A, ad  01010101  2  (A) = (A) /\ (ad) 
Logic AND accumulator and byte from DATA    ANL A, @Ri  0101011 i  1  (A) = (A) /\ ((Ri)) 
Logic AND accumulator and constant  ANL A, #d  01010100  2  (A) = (A) /\ #d 
Logic AND byte with address  accumulator   ANL ad, A  01010010  2  (ad) = (ad) /\ (A) 
Logic AND byte with address and a constant  ANL ad, #d  01010011  3  (ad) = (ad) /\ #d 
Logic OR accumulator and register  ORL A, Rn 01001r r r  1  (A) = (A) \/ (Rn) 
Logic OR accumulator and byte with address  ORL A, ad  01000101  2  (A) = (A) \/ (ad) 
Logic OR accumulator and byte from DATA   ORL A, @Ri 0100011 i  1  (A) = (A) \/ ((Ri)) 
Logic OR accumulator and a constant   ORL A, #d 01000100  2  (A) = (A) \/ #d 
Logic OR byte with address and accumulator  ORL ad, A  01000010  2  (ad) = (ad) \/ (A) 
Logic OR byte with address and a constant  ORL ad, #d 01000011  3  (ad) = (ad) \/ #d 
Exclusive OR accumulator and register  XRL A, Rn 01101r r r  1  (A) = (A) ⊕ (Rn) 
Exclusive OR accumulator and byte with address  XRL A, ad  01100101  2  (A) = (A) ⊕ (ad) 
Exclusive OR accumulator and byte from DATA    XRL A, @Ri  0110011 i  1   (A) = (A) ⊕ ((Ri)) 
Exclusive OR accumulator and a constant  XRL A, #d  01100100  2  (A) = (A) ⊕ #d 
Exclusive OR byte with address and accumulator  XRL ad, A  01100010  2  (ad) = (ad) ⊕ (A) 
Exclusive OR byte with address and a constant  XRL ad, #d  01100011  3  (ad) = (ad) ⊕ #d 
Resetting accumulator  CLR A 11100100  1  (A) = 0 
Inversion of  accumulator  CPL A  11110100  1  (A) = ( NOT A) 
Shifting accumulator left cyclically   RL A  00100011  1 (An+1) = (An), n = 0 ... 6, (A0) = (A7) 
Shifting accumulator left through carry bit  RLC A  00110011  1 (An+1) = (An), n = 0... 6, (A0) = (C), (C)=(A7) 
Shifting accumulator right cyclically   RR A  00000011  1 (A n) = (A n+1), n = 0...6, (A7) = (A0) 
Shifting accumulator right through carry bit  RRC A  00010011  1 (A n)=(A n+1), n = 0...6, (A7)=(C), (C) = (A0) 
Swapping nibbles in accumulator   SWAP A  11000100  1  (A0—3) <—> (A4—7) 

Control flow instructions 
Instruction name  Assembly code  OPC  B Operation 
Long jump in  PRAM  LJMP ad16  00000010  3 (PC) = ad16 
Absolute jump in range of  2 Кbytes AJMP ad11  a10a9a800001  2  (PC) = (PC) + 2   (PC0—10) = ad11 
Short relative jump in range of 256 bytes SJMP rel  10000000  2  (PC) = (PC) + 2    (PC) = (PC) + rel 
Indirect relative jump JMP @A+DPTR  01110011  1   (PC) = (A) + (DPTR) (PC) = (PC) + 2, 
Jump, if acc. – is zero JZ rel  01100000  2  if (A) = 0, then (PC) = (PC) + rel 
Jump, if acc. Is not zero JNZ rel  01110000  2  (PC) = (PC) + 2, if (A) ? 0, then (PC) = (PC) + rel 
Jump, if carry =1 JC rel  01000000  2  (PC) = (PC) + 2, if (C) = 1, then (PC) = (PC) + rel 
Jump, if carry =0  JNC rel  01010000  2  (PC) = (PC) + 2, if (C) = 0, then (PC) = (PC) + rel 
Jump, if bit =1 JB bit, rel  00100000  3  (PC) = (PC) + 3, if (b) = 1, then (PC) = (PC) + rel 
Jump, if bit =0  JNB bit, rel  00110000  3  (PC) = (PC) + 3, if (b) = 0, then (PC) = (PC) + rel 
Jump, if bit =1, then bit:= 0 JBC bit, rel  00010000  3  (PC) = (PC) + 3, if (b) = 1, then (b) = 0 and (PC) = (PC) + rel 
Decrementing register and jump, if not 0  DJNZ Rn, rel  11011r r r  2  (PC) = (PC)+2, (Rn)=(Rn)—, if (Rn)≠0, then (PC)=(PC)+rel 
Decrementing byte with address and 
jump, if not zero 

