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ABSTRACT 
 A method for mapping unimodular loop nests into application specific structures is presented. 
The method consists in representing the reduced dependence draph of the algorithm in multidimen-
sional index space and in mapping this graph into processor subspace and event subspace. Some re-
strictions, which constrain the reduced dependence draph, help  to simplify the mapping process, and 
to get pipelined processing units. An example of IIR- filter structure systhesis illustrates the mapping 
process.  
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 1. Introduction 

 The automatic development of ASICs for digital signal processing (DSP) helps to re-

duce both the way from the idea to the market and development costs. The silicon compiler 

can ensure the direct way from some DSP algorithms to the chip which computes this algo-

rithm. And the design  period is defined first of all by the technological constraints [1]. The 

use of programmable devices, such Field  Programmable Gate Arrays (FPGAs), can provide 

hardware prototypes with minimum fabrication delay [2]. 

  Such steps of the design process as testing of signal processing algorithm, logic design 

and verification, routing and translation the circuit into the format of the program for FPGA  

are automatized now. But the development of the structure which realizes the given signal 



processing algorithm is implemented an hand and for this job skilled specialists are needed 

[2]. Therefore the development of programming tools for mapping the DSP-algorithms into 

structures which adapted to the properties of FPGAs  is of great importance. 

 DSP algoritms usually process a data flow in real time and therefore have an iterative 

nature. We will consider DSP algoritms which are represented with the unimodular loop nests 

or regular recurrent equations. The kernel of the loop nest has one or  more statements, such 

as: 

Sti: a[I] = f(a[I-D1], b[I-D2],...), 

where I is the index vector of variables which represent a point in the iterational space, DJ - 

vector of increments to the index of j-th variable which characterizes data dependence be-

tween iterations (I-DJ) and I. 

 This means that all computations which belong to a single iteration can be sheduled in 

such a way, that they begin in a single moment of time [5]. There are well known methods of 

mapping such algorithms into systolic array structures (see, for example, [3...8]). These meth-

ods are based on affine transform of the iterational space Zn, I ∈ Zn with the matrix P, into 

subspase Zm of structures and subspace Zn-m of events. As a result of the transform, the state-

ment Sti  of the iteration I is processed in the processing unit (PU) with coordinates KS = PS I 

in the time step which is signed as KT = PTI, where KS ∈ Zn,  KT ∈ Zn-m, and P=(PS
T, PT

T)T. 

 If the algorithm has cycles of dependencies between iterations, that is expressed by 

cyclic reduced dependence graph, then mapping such algorithm is more complex [5]. The 

methods for mapping these algoritms are known which are based on mapping each statement 

Sti using the separate affine mapping function [8, 9]. Then the searching for algorithm map-

ping is implemented by optimizing the inequality system which express restrictions to the 

affine mapping functions. The solving this problem can give the optimum solution, but this 

solving is rather hard [9]. 

 Mehtioned above methods have a set of restrictions which do not permit its direct us-

ing for the development of DSP structures. First of all, it is considered that the asignments Sti 

which belong to a singe iteration must to be processed simultaneously during a single time 

step. Therefore, although the systolic array represent a multidimensional pipelined computer 

system, separate and complex operators and statements cannot be computed in pipelined man-

ner. The second restriction is that the mapping result represent a structure  not with the given 

throughput, but with the maximum thronghput. This restriction is something reduced by the 



synthesis of fixed size systolic arrays but the problem of single time step processing of com-

plex operators takes a place [8, 10, 11]. 

 The  use of the pipelined PUs offers the increased throughput of DSP-processor due to 

the possibility to begin the next operator processing before completing the previons one. 

Therefore, the development of pipelined PUs is attractive for hardware relization of any algo-

rithms, among them DSP-algoriths. In [12]  a method for systolic array design with pipelined 

PUs  is proposed. But  this method is not suitable because it consists in the manual introduc-

tion of pipeline stages into the given systolic array structure. 

 This work deals with a new method for designing application specific DSP-processor 

structures by mapping algoritms which are given as unimodular loops. 

