
  

Electric and Electronic Engineering 
 4. AC Network Analysis 

 

Sinusoidal (or AC) signals constitute the most important class of signals in the analysis of 

electrical circuits. The simplest reason is that virtually all of the electric power used in households 

and industries comes in the form of sinusoidal voltages and currents. 

 

 4.1. Impedance of a Practical Capacitor 
A practical capacitor can be modeled by an ideal capacitor in parallel with a resistor (Fig.38).  

 
Fig. 38 − Equivalent circuit of the practical capacitor 

The parallel resistance represents leakage losses in the capacitor and is usually quite large. 

Let find the impedance of a practical capacitor at the radian frequency ω = 314 rad/s. How will the 

impedance change if the capacitor is used at a much higher frequency, say 8 MHz? Consider the 

real values C1 = 0.1 µF = 0.1 × 10−6 F; R1 = 1 MOhm. 

 To determine the equivalent impedance we combine the two impedances in parallel: 

11

1

1
1

1
1

1
11 11

1
1

RCj
R

Cj
R

Cj
R

Cj
RZ

ω
ω

ω
ω +

=
+

==  

Substituting numerical values, we find  

Z1(ω=314) = 106/(1+j314⋅106⋅0.1⋅10-6) = 106/(1+j31.4). 

The impedance of the capacitor alone at this frequency would be: 

ZC1(ω = 314) = 1/(j314 ⋅0.1 ⋅10−6 ) = 26.53 ⋅ 103∠−π/2 Ohm 

If the frequency is increased to 8 MHz, or 16π × 106 rad/s—a radio frequency—we can 

recompute the impedance to be: 

Z1(ω = 16π ⋅ 106) = 106 /( 1 + j16π ⋅106 ⋅ 0.1 ⋅ 10−6 × 106) = 

106/(1 + j160π⋅ 106) = 0.2∠−1.57 Ohm 

The impedance of the capacitor alone at this frequency would be: 

ZC1(ω = 16π ⋅ 106) = 1/(j16π⋅ 106 ⋅ 0.1⋅ 10−6 )= 0.2 ∠−π/2 Ohm 



  

Note that the effect of the parallel resistance at the lower frequency (corresponding to the 

well-known 50-Hz AC power frequency) is significant: The effective impedance of the practical 

capacitor is substantially different from that of the ideal capacitor. On the other hand, at much 

higher frequency, the parallel resistance has an impedance so much larger than that of the capacitor 

that it effectively acts as an open circuit, and there is no difference between the ideal and practical 

capacitor impedances.  

This example suggests that the behavior of a circuit element depends very much in the 

frequency of the voltages and currents in the circuit. We should also note that the inductance of the 

wires may become significant at high frequencies. 

 

4.2. Impedance of a Practical Inductor 
A practical inductor can be modeled by an ideal inductor in series with a resistor. The series 

resistance represents the resistance of the coil wire and is usually small. Let us find the range of 

frequencies over which the impedance of this practical inductor is largely inductive (i.e., due to the 

inductance in the circuit). We shall consider the impedance to be inductive if the impedance of the 

inductor in the circuit of Figure  39 is at least 10 times as large as that of the resistor. 

 
Fig.  39− Equivalent network of the practical inductor 

The real values are L = 0.098 H; lead length = lc = 2 × 10 cm; n = 250 turns; the wire 

diameter is 0.2 mm; the coil intersection is 0.25 × 0.5 cm . Resistance of such a wire is = 0.558 

Ohm/m. 

Analysis: We first determine the equivalent resistance of the wire used in the practical 

inductor using the cross section as an indication of the wire length, lw, used in the coil: 

lw = 250 × (2 × 0.25 + 2 × 0.5) = 375 cm 

Total length l =  = lw + lc = 375 + 20 = 395 cm 

The total resistance is therefore 

R = 0.558 Ohm/m  × 0.395 m = 0.22 Ohm. 

Thus, we wish to determine the range of radian frequencies, ω, over which the magnitude of 

jωL is greater than 10 × 0.22 Ohm: 

ωL > 2.2, or ω > 2.2/L = 2.2/0.098 = 22.4 rad/s. 

Alternatively, the range is f = ω/2π = 3.56 Hz. 



