Engineering Simulation, Gordon Breach Publ. Greug. 18.-2001.— P. 217225.
On mapping DSP algorithms into FPGAs.

Anatoli Sergyienko
National Technical University of Ukraine "KPI", KigUkraine,

Juri Kanevski
Technical University of Koszalin, Koszalin, Poland,

Roman Wyrzykowski
Technical University of Czestohowa, CzestohowaaRa|

The problem of mapping digital signal processingFD) algorithms into application
specific structures, especially into field prograatiie gate arrays (FPGAS) is considered. A
new mapping method is proposed which takes int@wadcstructural properties of FPGA,
minimises its hardware volume, and provides desmmipelined structures with high clock
frequency. This method was tested by designingnitefiimpulse response (lIR) filter
structures which are implemented in FPGA. Therf#tieuctures are described by VHDL and
have high throughput and hardware utilisation.

1. Introduction.

DSP applications are characterised by real time pcoations of data flows using
calculation intensive algorithms with minimum caimoh operators. Many of them, for
example, in the video digital signal processing dimmhave high throughput which is derived
by quantisation frequencly of tenths megahertz. Therefore, such applicatemesusually
heavily pipelined solutions, and are implementedBICs. Often they are implemented in
FPGAs, which technology supports high clock frequyeftz which is equal to tenths and
hundreds megahertz, small time period and cospplication development. But they have a
set of structural properties and constrains whicistnbe taken into account by designing cost
effective DSP applications with high throughput.

Consider such an application in Xilinx FPGA. It mbe heavily pipelined, because, one
hand, complex logic is performed by a chain of lgoktables, and therefore, without
pipelining it is impossible to get the proper penfance, the other hand, one bit pipeline
registers can be attached everywhere in the steugtithout additional cost. The cost of four
input multiplexor is approximately equal to an addest. Therefore, the multiplexor input
number must be carefully minimised as well as addenber must be. The number of

programmed wires in FPGA is enough for many appboa but is still limited to prototype

randomly connected units. Besides, the long linkaydés equal to the logic unit one.
Therefore, the local interconnections and its iyl are preferable.

Many approaches of algorithm mapping have beenighéd that are tailored to DSP
application domain that differ both in synthesiskeand in target architecture. Examples are
CATHEDRAL system targeting bit sequential computas or microprogrammable bi-
directional bus architectures [1], PHIDEO systeaipted to video applications [2], Sehwa
system targeting pipelined structures, HAL systemictv assumes multiplexor oriented
structures [4]. Most of such systems intended fwomatic ASIC design like silicon compiler,
and are not targeting FPGAs. Besides, optimisatemands to FPGA projects are more strict
than ones to ASICs due to restricted place anckrpossibilities of FPGAs.

In this paper a new method for mapping DSP algarithinto application specific
processor is proposed which takes into accounttsiral properties of FPGA, minimise its

hardware volume, and provide designing pipelinedacstires with high clock frequency.

2. Method for mapping data flow graphsinto application specific structure.

The mapping method compendiously described beloweis suited for mapping DSP
algorithms into application specific structures avak published in [5,6,7]. In this paper it is
adapted to FPGA applications. Often DSP algorittares described by data flow graphs
(DFG). In DFG operator nodes represent operatidrsldition or multiplication, a chain o
delay nodes represents delay of a signal variableiterations, edges represent data flows.
DFG can be derived by respective mapping of redudependence graplear of an
unimodular loop nest [8]. In the grapBar Nodes represent operators, and weightekidnge
represents dependence of the data which is detayeiiterations.

Both DFG and reduced dependence gr&ak can be represented in n- dimensional
space 2. For most DSP algorithms it is enough to operdtk w=4 dimensional space. Each
of N nodes of the graph which denotes the algorithmraipeis represented by the vector -
nodekK; , i=1,...N. The coordinates of the vecidrsignify iteration number, clock number in
the iteration, processing unit (PU) in which thepective operator is implemented, and its
type. Each oM edges of the graph which denotes the data depeadernvariable moving is
represented by the vector - edje= K - Ki.1 , j=1,...M, besides, vectddy:+1 = K; .

