
Engineering Simulation, Gordon Breach Publ. Group. − V. 18. −2001. − P. 217−225.

On mapping DSP algorithms into FPGAs.

 Anatoli Sergyienko
National Technical University of Ukraine "KPI", Kiev, Ukraine,

 Juri Kanevski
Technical University of Koszalin, Koszalin, Poland,

 Roman Wyrzykowski
Technical University of Czestohowa, Czestohowa, Poland

The problem of mapping digital signal processing (DSP) algorithms into application

specific structures, especially into field programmable gate arrays (FPGAs) is considered. A
new mapping method is proposed which takes into account structural properties of FPGA,
minimises its hardware volume, and provides designing pipelined structures with high clock
frequency. This method was tested by designing infinite impulse response (IIR) filter
structures which are implemented in FPGA. The filter structures are described by VHDL and
have high throughput and hardware utilisation.

1. Introduction.

DSP applications are characterised by real time computations of data flows using

calculation intensive algorithms with minimum condition operators. Many of them, for

example, in the video digital signal processing domain, have high throughput which is derived

by quantisation frequency fQ of tenths megahertz. Therefore, such applications are usually

heavily pipelined solutions, and are implemented in ASICs. Often they are implemented in

FPGAs, which technology supports high clock frequency fC which is equal to tenths and

hundreds megahertz, small time period and cost of application development. But they have a

set of structural properties and constrains which must be taken into account by designing cost

effective DSP applications with high throughput.

Consider such an application in Xilinx FPGA. It must be heavily pipelined, because, one

hand, complex logic is performed by a chain of lookup tables, and therefore, without

pipelining it is impossible to get the proper performance, the other hand, one bit pipeline

registers can be attached everywhere in the structure without additional cost. The cost of four

input multiplexor is approximately equal to an adder cost. Therefore, the multiplexor input

number must be carefully minimised as well as adder number must be. The number of

programmed wires in FPGA is enough for many applications but is still limited to prototype

randomly connected units. Besides, the long line delay is equal to the logic unit one.

Therefore, the local interconnections and its pipelining are preferable.

Many approaches of algorithm mapping have been published that are tailored to DSP

application domain that differ both in synthesis tasks and in target architecture. Examples are

CATHEDRAL system targeting bit sequential computations or microprogrammable bi-

directional bus architectures [1], PHIDEO system, tailored to video applications [2], Sehwa

system targeting pipelined structures, HAL system which assumes multiplexor oriented

structures [4]. Most of such systems intended for automatic ASIC design like silicon compiler,

and are not targeting FPGAs. Besides, optimisation demands to FPGA projects are more strict

than ones to ASICs due to restricted place and route possibilities of FPGAs.

In this paper a new method for mapping DSP algorithms into application specific

processor is proposed which takes into account structural properties of FPGA, minimise its

hardware volume, and provide designing pipelined structures with high clock frequency.

2. Method for mapping data flow graphs into application specific structure.

The mapping method compendiously described below is well suited for mapping DSP

algorithms into application specific structures and was published in [5,6,7]. In this paper it is

adapted to FPGA applications. Often DSP algorithms are described by data flow graphs

(DFG). In DFG operator nodes represent operations of addition or multiplication, a chain of k

delay nodes represents delay of a signal variable to k iterations, edges represent data flows.

DFG can be derived by respective mapping of reduced dependence graph GAR of an

unimodular loop nest [8]. In the graph GAR nodes represent operators, and weighted by k edge

represents dependence of the data which is delayed to k iiterations.

Both DFG and reduced dependence graph GAR can be represented in n- dimensional

space Zn . For most DSP algorithms it is enough to operate with n=4 dimensional space. Each

of N nodes of the graph which denotes the algorithm operator is represented by the vector -

node Ki , i=1,...,N. The coordinates of the vector Ki signify iteration number, clock number in

the iteration, processing unit (PU) in which the respective operator is implemented, and its

type. Each of M edges of the graph which denotes the data dependence or variable moving is

represented by the vector - edge Dj = Ki - Ki-1 , j=1,...,M, besides, vector DN+1 = K1 .