  

Note how the resistance of the coil wire is relatively insignificant. This is true because the 

inductor is rather large; wire resistance can become significant for very small inductance values. At 

high frequencies, a capacitance should be added to the model because of the effect of the insulator 

separating the coil wires. 

 

 4.3. Impedance of a More Complex Circuit 
Consider the following problem. Find the equivalent impedance of the circuit shown in 

Figure  40 by the following parameters: ω = 104 rad/s; R1 = 100 Ohm; L = 10 mH; R2 = 50 Ohm, C 

= 10 µF. 

 
Fig.  40 − Example of the circuit to analyze 

Analysis: We determine first the parallel impedance of the R2-C circuit, Z||. 
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==  =  50/(1 + j104⋅10⋅10-6⋅50) = 50/(1 + j5) = 

= 1.92 − j9.62 = 9.81∠−1.3734 Ohm. 

Next, we determine the equivalent impedance, Zeq: 

Zeq = R1 + jωL + Z|| = 100 + j104 × 10−2 + 1.92 − j9.62 

= 101.92 + j90.38 = 136.2∠0.723 - 

Is this impedance inductive or capacitive in nature? At the frequency used in this example, 

the circuit has an inductive impedance, since the reactance is positive (or, alternatively, the phase 

angle is positive). 

 

 4.4. Admittance 
In Chapter  1.3, it was suggested that the solution of certain circuit analysis problems was 

handled more easily in terms of conductances than resistances. In AC circuit analysis, an analogous 

quantity may be defined, the reciprocal of complex impedance. Just as the conductance, G, of a 



  

resistive element was defined as the inverse of the resistance, the admittance of a branch is defined 

as follows:   

Y = 1/ Z . 

Note immediately that whenever Z is purely real—that is, when Z = R+j0—the admittance Y 

is identical to the conductance G. In general, however, Y is the complex number 

Y = G + jB  

where G is called the AC conductance and B is called the susceptance; the latter plays a role 

analogous to that of reactance in the definition of impedance. Clearly, G and B are related to R and 

X. However, this relationship is not as simple as an inverse. Let Z = R + jX be an arbitrary 

impedance. Then, the corresponding admittance is 
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In order to express Y in the form Y = G + jB, we multiply numerator and denominator by     

R−jX: 
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Notice in particular that G is not the reciprocal of R in the general case! 

 

 4.5. AC circuit analysis 
This section will illustrate how the use of phasors and impedance facilitates the solution of 

AC circuits by making it possible to use the same solution methods developed in Chapter 3 for DC 

circuits. The AC circuit analysis problem of interest in this section consists of determining the 

unknown voltage (or currents) in a circuit containing linear passive circuit elements (R, L, C) and 

excited by a sinusoidal source. Figure  41 depicts one such circuit, represented in both conventional 

time-domain form and phasor-impedance form. 

 
Fig. 41 − Circuit, represented in both conventional form and phasor-impedance form 



  

The first step in the analysis of an AC circuit is to note the frequency of the sinusoidal 

excitation. Next, all sources are converted to phasor form, and each circuit element to impedance 

form. This is illustrated in the phasor circuit of Figure  41. At this point, if the excitation frequency, 

ω, is known numerically, it will be possible to express each impedance in terms of a known 

amplitude and phase, and a numerical answer to the problem will be found. It does often happen, 

however, that one is interested in a more general circuit solution, valid for an arbitrary excitation 

frequency. In this latter case, the solution becomes a function of ω. This point will be developed 

further in Chapter  5, where the concept of sinusoidal frequency response is discussed. 

With the problem formulated in phasor notation, the resulting solution will be in phasor 

form and will need to be converted to time-domain form. In effect, the use of phasor notation is but 

an intermediate step that greatly facilitates the computation of the final answer. In summary, here is 

the procedure that will be followed to solve an AC circuit analysis problem.  