Sets of vectors; and D; form respective matricel and D which together with the

graph Gar incidence matrixA form an algorithm configuratiorC, = (K,D,A). The

configurationC, is equal to the composition of structure configimraiCs = (Ks,Ds,A) and
configuration of event€r= (Kr,Dt,A) , namely

K=(ki,k])', D=(Dd.D]);
where vector-nod&s; [Ks, represent coordinates of PU where i-th operatémplemented,
vector-edgeDs; [IDs represent relative coordinates of communicatioe hor j-th variable,
vector-nodeKy; OKyt represent clock period of this operator implementaand vector-edge
D+; UDt represent delay of this variable moving. Anotherdgo configuratiorCsrepresents
the graph of the processor structure, and the goraiion Cr represents the operator time
schedule.

The following definitions and statements are trae donfigurationsCa, Cs, Cr . The
configurationCa is correct ifK; ZKj; i,j = 1,...N, i4, i.e.all of vectors-nodes are placed in the
space separately.

There is a linear dependence between matrBes:KA; K = D,A;Y, whereA, is the
incidence matrix for the maximum spanning treehaf graphGagr, andD, is the matrix of
vectors-edges of this tree.

Correct configuratiorCa can be transformed into equivalent configuraliih by any
injection function. For example, the following telarmations give equivalent configurations:
permutations of vectots; , multiplications of the matril and non-singular matricés

The sum of vectors-edg&s ,which belong to any loop of the gra@iar must be equal
to zero. The configuratio@r is correct ifD;=0, whereDy; is unweighted dependence vector of
the graphGag, inequality has lexicographic meaning1,..M. Besides, the given algorithm is
implemented in pipelined manner correctly iff

OKnOK+(Kr=(i,a)", 0(0,1,...1-1)), (1)
whereKy; is not incident to edg@Tj:(p,O)T weighted byp, L is the period of time between
two consecutive loadings of the same input operamdlatency of the algorithm
implementation.

Searching for algorithm mapping consists in degveonfigurationsCa, Cs, CGr which
are optimised according to given criterion. Diegtsearching for optimised configurations is
implemented taking into account mentioned abovmitiens, dependencies and constraints.

At the first stage of the mapping, the searching tfite space componeris is
implemented. The forming of the mati consists of distributind/ly operators of thé&-th

type amongW/L[processing units of thieth type. As a resultyls groups of equal columns

are formed in the matrixKs , whereMs is the number of PUs in the resulting structudee T
goal of this process is resource allocation anduee assignment.

At the second stage, the time componéit of the mapping is searched for. Derived
matrices K+ and Dy must satisfy the condition of algorithm configumat correctness,
correctness of the configuration of events, coaditthat the sum of vectors-eddgswhich
belong to any loop of the gragnr must be equal to zerand condition (1). Besides, if the
operator represented By is calculated fod clock cycles, then the norR(D+;)=iL+q of the
vectorDT,-:(i,q)T must be no less thad . The clock period in which the operator represented
by Kn=(i,q)" is implemented is equal to= R(Ky) . As a result, the operator schedule is
derived.

In a large set of different exemplars of mappingules an optimum mapping is
searched. Some heuristics can be applied to daroygick solution, such as list scheduling,
force directed scheduling, loop folding, or lekedge algorithm, etc. [9]. The advantages of
this method consist in the following. Both stagéshe mapping deriving can be executed in
different order or simultaneously providing bestimysation strategy by time constrained
scheduling and functional pipelining. The pipelirfeds with the given stage number can be
taken into account. After some adaptation this wetis well suited for mapping algorithms
into FPGAs.

3. Method for mapping data flow graphsinto FPGA.

The main significant PU type for DSP applicatiome adder and multiplier. Due to
FPGA properties, these type PUs must be pipelined laave minimum input wires.
Accumulator and pipelined multiplier to the coeifict correspond to these demands. The
accumulator has one input and consists of an addbrregister. The pipelined multiplier
represent the combinatorial multiplying network @hiis divided by pipeline registers tb
stages with approximately equal delay. When thisaydes equal to the adder one, the high
throughput rate is achieved.

To synthesise the structures with accumulatorspgmelined multiply units as well as to
minimise the register and multiplexor input nunsbéne third stage is introduced to the
method described above. This stage is executedfaffeand second ones. In this stage the
additional delay nodes and adder type nodes amedinted to edges of the DFG and graph

Gar Which do not alter the algorithm.

The introduced delay nodes which are representedebtiorsKp; are mapped into
registers. The vectors-edgBswhich are incident by its begins to vectors-noklgsmust be
mapped into one clock cycle delay, R¢Dr;)=1.

