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ABSTRACT

A method for mapping unimodular loop nests intoligagion specific structures is presented.
The method consists in representing the reducedndigmce draph of the algorithm in multidimen-
sional index space and in mapping this graph imtzgssor subspace and event subspace. Some re-
strictions, which constrain the reduced dependelnagh, help to simplify the mapping process, and
to get pipelined processing units. An example Bf filter structure systhesis illustrates the magpi
process.
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1. Introduction

The automatic development of ASICs for digitalnsigprocessing (DSP) helps to re-
duce both the way from the idea to the market asmgldpment costs. The silicon compiler
can ensure the direct way from some DSP algorittartee chip which computes this algo-
rithm. And the design period is defined first diftay the technological constraints [1]. The
use of programmable devices, such Field Prograrar@ate Arrays (FPGAS), can provide
hardware prototypes with minimum fabrication dglaly

Such steps of the design process as testingmdigprocessing algorithm, logic design
and verification, routing and translation the citgato the format of the program for FPGA

are automatized now. But the development of thactire which realizes the given signal



processing algorithm is implemented an hand andhisrjob skilled specialists are needed
[2]. Therefore the development of programming tdolsmapping the DSP-algorithms into
structures which adapted to the properties of FP{SA$ great importance.

DSP algoritms usually process a data flow in tima¢ and therefore have an iterative
nature. We will consider DSP algoritms which anggresented with the unimodular loop nests
or regular recurrent equations. The kernel of doplnest has one or more statements, such
as:

St: afl] = f(a[l-D4], b[I-D2],...),
where | is the index vector of variables which esgnt a point in the iterational spabg,-
vector of increments to the index of j-th variallbich characterizes data dependence be-
tween iterationsl¢(D,) andl.

This means that all computations which belong single iteration can be sheduled in
such a way, that they begin in a single momeninoé {5]. There are well known methods of
mapping such algorithms into systolic array streesusee, for example, [3...8]). These meth-
ods are based on affine transform of the iteratispace Z, | O Z" with the matrix P, into
subspase Z of structures and subspac&™Zof events. As a result of the transform, the state
ment St of the iteration is processed in the processing unit (PU) with doatesK s = Ps|
in the time step which is signed s = Prl, whereKsO Z", K+ O Z"™ and P=(g", R/")".

If the algorithm has cycles of dependencies batwtarations, that is expressed by
cyclic reduced dependence graph, then mapping algdhtithm is more complex [5]. The
methods for mapping these algoritms are known whrehbased on mapping each statement
St using the separate affine mapping function [8,T®len the searching for algorithm map-
ping is implemented by optimizing the inequalitysgm which express restrictions to the
affine mapping functions. The solving this problean give the optimum solution, but this
solving is rather hard [9].

Mehtioned above methods have a set of restrictidrish do not permit its direct us-
ing for the development of DSP structures. Firsalbfit is considered that the asignments St
which belong to a singe iteration must to be preedssimultaneously during a single time
step. Therefore, although the systolic array reprea multidimensional pipelined computer
system, separate and complex operators and statenoamot be computed in pipelined man-
ner. The second restriction is that the mappinglrespresent a structure not with the given

throughput, but with the maximum thronghput. Thastriction is something reduced by the



synthesis of fixed size systolic arrays but thebfgm of single time step processing of com-
plex operators takes a place [8, 10, 11].

The use of the pipelined PUs offers the incresisemighput of DSP-processor due to
the possibility to begin the next operator progegdbefore completing the previons one.
Therefore, the development of pipelined R&Jattractive for hardware relization of any algo-
rithms, among them DSP-algoriths. In [12] a metfadsystolic array design with pipelined
PUs is proposed. But this method is not suitable bseaticonsists in the manual introduc-
tion of pipeline stages into the given systoli@grstructure.

This work deals with a new method for designinglaation specific DSP-processor

structures by mapping algoritms which are givenramodular loops.

2. Assumed algorithms and goals of the method.
The proposedmethod represent modified known methods for strectisynthesis of
systolic arrays. There are the following goalshaf inethod modifications:

= processing onerafors for more than a sigle cyclénoé. This provides designing DSP-
processors with given throughput, computing comleerators of the algorithm, and op-
erators can have different complexity. The cyckpendencies in algorithm are approved
too. Different statemet Stf the loop kernel can start their processing #ewdint clock
cycles, and this enlarges the area of processedtalys;

» internal pipelining of PUs. By pipelining the Plogsernally, the latency of PU can become
more then one cycle of time. But the PU has highevughput because the maximal al-
lowable clock frequency is higher;

= hardware sharing, that means that the same hardwrexelutes similar statements in
sequential order, unlike one executes a singlersieit when known methods are used.