Method of AC Circuit Analysis 

1. Identify the sinusoidal source(s) and note the excitation frequency. 

2. Convert the source(s) to phasor form. 

3. Represent each circuit element by its impedance. 

4. Solve the resulting phasor circuit, using appropriate network analysis tools. 

5. Convert the (phasor-form) answer to its time-domain equivalent, using equation 4.46. 

 

 4.6. Example of the AC analysis 
Apply the phasor analysis method just described to the circuit of Figure  42 to determine the 

source current. The parameters are ω = 100 rad/s; R1 = 50 Ohm; R2 = 200 Ohm, C = 100 µF. The 

source current iS (t) has to be found. 

 
Fig. 42 − Circuit to analyze 

 

 



  

Analysis: Define the voltage v at the top node and use nodal analysis to determine v. Then 

observe that  
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Next, we follow the steps outlined above. 

Step 1: vS (t) = 10 cos(100t) V; ω = 100 rad/s. 

Step 2: vS(jω) = 10∠0 V. 

Step 3: ZR1 = 50 Ohm, ZR2 = 200 Ohm, ZC = 1/(j100 × 10−4) = −j100 Ohm. The resulting 

phasor circuit is shown in Figure  43. 

 
Fig. 43 − Phasor equivalent of the circuit in Fig. 42. 

 

Step 4: Next, we solve for the source current using nodal analysis. First we find V: 
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Step 5: Finally, we convert the phasor answer to time domain notation: 

is(t) = 0.083 cos(100t + 0.727) A. 

By now it should be apparent that the laws of network analysis introduced in Chapter  3 are 

also applicable to phasor voltages and currents. This fact suggests that it may be possible to extend 

the node and mesh analysis methods developed earlier to circuits containing phasor sources and 



  

impedances, although the resulting simultaneous complex equations are difficult to solve without 

the aid of a computer, even for relatively simple circuits.  

On the other hand, it is very useful to extend the concept of equivalent circuits to the AC ca-

se, and to define complex Th´evenin (or Norton) equivalent impedances. The fundamental differen-

ce between resistive and AC equivalent circuits is that the AC Th´evenin (or Norton) equivalent cir-

cuits will be frequency-dependent and complex-valued. In general, then, one may think of the resis-

tive circuit analysis of Chapter 3 as a special case of AC analysis in which all impedances are real. 

 

 4.7. AC Equivalent Circuits 
In Chapter  3, we demonstrated that it was convenient to compute equivalent circuits, 

especially in solving for load-related variables. Figure  44 depicts the two representations analogous 

to those developed in Chapter  3. Figure  44(a) shows an equivalent load, as viewed by the source, 

while Figure  44(b) shows an equivalent source circuit, from the perspective of the load.  

 

 
Fig. 44 − Equivalent load (a), and  equivalent source (b) 

 

In the case of linear resistive circuits, the equivalent load circuit can always be expressed by 

a single equivalent resistor, while the equivalent source circuit may take the form of a Norton or a 

Th´evenin equivalent. This section extends these concepts to AC circuits and demonstrates that the 

notion of equivalent circuits applies to phasor sources and impedances as well. The techniques 

described in this section are all analogous to those used for resistive circuits, with resistances 

replaced by impedances, and arbitrary sources replaced by phasor sources. The principal difference 

between resistive and AC equivalent circuits will be that the latter are frequency-dependent. Figure  

45 summarizes the fundamental principles used in computing an AC equivalent circuit. 

Note the definite analogy between impedance and resistance elements, and between 

conductance and admittance elements. 

 

 



  

Impedances in series add                                            Adnittances in parallel add 

                
Impedances in parallel behave like resistors in parallel:  Admittances in series behave like conductances in series 

                     
Fig. 45 − Serial and parallel connections of the impedances and admittances 
 
 The computation of an equivalent impedance is carried out in the same way as that of 

equivalent resistance in the case of resistive circuits: 

1. Short-circuit all voltage sources, and open-circuit all current sources. 

2. Compute the equivalent impedance between load terminals, with the load disconnected. 

In order to compute the Th´evenin or Norton equivalent form, we recognize that the Th´eve-

nin equivalent voltage source is the open-circuit voltage at the load terminals and the Norton equi-

valent current source is the short-circuit current (the current with the load replaced by a short 

circuit).  

The remainder of the section will consist of an example aimed at clarifying some of the finer 

points in the calculation of such equivalent circuits. Note how the initial circuit reduction proceeds 

exactly as in the case of a resistive circuit; the details of the complex algebra required in the  

calculations are explored in the examples. 