Sets of vectors Ki and Dj form respective matrices K and D which together with the

graph GAR incidence matrix A form an algorithm configuration CA = (K,D,A). The

configuration CA is equal to the composition of structure configuration CS = (KS,DS,A) and

configuration of events CT = (KT,DT,A) , namely

()K K KS
T

T
T T

= , , ()D D DS
T

T
T T

= , ;

where vector-node KSi ∈KS, represent coordinates of PU where i-th operator is implemented,

vector-edge DSj ∈DS represent relative coordinates of communication line for j-th variable,

vector-node KTi ∈KT represent clock period of this operator implementation and vector-edge

DTj ∈DT represent delay of this variable moving. Another words, configuration CS represents

the graph of the processor structure, and the configuration CT represents the operator time

schedule.

The following definitions and statements are true for configurations CA, CS, CT . The

configuration CA is correct if Ki ≠ Kj ; i,j = 1,...,N, i≠j, i.e. all of vectors-nodes are placed in the

space separately.

There is a linear dependence between matrices: D = KA; K = DoAo
-1, where Ao is the

incidence matrix for the maximum spanning tree of the graph GAR, and Do is the matrix of

vectors-edges of this tree.

Correct configuration CA can be transformed into equivalent configuration CA’ by any

injection function. For example, the following transformations give equivalent configurations:

permutations of vectors Ki , multiplications of the matrix K and non-singular matrices P.

The sum of vectors-edges Dj ,which belong to any loop of the graph GAR must be equal

to zero. The configuration CT is correct if Dtj≥0, where Dtj is unweighted dependence vector of

the graph GAR, inequality has lexicographic meaning, j =1,...M. Besides, the given algorithm is

implemented in pipelined manner correctly iff

∀KTl∈KT(KTl=(i,q)T, q∈(0,1,...,L-1)), (1)

where KTi is not incident to edge DTj=(p,0)T weighted by p, L is the period of time between

two consecutive loadings of the same input operand or latency of the algorithm

implementation.

Searching for algorithm mapping consists in deriving configurations CA, CS, CT which

are optimised according to given criterion. Directed searching for optimised configurations is

implemented taking into account mentioned above definitions, dependencies and constraints.

At the first stage of the mapping, the searching for the space component CS is

implemented. The forming of the matrix KS consists of distributing Mk operators of the k-th

type among]Mk/L[processing units of the k-th type. As a result, MS groups of equal columns

are formed in the matrix KS , where MS is the number of PUs in the resulting structure. The

goal of this process is resource allocation and resource assignment.

At the second stage, the time component CT of the mapping is searched for. Derived

matrices KT and DT must satisfy the condition of algorithm configuration correctness,

correctness of the configuration of events, condition, that the sum of vectors-edges Dj ,which

belong to any loop of the graph GAR must be equal to zero , and condition (1). Besides, if the

operator represented by KTl is calculated for d clock cycles, then the norm R(DTj)=iL+q of the

vector DTj=(i,q)T must be no less than d . The clock period in which the operator represented

by KTl=(i,q)T is implemented is equal to t = R(KTl) . As a result, the operator schedule is

derived.

In a large set of different exemplars of mapping results an optimum mapping is

searched. Some heuristics can be applied to derive a quick solution, such as list scheduling,

force directed scheduling, loop folding, or left - edge algorithm, etc. [9]. The advantages of

this method consist in the following. Both stages of the mapping deriving can be executed in

different order or simultaneously providing best optimisation strategy by time constrained

scheduling and functional pipelining. The pipelined PUs with the given stage number can be

taken into account. After some adaptation this method is well suited for mapping algorithms

into FPGAs.

3. Method for mapping data flow graphs into FPGA.

The main significant PU type for DSP applications are adder and multiplier. Due to

FPGA properties, these type PUs must be pipelined and have minimum input wires.

Accumulator and pipelined multiplier to the coefficient correspond to these demands. The

accumulator has one input and consists of an adder with register. The pipelined multiplier

represent the combinatorial multiplying network which is divided by pipeline registers to d

stages with approximately equal delay. When this delay is equal to the adder one, the high

throughput rate is achieved.

To synthesise the structures with accumulators and pipelined multiply units as well as to

minimise the register and multiplexor input numbers the third stage is introduced to the

method described above. This stage is executed after first and second ones. In this stage the

additional delay nodes and adder type nodes are introduced to edges of the DFG and graph

GAR which do not alter the algorithm.

The introduced delay nodes which are represented by vectors KDi are mapped into

registers. The vectors-edges Dj which are incident by its begins to vectors-nodes KDi must be

mapped into one clock cycle delay, i.e. R(DTj)=1.