Consider the algorithm which is represented wisingle loop:

for i =1, U do

(ya(i), ... yp(i)) = f(xa(i+dia), ..., yq(i+dig)) (1)
end.

Here the operator f is processed by the algoritfimch consists of Punar and binar
statemens $t there are not any conditional ststements. Thegethe algorithm can be repre-

sented as the following:

for i = 1,U do



{statenent St}

Stj: Y[i,j]:q)j,k()’[i'dil,j],)’[i'diz,j]) (2)

{statenment Stu;}
end,

Whereq)j,k(x,y) is the operator of the k-th type which presed the operands x and y. This
loop can be transferred into the three-staged hasp. In the (i, j, k)-th iteration of such a loop

nest only j-th statement of k-th type is processedothing is done:

for i = 1,U do
for j =1,U do
for k = 1, U do (3)
if (j,k)O® then y[i,jl=¢; i(y[i-dis,jl,y[i-di2j])
end
end
end,

where® is a set of feasible couples (j,k), which spetyfye and order of operator implemen-
tation in the algorithm (2).

Therefore, the loop (2) which kernel consists efesal different statements can be
represented as a triple loop nest (3). The comguifrthis loop nest takes place in the three
dimensional iterational space® K{l<i<U;, 1<j<U;, 1<k<Uy} D Z°. Each operator is repre-
sented by the vector;KI K3, and the dependence between two oper#oits, is represented
by the vector of dependené® = K, - K;. In most cases the vectbx represent a variable
which is a result of the operatiif, and is transferred to different operatiiisas a imput vari-
able. A generalised loop nest with such a kermellmrepresented in such a manner too.

Alove mentioned methods of the application speafructure synthesis suppose that
PUs implement a given set of operators. In thisspapplication specific PUs are considered,
which implement a single operatdg. A set of PUs for the DSP applications can conhsfis
simple PUs like adder, multiplier, ROM, and thearage unit can be FIFO, which can consist
in most cases of a single register of the result.

3. Mapping unimodular cyclesinto the application specific processor structure.

In the methods, described in [3,...,8, 10-12] gn@ph G of the algorithm is repre-
sented in the n-dimensional index spateThe graph G of the systolic algorithm is a regular
lattice, therefore it is represented by its compann, which consists of unrgual dependence
vectorsD;, and processing domain" Kl Z". When the algorithm has a complex loop kernel,

like in the algorithm (2), then a reduced dependegaph Gr can represent the compact



form of the one. This oriented, in common caselicygraph has N nodes of operatérsand
M edges of dependenciBs

Consider a simple example of an algorithm:

for i =1, N do
for 2 j =1, Mdo
Sti: a[i,j] =b[i-1,j-1];
Sto: b[i,j] =a[i,j];
end.

end

This algorithm is represented by reduced depeselgraph G which is shown on
the fig. 1.

Fig. 1. The reduced dependence grapk. G

Vectors-node®; andD, represent movings of dates a and b between staterf,
St, and are weighted with the distance vectors [0a® (1 1) respectively.

The reduced dependence grapiz @an be represented in the n-dimensional space by
the matrix D of data dependence vectdysmatrix K of vectors-nodels;, and incidence ma-
trix A of this graph. Then matrices K, D, A form algorithm conficuration &

The following definitions and depedencies are fareconfigurations ¢ . The
configuration G is correct ifK; ZKj; i, j = 1,...,N, i#Z ], i.e. if there is a linear depedence be-
tween configuration matrices, i.e.

D = KA, K =DA%, (4)
where A is the incidence matrix for the maximum spannimgtof Ggr, and I is a matrix

of vectors-arcs of this tree. For example, for ¢gnaph on the fig.1 the following equation

takes place: / \



whereDg is a basis vector-edge, which connect the zerotmdithe space with the vector-
nodeK ;.
The sum of vector-edgdy, which belong to any loop of the grapgGmust be equal
to zero, i.e. for the i-th loop the following equeet is true
iji,j D=0 (5),

where j is the element of the i-th row of the cyclomatiatrice for the graph £a.

Configurations & = (K1,D1,A1) and G = (Ky,D,,A2) are equivalent if they are cor-
rect and represent the same algorithm graph, i.e. &.

The following theorem is used to implement theiegjent transformations of con-
figurations.

The correct configuration Agis equivalent to the configuratiom&ff A 1= A, and K
= F(Ky), where F is an injective function. For examples following transformations give
equivalent configurations: permutations of vectérsin the spac&" or permutations of col-
umns of the matrix I multiplications of the matrix Kand non-singular matrices P.