 

 4.8.Solution of AC Circuit by Nodal Analysis 
The electrical characteristics of electric motors  can be approximately represented by means 

of a series R-L circuit. In this problem we analyze the currents drawn by two different motors 

connected to the same AC voltage supply (Figure  46).  

 
Fig. 46 − Equivalent circuit of two motors connection 

 



  

The parameters are: RS = 0.5 Ohm; R1 = 2 Ohm; R2 = 0.2 Ohm, L1 = 0.1 H;   L2 = 20 mH.   

vS (t) = 310 cos(314t) V.  The motor load currents, i1(t) and i2(t) have to be found. 

Analysis: First, we calculate the impedances of the source and of each motor: 

ZS = 0.5 Ohm 

Z1 = 2 + j314 ⋅0.1 = 2 + j31.4 = 31.46∠1.52 Ohm 

Z2 = 0.2 + j314 ⋅0.02 = 0.2 + j6.28 = 6.28∠1.54 Ohm 

The source voltage is VS = 310∠0 V. 

Next, we apply Kirchhoff’s current law  at the top node, with the aim of solving for the node 

voltage V: 

(VS − V)/ZS = V/Z1 + V/Z2; 

VS/ZS  = V/ZS + V/Z1 + V/Z2 = V (1/ZS + 1/Z1 + 1/Z2); 

V = (1/ZS + 1/Z1 + 1/Z2)-1 ⋅ VS/ZS  = VS (1/0.5 + 1/(2+j37.7) + 1/(0.2 + j7.54))-1 /0.5 = 

= 308.2∠0.079 V; 

Having computed the phasor node voltage, V, we can now easily determine the phasor 

motor currents, I1 and I2: 

I1 = V/Z1 = (82∠−0.305)/(2 + j37.7) =4.08∠−1.439;  

I2 = V/Z2 = (82∠−0.305)/(2 + j7.54) =20.44∠−1.465.  

Finally, we can write the time-domain expressions for the currents: 

i1(t) = 8.166 cos(314t −1.439) =8.166 cos(314t −82°)A 

i2(t) = 40.88 cos(314t −1.465) =40.88 cos(314t −84° )A 

Note the phase shift between the source voltage and the two motor currents. 

In this chapter we have introduced concepts and tools useful in the analysis of AC circuits. 

The importance of AC circuit analysis cannot be overemphasized, for a number of reasons. 

First, circuits made up of resistors, inductors, and capacitors constitute reasonable models 

for more complex devices, such as transformers, electric motors, and electronic amplifiers. 

Second, sinusoidal signals are ever present in the analysis of many physical systems, not just 

circuits. 



  

 

 5 Quadripoles 
 

 5.1. Quadripole parameters 
The part of the electrical circuit, which has two couples of contacts or terminals is named the 

four pole circuit or shortly quadripole. Often electric filters, amplifiers, long lines, transformers are 

considered as the quadripoles. The contacts, or terminals where the energy source is attached, are 

named as input ones. And the contacts where the loading is attached are named as output ones. In 

shorts, they usually named as input and output of the quadripoles.  

If all the elements of the quadripole are linear ones then such a circuit is named as the linear 

quadripole. If the elements of the quadripole are nonlinear ones, then it is named as nonlinear one. 

The quadripole is named as active one if it contains the electric energy source, and its 

presence can be derived by some measurements in its terminals. Another circuits are named as 

passive ones. 

 Equivalent quadripoles can substitute each other in the electric circuit without exchanging 

the currents and voltages in the rest of that circuit. 

Complex electrical circuit, which has inputs and outputs can be considered as a set of 

quadripoles which are coupled according to some structure. The quadripole theory helps to calculate 

the properties of such a complex circuit using the parameters of its composing subcircuits. This 

theory supports the solving the circuit synthesis problem, i.e. to find out a set of quadripoles and the 

structure of its connections [1]. 

Consider the quadripole which does not contains the independent energy sources. Its left 

contact couple is signed as 1-1', and the right couple of contacts is signed as 2-2'. Such a circuit is 

drawn on the fig. 47. 
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Fig. 47. Quadripole 

 

 The dependences between voltages and currents in the input and output of the quadripole 

can be shown by the following forms of linear equations. 