The vectors-edgeB; which are incident by its begins to vectors-no#gs , which
represent multiply operation mudte mapped intal clock cycle delay, i.eR(Dvj)=d. The
delay nodes are not introduced to these vectoresedgy posterior mapping vectors-nodes
Kwi , d staged multipliers are gained.

The additional adder type nodes are introducecettors-edge®; which are incident
by its begins to adder type vectors-nodgs, and which are mapped into sevarialck cycle
delay, i.e.R(Dtj)>1. As a result, chains of up te1 adder type nodes are gained, which are
mapped into the accumulator type PUs. Besides atltditional adder type node is introduced
to vector-edg®; (R(D+;)>1) which is incident by its end to vector-nddg which is the first
in the chain of adder type nodes. This assures im@ppddition operators into the
accumulator type PUs with a single input.

Finally, the stage of the searching for the spateponentCs is implemented again. By
this process the number of both multiplier, accluatarl PUs and registers is minimised more

precisely in a sigle stage and this fact testig/dldvantages of this method.

4. Example of the synthesis.

Infinite impulse response (lIR) filters are widelised in digital signal processing
systems because they have computational compls&itgral times as less as finite impulse
response filters have. Implementation IIR filtendHPGA has a set of advantages, such as full
adaptation of implemented in FPGA structure to fitering algorithm, high throughput,
hardware utilisation effectiveness, achieving higte of calculating precision. But due to the
feedback chains in IIR algorithms such popular méshof algorithm optimisation like
retiming and pipelining give limited results. Inetlcase when the clock frequentyis
L=2,3,... times as much as the quantisation frequénof the digital signal is, there are a
wide opportunity to enlarge pipelining of IIR fittealculations, and therefore to derive filter
structures which support maximum hardware utilatand high clock frequency when
implementing in FPGA.

Consider the second order all pass IIR filter desligcalculates the following difference
equations y;=x+C1yi-1tCoVi-2; Vi= CaYitC1Vi-11Yi-2, where x; are initial dates,v; are

results, and;,c, are filter coefficients.

The DFG of this filter is illustrated by the figHere rectangles represent registers,
circles with plus sign and with cross sign représadition and multiplication operators,
respectively. Consider the resulting structure Wwhiontainsd=2 staged multiplier PUs and
one input accumulators. According to the rule thatminimum time period of one algorithm
iteration is equal to maximum sum of delays in safgaloop of DFG, divided by the register
number in it [9], this time for the given algorithsiequal to sum of one multiplier delay and
one adder delay. Taking into account that one plidti delay is approximately equal to two
adder delays, it is recommended to consider tlemdgtperiod be equal 10=3 clock cycles.
This assures deriving the structure with maximuroughput and minimum cost.

Then first and second stages of the filter strgctsynthesis are implemented. The
resulting optimised algorithm configurati@, is illustrated by the fig.2. Here coordinatgeg,

j represent iteration number, clock cycle in theattien, and PU number, respectively, the
dotted lines represent edges weighted by therfaotee and two which correspond to delay
the variabley; to one and two iterations. This configuration igpped into the filter structure
which consists of one multiplier unit, two addexsd nine registers.

After executing the third stage of the synthedi® d¢ptimised algorithm configuration
Ca is derived, which is illustrated by the fig.3. idesmall circles represent additional delay
nodes. The respective structure configuratdnis shown on the fig.4. It represent the
structure graph which can be derived by connediiiggther the vectors-nodes on the fig.3
which have equal coordinatgsThe bold lines on the fig.4 represent respeativgtiplexers.
The resulting structure is shown on the fig.5.H&sdware cost consists of one pipelined
multiplier, two accumulators, three multiplexersdanine registers, and is minimum for the
given latencyL. After third stage of the synthesis the numbemattiplexers and their inputs
in the target structure is decreased by one. Wheltipiter is designed as a scaler then the
clock period is equal to the sum of delays in thdtiplexor , adder and register, and can

achieve the minimum clock period which afford FPGA.

5.Conclusion .

Implementation DSP algorithms in FPGA has a seidefintages, like full adaptation of
implemented in FPGA structure to the algorithm, hhidproughput, hardware utilisation
effectiveness, any rate of calculating precisidme DFG of the signal processing algorithm is
mapped into the application specific structure. Bué to the feedback chains in many DSP

algorithms like in lIR filtering ones such methaafsalgorithm optimisation like retiming and

pipelining give limited results. Most of known mapgp methods intended for automatic ASIC
design, and are not targeting FPGAs. Besides, tgation demands to FPGA projects are
more strict than ones to ASICs due to restrictadglnd route possibilities of FPGASs.