 

 2. Assumed algorithms and goals of the method. 

 The proposed method represent modified known methods for structured synthesis of 

systolic arrays. There are the following goals of the method modifications: 

� processing onerafors for more than a sigle cycle of time. This provides designing DSP-

processors with given throughput, computing complex operators of the algorithm, and op-

erators can have different complexity. The cyclic dependencies in algorithm are approved 

too. Different statemet Sti of the loop kernel can start their processing at different clock 

cycles, and this enlarges the area of processed algorithms;  

� internal pipelining of PUs. By pipelining the PUs internally, the latency of PU can become 

more then one cycle of time. But the PU has higher throughput because the maximal al-

lowable clock frequency is higher; 

� hardware sharing, that means that the same hardware unit exelutes similar statements in 

sequential order, unlike one executes a single statement when known methods are used. 

 Consider the algorithm which is represented with a single loop: 

 for i = 1, Ui do 
  (y1(i),...,yp(i)) = f(x1(i+di1),...,yq(i+diq))     (1) 
 end. 

 Here the operator f is processed by the algorithm which consists of Uj unar and binar 

statemens Stj , there are not any conditional ststements. Therefore the algorithm can be repre-

sented as the following: 

 
 for i = 1,Ui do 



  {statement St1} 
  . . . 

  Stj: y[i,j]=ϕj,k(y[i-di1,j],y[i-di2,j])           (2) 
  . . . 
  {statement Stuj} 
 end, 

where ϕj,k(x,y) is the  operator of the k-th type which processed the operands x and y. This 

loop can be transferred into the three-staged loop nest. In the (i, j, k)-th iteration of such a loop 

nest only j-th statement of k-th type is processed or nothing  is done: 

for i = 1,Ui do 
 for j = 1,Uj do 
  for k = 1,Uk do                                (3) 

  if (j,k)∈Φ then y[i,j]=ϕj,i(y[i-di1,j],y[i-di2,j]) 
  end 
 end 
end, 

where Φ is a set of feasible couples (j,k), which specify type and order of operator implemen-

tation in the algorithm (2). 

 Therefore, the loop (2) which kernel consists of several different statements can be 

represented as a triple loop nest (3). The computing of this loop nest takes place in the three 

dimensional iterational space K3 ={1≤i≤Ui, 1≤j≤Uj, 1≤k≤Uk} ⊂ Z3. Each operator is repre-

sented by the vector Ki ∈ K3, and the dependence between two operators Ki, Kl is represented 

by the vector of dependence Dj = Kl - Ki. In most cases the vector Dj represent a variable 

which is a result of the operator Ki, and is transferred to different operators Kl as a imput vari-

able. A generalised loop nest with such a kerrel can be represented in such a manner too.  

 Alove mentioned methods of the application specific structure synthesis suppose that 

PUs implement a given set of operators. In this paper application specific PUs are considered, 

which implement a single operator ϕk. A set of PUs for the DSP applications can constist of 

simple PUs like adder, multiplier, ROM, and their storage unit can be FIFO, which can consist 

in most cases of a single register of the result.  

 

 3. Mapping unimodular cycles into the application specific processor structure. 

 In the methods, described in [3,...,8, 10-12] the graph GA of the algorithm is repre-

sented in the n-dimensional index space Zn. The graph GA of the systolic algorithm is a regular 

lattice, therefore it is represented by its compact form, which consists of unrgual dependence 

vectors Dj, and processing domain Kn ⊂ Zn. When the algorithm has a complex loop kernel, 

like in the algorithm (2), then a reduced dependence graph GAR  can represent the compact 



form of the one. This oriented, in common case, cyclic graph has N nodes of operators Ki and 

M edges of dependencies Dj. 

 Consider a simple example of an algorithm: 

  for i = 1, N do 
     for 2  j = 1, M do 
     St1: a[i,j] = b[i-1,j-1];  
         St2: b[i,j] = a[i,j]; 
     end. 
 end 

 This algorithm is represented by reduced  dependence graph GAR  which is shown on 

the fig. 1. 