The ||Z|| form: V1 and V2 are expressed through I1 and I2: 



  

V1=Z11 I1+Z12I2;                                               (6) 

V2=Z21 I1+Z22I2. 

Coefficients Z have the units as the resistance has. They are named usually as impedance. 

On the contrast to the resistance, the impedance has the real (resistance) and imaginary (reactance) 

parts.  

Coefficients Z can be derived as follows. 

Z11= (V1/I1)|I2=0 is the input impedance in  contacts 1 when contacts 2 are open.  

Z22= (V2/I2)|I1=0 is the input resistance in  contacts 2 when contacts 1 are open.  

Z12= (V1/I2) |I1=0 is the mutual resistance when contacts 1 are open.  

Y21= (V2/I1)|I2=0 is the mutual resistance when contacts 2 are open.  

Form ||Y|| : I1 and I2 are expressed in dependence on V1 and V2: 

I1=Y11V1+Y12V2;                                                (7) 

I2=Y21V1+Y22V2.

Coefficients Y represent the input admittance  and mutual admittance of input and output. 

The admittance is the complex value which consists of real (conductance) and imaginary 

(susceptance) parts. 

Y11= (I1/V1)|V2=0 is the input admittance in contacts 1 when contacts 2 are shorted out.  

Y22= (I2/V2)|V1=0 is the input admittance in contacts 2 when contacts 1 are shorted out.  

Y12= (I1/V2)|V1=0 is the mutual admittance when contacts 1 are shorted out. 

Y21= (I2/V1)|V2=0 is the mutual admittance when contacts 2 are shorted out.  

If the quadripole is reversible one then Y12= Y21. In the reversible quadripole its input and 

output can exchange each other. If the quadripole is symmetric one then Y12= Y21 and Y11= Y22. 

The ||H|| form: V1 and I2 are expressed through I1 and V2: 

V1=H11I1+H12V2;                                              (8) 

I2=H21I1+H22V2.

Coefficients H can be derived as follows.  

H11= (V1/I1)|V2=0 is the input resistance when the contacts 2 are shortened on. 

 H12= (V1/V2)|I1=0 is the feedback factor when contacts 1 are open.  

H21= (I2/I1)| V2=0 is the gain factor when contacts 2 are shorten on.  

H22= (V2/I2)|I1=0 is the output conductivity when contacts 1 are open.  

The ||A|| form: V1 and I1 are expressed through I2 and V2: 

 



  

V1=A11V2 −A12I2;                                  ( 9) 

I1  =A21V2 −A22I2. 

If the quadripole is reversible one then the discriminant is |A|= A11A22 − A12A21= 1. If it is 

symmetric one then A11= A22. 

Some substitution circuits can be built, which are based on the quadripole equations. The П 

– imaged circuit is shown on the fig.  48. 

  
-Y12

 

 

 

 

Fig. 48. The П – imaged circuit of the quadripole 

 

Note that the dependent current source  (Y21 -Y12)V1 is present if the quadripole is unrever-

sible one. The edge admitances are derived from the Y – coefficients. 

The T –imaged circuit is shown on the fig.  49: 

 

 

 

 

Fig. 49. The П – imaged circuit of the quadripole 

Here the dependent voltage source  (Z21 −Z12)I1 is present if the quadripole is unreversible 

one. The edge impedances are derived from the Z – coefficients.  

One parameter set can be derived from another parameter set. These parameter sets can be 

derived as the following: 

 

H11 = |Z|/Z22     = 1/Y11        = A12/A22; 
H12 = Z12/Z22   = −Y12/Y11  =  |A|/A22; 
H21 = -Z21/Z22 = Y21/Y11    =   −1/A22; 
H22 =   1/Z22     = |Y|/Y11    = A21/A22; 
A11 = Z11/Z21    = − Y22/Y21 = |H|/H21; 
A12 = |Z|/Z21      =  −1/Y21     = −H11/ H21; 
A21 =   1/Z21     = |Y|/Y21      = −H22/ H21; 
A22 = Z22/Z21   = −Y11/Y21    =   −1/ H21; 