In this paper a new method for mapping DSP algorsthinto application specific
processor is proposed which takes into accounttsiral properties of FPGA, minimises its
hardware volume, and provides designing pipeliriaccgires with high clock frequency. The
method is based on the representing DFG in muladsional space with time, resource
number, operation type coordinates and its mappittgsubspaces of structures and events.
Searching for the optimised structure is implemeénby the linear algebra and linear
programming methods or by another approaches. peeator sheduling and allocation are
performed implicitly and simultaneously by the direearching and therefore the optimisation
process has decreased complexity. The registerasibm is performed simultaneously with
another resource allocation, which assures thermaxi hardware utilisation effectiveness.

Some heuristics direct the mapping to implementlpipd processing units like
multipliers and accumulators, that is preferableFBGA. Derived structures are operating in
pipelined regime providing high hardware utilisatieffectiveness and minimised clock cycle
period.

This method has showed good results by the deveopwf the library of IIR filter
structures. The development and mapping of algoritbnfigurations was held by means of a
framework Paredit which is described in [7]. Therdiry contains a set of parametrised IIR
filter structures and is intended to computer aidesign of digital signal processing systems
on the base of FPGAs. The structural parametergilemeorder and latency. The library
consists of structural models of filters descrilbbdvHDL language in synthesable style, and
therefore can be translated both into FPGA of gpg tand into ASIC using such synthesis
tools like Synopsys.

References
1. J. Rabaey, H. de Man, J. Vanhoof, G. GossenSaihoor, CATHEDRAL-II: A Synthesis
System for Multiprocessor DSP Systems, DiD.Gajski , ed., Silicon Compilation,
Addison-Wesley, 1988, pp. 311-360.
2.P. E. R. Lippens, J. L. van Meerbergen, A. vanWlerf, W. F. J. VerhaeghRHIDEO: A
Silicon Compiler for High Speed Algorithms, In Prd€uropean Design Automation
Conf. (EDAC), pp. 436-441, 1991.

3. N. Park, A. C. ParkerSehwa: A Software Package for Synthesis of Pipslifrom
Behavioral Specifications, IEEE Trans. CAD, 19887, \\.3, p.356-370.

4. P. G. Paulin, J. P. KnightScheduling and Binding Algorithms for High-Leveyrhesis,
In Proc. 26-th ACM/IEEE Design Automation Conf. (O} 1989, p.1-6.

5. J. S. Kanevski, A. M. Sergyenko, H. Pjeehmethod for the structural synthesis of
pipelined array processors, Rroc. 1-st Int. Conf. on Parallel Processing anglied
Math. - PPAM’94. Czestochowa (Poland), 1994, pp-109.

6. Yu. S. Kanevskiy, L. M. Loginova, A. M. SergieStoyctured Design of Recursive Digital
Filters, Enginering Simulation, 1996, V.13, pp. 38#0.

7. A. Sergyienko, A. Guzinski, Ju. Kanevgkimethod for mapping unimodular loops into
application specific parallel architectures, In &@ra-nd Int. Conf. on Parallel Procesing
and Applied mathematics. PPAM’97. Zacopane, Pol&egt. 2-5, 1997, p. 362-371.

8. VLSI and Modern Signal Processjrigd. by S.Y.Kung, H.Whitehouse, T.Kailath, Preatic
Hall, 1985.

9. The Synthesis Approach to Digital System Dedigh,by P. Michel, U. Lauther, P. Duzy,
Kluwer Akcademic Publishers, 1992.

Yi

Fig.1. DFG of all pass IIR filter.

P01
IO 1 2|O 1 2|O 1
i i+1 i+2

q
—
1

Fig.2. Initial algorithm configuration.

9
8
7
6
5
4
3
2
1
0 %
_Illlllllgé
IO_12|O_12|(_)1L>

i i+1 1+2

Fig.3. Algorithm configuration after inserting dglaodes.

Fig.4. Structure configuration.

RGO
v V]

MUX1 — 1

SM1 MUX3
RG1 MPU3

RG2 RG3.1

L RG3.2
RG7

RG8 RG6

MUX9

SM9
RG9

Fig.5. Resulting structure