 

 

 

 

 

 

 Fig. 1. The reduced dependence graph GAR. 

 Vectors-nodes D1 and D2 represent movings of dates a and b between  statements St1, 

St2, and are weighted with the distance vectors (0, 0)T and (1 1)T respectively. 

 The reduced dependence graph GAR  can be represented in the n-dimensional space  by 

the matrix D of data dependence vectors Dj, matrix K of vectors-nodes Ki, and incidence ma-

trix A of this graph. Then matrices K, D, A form an algorithm conficuration CA.  

 The following definitions and depedencies are true for configurations CA . The 

configuration CA is correct if Ki ≠Kj; i, j = 1,...,N, i ≠ j, i.e. if there is a linear depedence be-

tween configuration matrices, i.e. 

D = KA;            K = D0A0
-1,                                      (4)  

where A0 is the incidence matrix for the maximum spanning tree of  GAR , and D0 is a matrix 

of vectors-arcs of this tree. For example, for the graph on the fig.1 the following equation 

takes place: 
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where DB is a basis vector-edge, which connect the zero point of the space with the vector-

node K1. 

 The sum of vector-edges Dj, which belong to any loop of the graph GAR  must be equal 

to zero, i.e. for the i-th loop the following equation is true 

Σbi,jDj = 0                                                                            (5), 
          j  

where bij is the element of the i-th row of the cyclomatic matrice for the graph GAR.  

 Configurations  CA1 = (K1,D1,A1) and CA2 = (K2,D2,A2) are equivalent if they are cor-

rect and represent the same algorithm graph, i.e. A1 = A2. 

 The following theorem is used to implement the equivalent transformations of con-

figurations. 

  The correct configuration CA1 is equivalent to the configuration CA2 iff A 1= A2 and K2 

= F(K1),  where F is an injective function. For example, the following transformations give 

equivalent configurations: permutations of vectors Ki  in the space Zn or permutations of col-

umns of the matrix K1, multiplications of the matrix K1 and non-singular matrices P. 

 The graph GS of the processor structure is represented by its configuration  GAS = (KS, 

DS, A), where KS is the matrix of vectors-nodes KSi ∈ Zm which give coordinates of PUs, and  

DS is the matrix of vector-arcs DSj ∈ Zm which represent connections between PUs, m < n. 

 Finally, a precedence configuration CT = (KT, DT, A) consists of the matrix KT of vec-

tors KTi ∈ Zn-m,  matrix DT of vectors DTj and matrix A. Here vectors KTi represent time slots 

of executing operators of the algorithm. In a correct configuration CT a vector-edge DTj = KTl-

KTi means that the operator of the node KTi  must precede in time to the operator of  Ktl. The 

scedule function R(KTi) = ti implements the mapping of the space Zn-m of events onto the time 

axis, and determines the actual time associated with an operator.  

  The configuration CT is correct, or , in other words, the precedence condition is true, if 

for any couple of vectors-nodes KTi and KTl the inequality R(KTl) ≥ R(KTi), is fulfilled, where 

KTi precede to KTl.  

 One can prove that if the schedule R is a linear and monotone function, then the con-

figuration CT is correct iff 

(6) 0 DTj  



where DTj  is the unweighted dependence vector of the reduced dependence graph GAR ,  j = 

1,...,M. 

 The function R(DTj) gives the delay between the moment of computing the j-th vari-

able and the moment when this variable is fed into another PU. This delay determines the up-

per bound for the volume of RAM where this variable is stored.  

 Consider the method for searching of space and time components for the algorithm (2).  

This algorithm is mapped into application specific processor structure which processes its 

kernel with the period of τ time clocks. This method can be generalized for the mapping of 

multinested loops, for example, using hierarchical approach [13]. 

 As mentioned above, the algorithm (2) can be represented in the three dimensional 

index space, in which vectors-edges Kl have coordinates (j, k, i)T, where i equals the iteration 

number, j equals the statement number, and k equals the type of the statement operator. In 

such a manner one can add a forth dimension which represents the number q of the time slot 

in the given iteration. This algorithm is represented by the reduced dependence graph GAR and 

respectively, by the algorithm configuration CA. The coding of the weight of the vector-edge 

Dj is implemented in such a way. Value i<0 of the iteration number and  zeroed value of  the 

time slot mean that the respective edge Dj has the weight which is equal to i. 