Z11 = A11/A21    = Y22/|Y|     =   |H|/H22; 
Z12 = |A|/A21      = −Y12/|Y|    = H12/ H22; 
Z21 =   1/A21      = −Y21/|Y|     = −H21/H22; 
Z22 = A22/A21   =  Y11/|Y|      =   1/H22;          (10) 
Y11 = A22/A12    = Z22/|Z|      =   1/H11; 
Y12 = −|A|/A12      = −Z12/|Z|  = −H12/ H11; 
Y21 =   -1/A12      = −Z21/|Z|   =  H21/H11; 
Y22 = A11/A12   =  Z11/|Z|      =   |H| /H11;

where |Z| = Z11Z22  − Z11Z22 is the determinant of the matrix of Z – coefficients.  
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 5.2.The input impedance of the loaded quadripole. 
The input impedance when the loading is Z2   (see the fig. 50) is equal to: 

Z1in=(A11Z2 +A12)/(A21Z2+A22)                                                 (11) 
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Fig. 50. The quadripole which is loaded by Z2 impedance 

 

 5.3. Characteristic impedance  
Consider the quadripole is loaded in the output by the impedance Z2C, and the measured 

input impedance is Z1C. And on the contrary, this quadripole is loaded in the input by the impedance 

Z1C, and the measured output impedance is Z2C. (see the fig. above) 

Then the values Z1C, Z2C are named as characteristic impedances or surge impedances of 

the quadripole. And the condition when the loading has the proper characteristic impedance is 

named as the loading balance condition. The substitution of these values in ( 7) and solving the 

derived equations gives: 
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If the quadripole is symmetric one, then 

21

12
21 A

AZZZ CCC === . 

That means, that if the symmetric quadripole is loaded by the characteristic impedance then 

the ratios of voltages and currents on its imputs and outputs are equal to this impedance: 

V1/I1= V2/I2=ZC. 

Consider the energy power at the input P1= V1I1 and the output P2= V2I2 of the quadripole, 

then the logarithm of the ratio of these powers is equal to the attenuation of the quadripole 

a =10 lg(P1 /P2), 

which is measured in decibels, shortly, db. For example, when the quadripole has attenuation 

a=6,02 db then it attenuates the power in 4 times, and for a=20 db the power is attenuated in 100 

times. 



  

When the quadripole is symmetric one and is loaded by the characteristic impedance then  

P1 /P2= (V1/V2)2 = (I1/I2)2, and a =20 lg(V1 /V2). 

For such quadripoles the attenuation a=20 db means that the output voltage is less than the 

input voltage in 10 times. 

Here a is named the eigen attenuation. Consider the quadripole is switshed on the circuit 

(see the fig.51) which is feeded by some voltage source with the impedance ZS, and is loaded by the 

impedance ZL. 
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Fig. 51. The quadripole which is connected to some circuit 

 

Then the logarithm of the ratio of powers at the input and output is equal to the introduced 

attenuation of the quadripole 

ai =10 lg(P1 /P2) =a + a1 + a2 + a3 + a4, 

where a is eigen attenuation, a1 = 20 lg|(ZS +Z1C)/(2√(ZSZ1C))| is the attenuation due to the unrecon-

siled input impedances, a2 = 20 lg|(ZL +Z2C)/(2√(ZLZ2C))|     is the attenuation due to the unrecon-

siled output impedances,     a3  is the attenuation due to the mutual unreconsiled impedances, and  

a4 = 20lg|(ZS+ZL)/2√(ZSZL))| is the attenuation due to the unreconsiled input and output 

impedances. 

As we can see, the attenuation is minimized when all the loadings are reconciled. This 

means that ZS =Z1C , and ZL =Z2C.When ai =0 then the quadripole makes not attenuation, and the 

power at the input is equal to the power at the output. When ai <0 then the quadripole is considered 

to be an amplifier.  

The main practical solution is the following. If one want to provide the signal transfer 

through some quadripole with the minimum losses then the input and output impedances have to be 

balanced, or be equal to the characteristic impedances. The another solution is that the quadripole 

have to be the amplifier. 
 