DJNZ ad, rel  11010101  3  (PC) = (PC) + 2, (ad) = (ad) —1, if (ad) ? 0, then (PC) = (PC) 
+ rel 

Compare acc. with a byte with address 
and jump, if not equal 

CJNE A, ad, rel  10110101  3  (PC) = (PC) + 3, if (A) ? (ad), then (PC) = (PC) + rel, if (A) < 
(ad), then (C) = 1, otherwise (C) = 0 

Compare accumulator with a constant 
and jump, if not equal 

CJNE A, #d, rel  10110100  3  (PC) = (PC) + 3, if (A) ? #d, then (PC) = (PC) + rel, if (A) < 
#d, then (C) = 1, otherwise (C) = 0 

Compare register with a constant and 
jump, if not equal 

CJNE Rn, #d, rel  10111r r r  3  (PC) = (PC) + 3, if (Rn) ? #d, then (PC) = (PC) + rel, if (Rn) < 
#d, then (C) = 1, otherwise (C) = 0 

Compare byte in DATA  with a constant 
and jump, if not equal 

CJNE @Ri, #d, rel 1011011 i  3  (PC) = (PC) + 3, if ((Ri)) ? #d, then (PC) = (PC) + rel, if ((Ri)) 
< #d, then (C) = 1, otherwise (C) = 0 

Long subprogram call  LCALL ad16  00010010 3  (PC) = (PC) + 3, (SP) = (SP) + 1, ((SP)) = (PC0—7), (SP) = 
(SP) + 1, ((SP)) = (PC8—15), (PC) = ad16 

Absolute subprogram call in range 2 
Кbytes 

ACALL ad11 а10a9a810001  2  (PC)=(PC)+2, (SP)=(SP)+1, ((SP))=(PC0—7), (SP)=(SP)+1, 
((SP)) = (PC8—15), (PC0—7) = аd11 (PC8—15) = ((SP)), 

Return from subprogram  RET  00100010  1  (SP) = (SP) − 1, (PC0−7) = ((SP)), (SP) = (SP)−1 
Return from interrupt RETI  00110010  1  (PC8—15)=((SP)), (SP)=(SP)−1, (PC0—7) = ((SP)), (SP) =(SP)−1 
No OPeration NOP  00000000 1  (PC) = (PC) + 1 

Bit handling instructions 
Instruction name Assembly code OPC B Operation 

Setting in 0 carry CLR C 11000011 1 (C) = 0 
Setting in 0 a bit CLR bit 11000010 2 (b) = 0 
Setting in 1  carry SETB C 11010011 1 (C) = 1 
Setting in 1 bit SETB bit 11010010 2 (b) = 1 
Complement of  carry CPL C  10110011 1 (C) = ( C̄ ) 
Complement of bit CPL bit 10110010 2 (b) = ( b̄ )  
Logic AND bit and carry ANL C, bit 10000010 2 (C) = (C) /\ (b) 
Logic AND of negated bit and carry ANL C, /bit 10110000 2 (C) = (C) /\ ( b̄ ) 
Logic OR of bit and carry ORL C, bit 01110010 2 (C) = (C) \/ (b) 
Logic OR of negated bit and carry ORL C, /bit 10100000 2 (C) = (C) \/ ( b̄ ) 
Moving bit to carry MOV C, bit 10100010 2 (C) = (b) 
Moving carry to bit MOV bit, C 10010010 2 (b) = (C) 

 