 The algorithm configuration CA is equal to the composition of structure configuration 

CS and configuration of events CT , namely  

 

 

  

 and if    Kl = (j, k, i, q)T, then KSl = (j, k)T , and KTl  = (i, q)T. 

 At the first stage of the synthesis the searching for the space component of the map-

ping is implemented, namely searching for matrices KS and DS. In the vector KSl = (j,k)T, the 

coordinate j equals the number of PU, where the l -th operator is processed, and k equals the 

type of it.  

 The forming of the matrix KS is a combinatorial task.  This task consists in distributing  

Mk operators of the k-th type among ]Mk/τ[ processing units of the k-th type. As a result, MS 

groups of equal columns are formed in matrix KS , and the number of columns in each of them 

is less or equal  to τ , where MS is the number of PUs in the resulting structure. The maxi-

mum hardware utilization effectiveness of the j-th PU is achieved if the number of columns 

     Ks  
K =          
     KT 
  



with j-th element in the first row of the matrix KS is equal to τ. Then the matrix DS is com-

puted by the equation : DS = KSA. 

 On the second stage the time component of the mapping is searched in the form of the 

matrices KT and DT . These matrices must satisfy the conditions of algorithm configuration 

correctness,  correctness of the configuration of events, and identity to zero of summs of vec-

tors-nodes which belong to cycles of the graph GAR. Besides, one can to prove that the given 

algorithm will be processed correctly iff 

               ∀KTl ∈ KT(KTl = (i, q)T, i > 0, q ∈ (0, 1,...,τ-1)). 

 The strategies of the searching for space and time components of the mapping can be 

investigated by considering the next example of the synthesis of the application specific proc-

essor structure. 

 

 4. Example of the synthesis of the IIR-filter structure. 

 Consider an example of the structural synthesis of the recursive filter which computes 

the following equation: 

 y[i] = x[i]+ay[i-2]+by[i-1]. 

 This equation is computed by the algorithm which is given by the following uniform 

loop: 

 for i = 1, N do 

     St1: y1[i] = a*y[i-2];  

      St2: y2[i] = b*y[i-1];    

     St3: y3[i] = x[i]+y1[i]; 

      St4: y[i] = y2[i]+y3[i]; 

 end. 

 The fig.2 illustrates the reduced dependence graph of this algorithm.   

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 Each of the statements St1,...,St4 must be computed no less than a single time slot. The 

weighted edges which begin in the third and fourth node express the delay of the variable y[i] 

for one and two iterations, and cannot express the delay of the computing the statement St4. 

Therefore, in these edges intermediate nodes must be added. The fig.3 illustrates the modified 

reduced dependence graph of the algorithm. 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig.3. Modified reduced dependence graph of the algorithm. 
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Fig.2. Reduced dependence graph of the algorithm.  



The modified reduced dependence graph represent the following algorithm.  

 for i = 1, N do   
     St1: y1[i]  = a*y5[i-2];   
     St2: y2[i]  = b*y6[i-1];            
     St3: y3[i]  = x[i]+y1[i]; 
     St4: y[i]  = y2[i]+y3[1]; 
     St5: y5[i] = y[i-2]; 
     St6: y6[i] = y[i]; 
 end. 