 

 



  

 5.4.Transmission rate  
The rate of output magnitude of some electrical value to the input magnitude of such 

electrical value is named as the transmission rate of some quadripole by given transmission 

conditions. It is named as transmission function or magnitude-phase characteristic as well. 

When the quadripole is amplifier then its transmission rate is usually named as amplification rate. 

The rate of output and input voltages KV=V2/V1 is named also the voltage transmission 

rate. The rate of output and input currents KI=I2/I1 is named the current transmission rate. If an 

amplifier is considered then such rates are named as voltage and current amplification rates, 

respectively. 

The transmission rates can be derived from the quadripole coefficients of different forms. 

The voltage transmission rate for the circuit on the fig.  51 is equal to 

KV = V2/V1 = ZL/(A11Z2+A12) = ZL/(−Y22ZL/Y21 − 1/Y21)                            (12) 

where ZL is the loading resistance. When ZL= ∞, i.e. the output is open, then 

KV0 = −Y21/Y22 = Z21/Z11=1/A11.                                                (13) 

The current transmission rate is equal to 

KI = I2/I1 = 1/(A21ZL+A22) = ZL/(ZL/Z21+Z22/Z21).                      (14) 

When ZL=0, i.e. the output is shortened, then 

KIS=Z21/Z22= −Y21/Y11. 

 

 5.5. Quadripole connections 
Cascaded connection of quadripoles is shown on the fig. 52. 

 

||Aa|| ||Ab||  

 

 

Fig. 52. Cascaded connection of quadripoles 

The A – matrix of the resulting quadripole is calculated as 

||A||=||Aa||||Ab||.                                                      ( 15) 

When the output characteristic impedance of the first quadripole is equal to the input charac-

teristic impedance of the second quadripole, or Za2c=Zb1c then the attenuation in decibels of the 

resulting quadripole are estimated as: 



  

a = aa + ab ; 

and the transmission rate is equal to: 

K = KaKb . 

Consider aa=20 db ab= 12 db then a=20+12 = 32 db. 

When Za2c ≠ Zb1c then  a higher rate of attenuation occurs. 

Sequential connection of quadripoles is shown on the fig. 53. 

 

 

 

 

Fig. 53. Sequential connection of quadripoles 

 

The Z – matrix of the resulting quadripole is calculated as 

||Z||=||Za||+||Zb||.                                                               (16) 

Parallel connection of quadripoles is shown on the fig. 54. 

 

 

 

 

Fig. 54. Parallel connection of quadripoles 

 

The Y – matrix of the resulting quadripole is calculated as 

||Y||=||Ya||+||Yb||.                                                             (17) 

Sequential-parallel connection of quadripoles is illustrated by the fig.  55. 
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Fig. 56. Sequential-parallel connection of quadripoles 

 

The H – matrix of the resulting quadripole can be derived as 

||H||=||Ha||+||Hb||.                                                         (18) 



  

Note, that the shown characteristics of the connected quadripoles are true if and only if the 

current, which is flowing in, is equal to the current, which is flowing out in both contact couples. 

This conditions are satisfied if the signal source is conected to the drain circuits only through the 

considered quadripole, and has not another connections to that drain circuits. 

 

 5.6. Simple quadripoles 
Simplest quadripoles are shown on the fig. 57. 
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Fig. 57. Simplest quadripoles 

 

The respective A - matrices for the quadripoles a,b,c,  are the following 
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Consider the cascaded connection of the quadripoles a and b on the fig  57. It is illustrated 

by the fig. 58. 
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Fig. 58. Cascaded connenction of simplest quadripoles 

 

Then the A – matrix of the resulting quadripole will be equal to the product of matrices: 
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In such a way one can derive the parameter matrices another simple quadripoles, for exam-

ple, T-imaged, П-imaged, or bridge quadripoles. 



  

 5.7. Feedback Connection 

The sequential-parralel quadripole connection of a main quadripole and an auxiliary 

quadripole represents one of the widely used circuit with the feedback. In such a circuit the output 

voltage V2 is feeded back to the input of the main quadripole through the auxiliary quadripole and 

inferes the input voltage V1 of the system ( see the fig. 59) .  
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Fig. 59. Sequential-parallel quadripole connection as a feedback circuit 

 

Consider K’ =V2/V’1 is the main device amplification, and K” =V”1/V2  is the feedback 

circuit amplification. The whole circuit input voltage is equal to V1= V’1- V”1, while the output 

voltage is the same V2. Then the whole device amplification is  

K =V2/V1=K’/(1−K’K”) .                                                      (21) 

The positive feedback is considered if the output voltage increase forces the input voltage 

increase, i.e. when V1 =V’1+K”V2, and K”>0. The resulting amplification rate increases:  |K|>|K’|. 