The vectors-edges Dj which are incident by its begins to vectors-nodes KMi , which

represent multiply operation must be mapped into d clock cycle delay, i.e. R(DTj)=d. The

delay nodes are not introduced to these vectors-edges. By posterior mapping vectors-nodes

KMi , d staged multipliers are gained.

 The additional adder type nodes are introduced to vectors-edges Dj which are incident

by its begins to adder type vectors-nodes KAi , and which are mapped into several clock cycle

delay, i.e. R(DTj)>1. As a result, chains of up to L-1 adder type nodes are gained, which are

mapped into the accumulator type PUs. Besides, the additional adder type node is introduced

to vector-edge Dj (R(DTj)>1) which is incident by its end to vector-node KAi which is the first

in the chain of adder type nodes. This assures mapping addition operators into the

accumulator type PUs with a single input.

Finally, the stage of the searching for the space component CS is implemented again. By

this process the number of both multiplier, accumulator PUs and registers is minimised more

precisely in a sigle stage and this fact testify the advantages of this method.

4. Example of the synthesis.

Infinite impulse response (IIR) filters are widely used in digital signal processing

systems because they have computational complexity several times as less as finite impulse

response filters have. Implementation IIR filters in FPGA has a set of advantages, such as full

adaptation of implemented in FPGA structure to the filtering algorithm, high throughput,

hardware utilisation effectiveness, achieving high rate of calculating precision. But due to the

feedback chains in IIR algorithms such popular methods of algorithm optimisation like

retiming and pipelining give limited results. In the case when the clock frequency fC is

L=2,3,... times as much as the quantisation frequency fQ of the digital signal is, there are a

wide opportunity to enlarge pipelining of IIR filter calculations, and therefore to derive filter

structures which support maximum hardware utilisation and high clock frequency when

implementing in FPGA.

Consider the second order all pass IIR filter design. It calculates the following difference

equations yi=xi+c1yi-1+c2yi-2; vi= c2yi+c1yi-1+yi-2, where xi are initial dates, vi are

results, and c1,c2 are filter coefficients.

The DFG of this filter is illustrated by the fig1. Here rectangles represent registers,

circles with plus sign and with cross sign represent addition and multiplication operators,

respectively. Consider the resulting structure which contains d=2 staged multiplier PUs and

one input accumulators. According to the rule that the minimum time period of one algorithm

iteration is equal to maximum sum of delays in separate loop of DFG, divided by the register

number in it [9], this time for the given algorithm is equal to sum of one multiplier delay and

one adder delay. Taking into account that one multiplier delay is approximately equal to two

adder delays, it is recommended to consider the latency period be equal to L=3 clock cycles.

This assures deriving the structure with maximum throughput and minimum cost.

Then first and second stages of the filter structure synthesis are implemented. The

resulting optimised algorithm configuration CA is illustrated by the fig.2. Here coordinates i, q,

j represent iteration number, clock cycle in the iteration, and PU number, respectively, the

dotted lines represent edges weighted by the factor one and two which correspond to delay

the variable yi to one and two iterations. This configuration is mapped into the filter structure

which consists of one multiplier unit, two adders, and nine registers.

After executing the third stage of the synthesis the optimised algorithm configuration

CA
’ is derived, which is illustrated by the fig.3. Here small circles represent additional delay

nodes. The respective structure configuration CS is shown on the fig.4. It represent the

structure graph which can be derived by connecting together the vectors-nodes on the fig.3

which have equal coordinates j .The bold lines on the fig.4 represent respective multiplexers.

The resulting structure is shown on the fig.5. Its hardware cost consists of one pipelined

multiplier, two accumulators, three multiplexers and nine registers, and is minimum for the

given latency L. After third stage of the synthesis the number of multiplexers and their inputs

in the target structure is decreased by one. When multiplier is designed as a scaler then the

clock period is equal to the sum of delays in the multiplexor , adder and register, and can

achieve the minimum clock period which afford FPGA.

5.Conclusion .

Implementation DSP algorithms in FPGA has a set of advantages, like full adaptation of

implemented in FPGA structure to the algorithm, high throughput, hardware utilisation

effectiveness, any rate of calculating precision. The DFG of the signal processing algorithm is

mapped into the application specific structure. But due to the feedback chains in many DSP

algorithms like in IIR filtering ones such methods of algorithm optimisation like retiming and

pipelining give limited results. Most of known mapping methods intended for automatic ASIC

design, and are not targeting FPGAs. Besides, optimisation demands to FPGA projects are

more strict than ones to ASICs due to restricted place and route possibilities of FPGAs.