The graph Gof the processor structure is represented by iwfiguration Gs = (Ks,
Ds, A), where ks is the matrix of vectors-nodéss; 0 Z™ which give coordinates of PUs, and
Dsis the matrix of vector-ardSg; Z™which represent connections between PUs, m < n.

Finally, a precedence configuratior € (K, Dy, A) consists of the matrix Kof vec-
torsKy O Z"™™, matrix Dr of vectorsDy; and matrix A. Here vectolé; represent time slots
of executing operators of the algorithm. In a core@nfiguration €a vector-edg®r;j = K-
K1 means that the operator of the nodg¢ Kust precede in time to the operator of. Khe
scedule function R(K) = t implements the mapping of the spacé"df events onto the time
axis, and determines the actual time associatddamitoperator.

The configuration €is correct, or , in other words, the precedencelitiom is true, if
for any couple of vectors-nod&s; andK+ the inequality R(K) = R(Ky), is fulfilled, where
K+i precede td ;.

One can prove that if the schedule R is a linedrrmonotone function, then the con-
figuration G is correct iff

= (6)



whereDy; is the unweighted dependence vector of the reddepedndence graphaf, | =
1,...,M.

The function RDy;) gives the delay between the moment of computegjth vari-
able and the moment when this variable is fed amother PU. This delay determines the up-
per bound for the volume of RAM where this variaisistored.

Consider the method for searching of space anel tmmponents for the algorithm (2).
This algorithm is mapped into application specfiiocessor structure which processes its
kernel with the period ot time clocks. This method can be generalized forniagping of
multinested loops, for example, using hierarchaggdroach [13].

As mentioned above, the algorithm (2) can be sspried in the three dimensional
index space, in which vectors-eddéshave coordinates (j, k,"ij)where i equals the iteration
number, j equals the statement number, and k edo@lsype of the statement operator. In
such a manner one can add a forth dimension wiegtesents the number g of the time slot
in the given iteration. This algorithm is represehby the reduced dependence graphdad
respectively, by the algorithm configuration.d'he coding of the weight of the vector-edge
D; is implemented in such a way. Value i<0 of theaien number and zeroed value of the
time slot mean that the respective eBgéas the weight which is equal to i.

The algorithm configuration s equal to the composition of structure configiorat

Csand configuration of eventsifCnamely

()
L

and if K;=(j, k, i, q), thenKg = (j, k)", andK = (i, q)".

At the first stage of the synthesis the searchorgtie space component of the map-
ping is implemented, namely searching for matri€esind . In the vectoKg = (j,k)", the
coordinate j equals the number of PU, where thie bperator is processed, and k equals the
type of it.

The forming of the matrix Kis a combinatorial task. This task consists itriisting
My operators of the k-th type among ¥ processing units of the k-th type. As a resuls, M
groups of equal columns are formed in matri, lKind the number of columns in each of them
is less or equal td , whereMs is the number of PUs in the resulting structurtee Taxi-

mum hardware utilization effectiveness of the Pd is achieved if the number of columns



with j-th element in the first row of the matrixss equal tot. Then the matrix Bis com-
puted by the equation 3 KA.

On the second stage the time component of the imgppsearched in the form of the
matrices Kk and x . These matrices must satisfy the conditions gbrathm configuration
correctness, correctness of the configuratiorvehts, and identity to zero of summs of vec-
tors-nodes which belong to cycles of the graph.®esides, one can to prove that the given
algorithm will be processed correctly iff

0Ky OKr(Kn =G, q),i>0,q0(0, 1,.T-1)).

The strategies of the searching for space and ¢ongonents of the mapping can be

investigated by considering the next example ofsgrehesis of the application specific proc-

essor structure.

4. Example of the synthesis of the I IR-filter structure.
Consider an example of the structural synthestbefecursive filter which computes

the following equation:

ylil = x[i]+ay[i-2]+byfi-1].
This equation is computed by the algorithm whiglgiven by the following uniform
loop:
for i =1, Ndo
St yl[i] = a*y[i-2];
Stz y2[i] = b*y[i-1];
Sts y3[i] x[i]+yl[i];
Star yli]l = y2[i]+y3[i];
end.

The fig.2 illustrates the reduced dependence goagiis algorithm.



x[i]

Fig.2. Reduced dependence graph of the algorithm.