But in most of cases the positive feedback causes the oscillations in the circuit.  

The negative feedback is the opposite situation, when V1 =V’1-K”V2 . Then the resulting 

amplification rate decreases, i.e.:   |K|<|K’|. The equation ( 20) can be rewritten as 

K = 1/ K”·(K’K”/(1–K’K”)) ≈ –1/ K”.                                                      (22) 

The last ratio in ( 22) is true if K’K”>>1. The equation (22) shows that the amplification rate 

of the circuit with the feedback can be effectively regulated by the feedback circuit.  In such a way 

the amplification rate of the amplifier can be precisely installed by regulating the feedback 

transmission rate K”. If the transmission rate of the feedback circuit depends on the frequency then 

the resulting circuit can serve as the electronic filter.  

 

 

 

 



  

 5.8. AC analysis of quadripoles 
In the described above quadripole analysis it was considered that currents can be both DC 

and AC. The quadripole impedances have both resistive and reactive properties. In such conditions 

the input current exchange cause some output current exchange. But the output current form not 

always follows the input current form. Therefore to investigate quadripoles it is useful to put the 

input current as a time dependent function I1(t) that is relatively unaffected when passed through 

any quadripole. The output curve I2(t) have to be equal to the input curve scaled by some constant c, 

i.e.  I2(t)=c I1(t)  .  

Such a function is called an eigenfunction, and  the scaling constant c is called an 

eigenvalue. It was found out that for electric circuits the following complex function can be used as 

eigenfunction 

ejωt = cos(ωt)  + j sin (ωt) = exp(jωt). 

Note that   any   complex   function   x   can   be   represented   in   sine – cosine form   as    

x = Re(x)+jIm(x), and in exponential form as x = |x| exp(jφ). Here the magnitude  

( ) ( )xImxRex 22 +=  , 

and phase  

φ = arctg(Im(x)/Re(x)). 

The current transmission rate of the quadripole can be described at the frequency   ω   as       

KI (ω) = k exp(jφ).    Then the output current is equal to  

I2(jωt) = k exp(jφ) exp() I1(jωt) = k exp(j(ωt+φ)) I1(jωt). 

Here k  is the eigenvalue of the transmission rate KI at the frequency ω. All such eigenvalues 

at a set of frequencies form the magnitude-frequency characteristic of the quadripole, or in other 

words, the transmission spectrum function. Respectively, all the phase φ values form the phase-

frequency characteristic, or phase spectrum function. 

Similar dependences can be derived for the voltage transmission rate and amplification rate 

of the quadripole. But they will be different on each other in the phase spectrum function. 

For example, consider the quadripole on the fig.  58, in which ZA= j ωL, and ZC =1/( j ωC). 

Then the voltage transmission rate of the quadripole, loaded by ZL due to (12) and (20) is  

KV(ω) = ZL/(A11ZL+A12) = ZL/((1+ ZA /ZC) ZL + ZC) = ZL/((1 − ω2LC) ZL − j/(ωC)).  

Consider ZL=500 ohm, C=100 microfarads, L= 1 Henry. The derived magnitude-frequency 

characteristic is shown on the fig.  60. 
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Fig. 60. Magnitude-frequency characteristic of the quadripole on the fig.  58 

 

The fig  60 shows the frequency selection properties of derived quadripole. This quadripole 

transmits, and even amplifies the signal with the central frequency of 100 rad/s, and suppress 

another frequencies, which are far from the central frequency. One can see that when the loading 

resistance is decreased to 200 ohm then the selectivity properties drops substantially. This example 

shows the important role of the quadripole loading.  

In such a way any quadripole can be analyzed. And the calculation of the analytical form of 

the spectrum function  helps to synthesize the quadripole with the given spectrum properties. 
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