In this paper a new method for mapping DSP algorithms into application specific

processor is proposed which takes into account structural properties of FPGA, minimises its

hardware volume, and provides designing pipelined structures with high clock frequency. The

method is based on the representing DFG in multidimensional space with time, resource

number, operation type coordinates and its mapping into subspaces of structures and events.

Searching for the optimised structure is implemented by the linear algebra and linear

programming methods or by another approaches. The operator sheduling and allocation are

performed implicitly and simultaneously by the direct searching and therefore the optimisation

process has decreased complexity. The register allocation is performed simultaneously with

another resource allocation, which assures the maximum hardware utilisation effectiveness.

Some heuristics direct the mapping to implement pipelined processing units like

multipliers and accumulators, that is preferable for FPGA. Derived structures are operating in

pipelined regime providing high hardware utilisation effectiveness and minimised clock cycle

period.

This method has showed good results by the development of the library of IIR filter

structures. The development and mapping of algorithm configurations was held by means of a

framework Paredit which is described in [7]. The library contains a set of parametrised IIR

filter structures and is intended to computer aided design of digital signal processing systems

on the base of FPGAs. The structural parameters are filter order and latency L. The library

consists of structural models of filters described by VHDL language in synthesable style, and

therefore can be translated both into FPGA of any type and into ASIC using such synthesis

tools like Synopsys.

 References

1. J. Rabaey, H. de Man, J. Vanhoof, G. Gossens, F. Catthoor, CATHEDRAL-II: A Synthesis

System for Multiprocessor DSP Systems, In D.D.Gajski , ed., Silicon Compilation,

Addison-Wesley, 1988, pp. 311-360.

2. P. E. R. Lippens, J. L. van Meerbergen, A. van der Werf, W. F. J. Verhaeght, PHIDEO: A

Silicon Compiler for High Speed Algorithms, In Proc. European Design Automation

Conf. (EDAC), pp. 436-441, 1991.

3. N. Park, A. C. Parker, Sehwa: A Software Package for Synthesis of Pipelines from

Behavioral Specifications, IEEE Trans. CAD, 1988, V.7, N.3, p.356-370.

4. P. G. Paulin, J. P. Knight, Scheduling and Binding Algorithms for High-Level Synthesis,

In Proc. 26-th ACM/IEEE Design Automation Conf. (DAC), 1989, p.1-6.

5. J. S. Kanevski, A. M. Sergyenko, H. Piech, A method for the structural synthesis of

pipelined array processors, In Proc. 1-st Int. Conf. on Parallel Processing and Applied

Math. - PPAM’94. Czestochowa (Poland), 1994, pp.100-109.

6. Yu. S. Kanevskiy, L. M. Loginova, A. M. Sergienko, Structured Design of Recursive Digital

Filters, Enginering Simulation, 1996, V.13, pp. 381-390.

7. A. Sergyienko, A. Guzinski, Ju. Kanevski, A method for mapping unimodular loops into

application specific parallel architectures, In Proc. 2-nd Int. Conf. on Parallel Procesing

and Applied mathematics. PPAM’97. Zacopane, Poland, Sept. 2-5, 1997, p. 362-371.

8. VLSI and Modern Signal Processing, Ed. by S.Y.Kung, H.Whitehouse, T.Kailath, Prentice

Hall, 1985.

9. The Synthesis Approach to Digital System Design, Ed. by P. Michel, U. Lauther, P. Duzy,

Kluwer Akcademic Publishers, 1992.

xi

vi

yi

Fig.1. DFG of all pass IIR filter.

Fig.2. Initial algorithm configuration.

q

0 1 2 0 1 2 0 1

0

1

2

3

4

i i+2i+1
i

j

Fig.3. Algorithm configuration after inserting delay nodes.

xi

q
0 1 2 0 1 2 0 1

0

1

2

3

4

i i+2i+1
i

j5

6

7

8

9

j

vi

yi

Fig.4. Structure configuration.

xi

0

1

2

3

4

j5

6

7

8

9

j vi

MUX3

MPU3

RG3.1

RG3.2

RG6

RG0

RG2

RG7

RG8

SM1

MUX1

RG1

SM9

MUX9

RG9

Fig.5. Resulting structure