Each of the statements; St,Si must be computed no less than a single time Bha.
weighted edges which begin in the third and foudde express the delay of the variable yf[i]
for one and two iterations, and cannot expresd#iay of the computing the statemenf. St
Therefore, in these edges intermediate nodes neustithed. The fig.3 illustrates the modified

reduced dependence graph of the algorithm.

x[il

Fig.3. Modified reduced dependence graph of therakgn.



The modified reduced dependence graph represefultbeing algorithm.

fori=1,Ndo
St y1[i] = a*ys[i-2];
St: y2[i] = b*y6[i-1];
St: ya[i] = X[i]+y1[i];
Sk y[] = y2[il+y3[1];
St ys[i] = y[i-2];
St: y6[i] = yIil;
end.
It is useful to select the algorithm processingqeebe equal ta@ = 2, because the al-
gorithm has two addition operators and two multigtion operators, which can be processed
on a single adder and single multiplier. The redudependence graph has the following inci-

dence matrix:

The spatial component of the algorithm mappingei@rched as the matrices &d

. The acceptable coordinate values of the vectodesK are placed in the matrix&

/
L)

Here the coordinate k = 0, 1, 2 represents opesaif identity, addition, multiply,
respectively, and equal coordinates j mean thgtectve operators will be computed in the
same PU. The matrix dof relative interprocessor connection coordinasederived from the

equation:

[110 1 1-2-2 \

DS‘=K3A=\110-2-211 j

Then the timing component of the algorithm mappisigsearched. First of all the

known vectors are derived, which are weighted déeece vectors-edges:



) \ -1
The D = )=@21)isde D7 = \ f the algorifmocess-
" y

ing periodT » of minimizing the local memory of

adder and multiplier Pus, the vectors-edDes which beginning conform to nodes 1,...,4,
must be derived from the equation ORF = 1 or 2, i.e. must be equal to (J,1J1 -1)" ,or (1
0)". This condition satisfies the monotonity of thgaalthm mapping.

To satisfy the injectivity condition, the coordiaa q of the vectorky with the equal
coordinates j must be unequal. For example, theowé&c; is equal to (X 0) or (X 1)', and
Ktz is equal to (X T)or (X O)', where X is the previously unknown value. Thepeesive
coordinates q of the relative delay vectbrs are derived from the equati@y = KtA. Be-
sides, these relative delay vectbrs must satisfy the condition of identity to zerosoimms
of vectors-nodes which belong to cycles of the lyr@gx:

Dt11+Dt13+D14tD16 =0 ;

Dt12+D15+D74+D16 = 0.

These conditions are satisfied by the only sofutio

[iii i+1 42 i+1\

K =
' KOllO 0 1]

The designing results are the reduced dependeapl §ar , which is represented in
the four dimensional space, the structure gragpht@e derived structure of the IIR filter,

and algorithm graph Gwhich are illustrated by the fig.4.






The features of this structure are maximum hardwailisation effectiveness of its
adder and multiplier, and its operating in pipedimegime, the minimum period of time slot,
which is equal to the multiplier delay.

The 5-th order elliptical filter was chosen as thore complex testbench example
[1]. It was compared to the results of such knowftvgare tools like SPAID and HAL [14],
which are shown in the following table. The datanflgraph of this filter is illustrated by the
fig.5. It is considered that in the resulting stuwe the multiplication lasts 2 clock cycles and
the addition lasts 1 clock cycle. Two structuressgere considered. The regular multipliers

were used in the first one, and pipelined multiglere used in the second one.
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Fig. 5.
Parlab SPAID HAL

Regu- | Pipelined ReguldrPipelined Regu- | Pipelined

lar lar
Multipliers 2 1 1 3 2 2 3 2 1
Adders 3 3 2 3 3 2 3 3 2
Multiplexor inputs 55 41 43 37 35 24 36 37 28
Registers 11 11 10 21 21 21 12 1P 12
Computation period 17 17 19 17 17 19 17 17 19
T




The resulting structures have minimum hardwareiwel due to the register account,
and , what is very important, to the multiplier agnt. The negative effect consists in the in-

creased multiplexor input number comparing to tRAI® and HAL results.

5. Conclusion.

In this work the new method for mapping the aldions which are represented by un-
imodular loops is presented. This method is dewsogs the evolution of methods of algo-
rithm mapping which are publisched in [13, 14, TH}je method is intended for the synthesis
of application specific processor structures whoglerate in the pipelined regime with high
load balancing. The given method is realized infthenework Parlab which operates on the
IBM-PC platform in the Windows environment. Thiarfiework helps to develop application
specific processors for DSP and other applicatidihe results of this development can be

utilized by programming the modern FPGAs.
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