 It is useful to select the algorithm processing period be equal to τ = 2, because the al-

gorithm has two addition operators and two multiplication operators, which can be processed 

on a single adder and single multiplier. The reduced dependence graph has the following inci-

dence matrix: 

 

 

 

  

 

 

 The spatial component of the algorithm mapping is searched as the matrices KS and DS 

. The acceptable coordinate values of the vectors-nodes Kti are placed in the matrix KS: 

 

 

 

 Here the coordinate k = 0, 1, 2  represents operators of identity, addition, multiply, 

respectively, and equal coordinates j mean that respective operators will be computed in the 

same PU. The matrix DS of relative interprocessor connection coordinates is derived from the 

equation: 

 

 

   

  

 Then the timing component of the algorithm mapping is searched. First of all the 

known vectors are derived, which are weighted dependence vectors-edges: 

  j     1 2 2 3 3  
KS =    
  k     1 2 2 0 0  
 

     1 1 0    1   1 -2 -2  
Ds = KsA =   
     1 1 0  -2  -2  1   1  
  

   1 2 3 4 5 6 7   8 
   -1     1    1 
    -1     1  
A =  1  -1      

    1 1 -1 -1    
       1   -1   
        1  -1  
 



 

 The timing function R = (τ 1) = (2 1) is derived on the base of the algorithm process-

ing period τ = 2. For the purpose of minimizing the register number in the local memory of  

adder and multiplier Pus, the vectors-edges DTj,  which beginning  conform to nodes 1,...,4, 

must be derived from the equation  R*DTj = 1 or 2, i.e. must be equal to (0 1)Т,  (1 -1)Т ,or  (1 

0)Т. This condition satisfies the monotonity of the algorithm mapping.  

 To satisfy the injectivity condition, the coordinates q of the vectors Ktl with the equal 

coordinates j must be unequal. For example, the vector KT1 is equal to (X 0)T or (X 1)T, and  

KT2 is equal to (X 1)T or (X 0)T,  where X is the previously unknown value. The respective 

coordinates q of the relative delay vectors DTl are derived from the equation DT = KTA. Be-

sides, these  relative delay vectors DTl must satisfy the condition of identity to zero of summs 

of vectors-nodes which belong to cycles of the graph GAR:  

 DT1+DT3+DT4+DT6 = 0 ;                     

 DT2+DT5+DT4+DT6 = 0.    

 These conditions are satisfied by the only solution: 

 

 

                                    

 

                                              

 The designing results are the reduced dependence graph GAR , which is represented in 

the four dimensional space,  the structure  graph GS , the derived    structure of  the IIR filter, 

and algorithm graph GA which are illustrated by the fig.4. 
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 The features of this structure are maximum hardware utilisation effectiveness of its 

adder and multiplier, and its operating in pipelined regime, the minimum period of time slot, 

which is equal to the multiplier delay.  

  The 5-th order elliptical filter was chosen as the more complex testbench example 

[1]. It was compared to the results of such known software tools like SPAID and HAL [14], 

which are shown in the following table. The data flow graph of this filter is illustrated by the 

fig.5. It is considered that in the resulting structure the multiplication lasts 2 clock cycles and 

the addition lasts 1 clock cycle. Two structure sets were considered. The regular multipliers 

were used in the first one, and pipelined multipliers were used in the second one.  

 

 

 

 

 

 

 

 

 

 

 

     Parlab  SPAID  HAL 

 Regu-

lar 

Pipelined Regular Pipelined Regu-

lar 

Pipelined 

Multipliers 2 1 1 3 2 2 3 2 1 

Adders 3 3 2 3 3 2 3 3 2 

Multiplexor inputs 55 41 43 37 35 24 36 37 28 

Registers 11 11 10 21 21 21 12 12 12 

Computation period 

τ 

17 17 19 17 17 19 17 17 19 

 

Fig. 5. 



 The resulting structures have minimum hardware volume due to the register account, 

and , what is very important, to the multiplier account. The negative effect consists in the in-

creased multiplexor input number comparing to the SPAID and HAL results. 

 

 5. Conclusion. 

 In this work the new method for mapping the algorithms which are represented by un-

imodular loops is presented. This method is developed as the evolution of methods of algo-

rithm mapping which are publisched in [13, 14, 15]. The method is intended for the synthesis 

of application specific processor structures which operate in the pipelined regime with high 

load balancing. The given method is realized in the framework Parlab which operates on the 

IBM-PC platform in the Windows environment. This framework helps to develop application 

specific processors for DSP and other applications. The results of this development  can be 

utilized by programming the modern FPGAs. 
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