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The problem of mapping digital signal processing (DSP) algorithms into application 

specific structures, especially into field programmable gate arrays (FPGAs) is considered. A 
new mapping method is proposed which takes into account structural properties of FPGA, 
minimises its hardware volume, and provides designing pipelined structures with high clock 
frequency. This method was tested by designing infinite impulse response (IIR) filter 
structures which are implemented in FPGA. The filter structures are described by VHDL and 
have high throughput and hardware utilisation. 

 
1. Introduction. 

DSP applications are characterised by real time computations of data flows using 

calculation intensive algorithms with minimum condition operators. Many of them, for 

example, in the video digital signal processing domain, have high throughput which is derived 

by quantisation frequency fQ of tenths megahertz. Therefore, such applications are usually 

heavily pipelined solutions, and are implemented in ASICs. Often they are implemented in 

FPGAs, which technology supports high clock frequency fC which is equal to tenths and 

hundreds megahertz, small time period and cost of application development. But they have a 

set of structural properties and constrains which must be taken into account by designing cost 

effective DSP applications with high throughput. 

Consider such an application in Xilinx FPGA. It must be heavily pipelined, because, one 

hand, complex logic is performed by a chain of lookup tables, and therefore, without 

pipelining it is impossible to get the proper performance, the other hand, one bit pipeline 

registers can be attached everywhere in the structure without additional cost. The cost of four 

input multiplexor is approximately equal to an adder cost. Therefore, the multiplexor input 

number must be carefully minimised as well as adder number must be. The number of 

programmed wires in FPGA is enough for many applications but is still limited to prototype 



randomly connected units. Besides, the long line delay is equal to the logic unit one. 

Therefore, the local interconnections and its pipelining are preferable. 

Many approaches of algorithm mapping have been published that are tailored to DSP 

application domain that differ both in synthesis tasks and in target architecture. Examples are 

CATHEDRAL system targeting bit sequential computations or microprogrammable bi-

directional bus architectures [1], PHIDEO system, tailored to video applications [2], Sehwa 

system targeting pipelined structures, HAL system which assumes multiplexor oriented 

structures [4]. Most of such systems intended for automatic ASIC design like silicon compiler, 

and are not targeting FPGAs. Besides, optimisation demands to FPGA projects are more strict 

than ones to ASICs due to restricted place and route possibilities of FPGAs.    

In this paper a new method for mapping DSP algorithms into application specific 

processor is proposed which takes into account structural properties of FPGA, minimise its 

hardware volume, and provide designing pipelined structures with high clock frequency. 

 

2. Method for mapping data flow graphs into application specific structure. 

The mapping method compendiously described below is well suited for mapping DSP 

algorithms into application specific structures and was published in [5,6,7]. In this paper it is 

adapted to FPGA applications. Often DSP algorithms are described by data flow graphs 

(DFG). In DFG operator nodes represent operations of addition or multiplication, a chain of k 

delay nodes represents delay of a signal variable to k iterations, edges represent data flows. 

DFG can be derived by respective mapping of reduced dependence graph GAR of an 

unimodular loop nest [8]. In the graph  GAR nodes represent operators, and weighted by k edge  

represents dependence of the data which is delayed to k iiterations. 

Both DFG and reduced dependence graph GAR can be represented in n- dimensional 

space Zn . For most DSP algorithms it is enough to operate with n=4 dimensional space. Each 

of N nodes of the graph which denotes the algorithm operator is represented by the vector - 

node Ki , i=1,...,N. The  coordinates of the vector Ki signify  iteration number, clock number in 

the iteration, processing unit (PU) in which the respective operator is implemented, and its 

type. Each of M edges of the graph which denotes the data dependence or variable moving is 

represented by the vector - edge Dj  = Ki - Ki-1 , j=1,...,M, besides, vector DN+1 = K1 .   

Sets of vectors Ki and Dj form respective matrices K and D which together with the 

graph GAR incidence matrix A form an algorithm configuration CA = (K,D,A). The 



configuration CA is equal to the composition of structure configuration CS = (KS,DS,A) and 

configuration of events CT = (KT,DT,A) , namely  
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where vector-node KSi ∈KS, represent coordinates of PU where i-th operator is implemented, 

vector-edge DSj ∈DS represent relative coordinates of communication line for j-th variable, 

vector-node KTi ∈KT  represent clock period of this operator implementation and  vector-edge 

DTj ∈DT  represent delay of this variable moving. Another words, configuration CS represents 

the graph of the processor structure, and the configuration CT represents the operator time 

schedule. 

The following definitions and statements are true for configurations CA, CS, CT . The 

configuration CA is correct if Ki ≠ Kj ; i,j = 1,...,N, i≠j, i.e. all of vectors-nodes are placed in the 

space separately. 

There is a linear dependence between matrices: D = KA; K = DoAo
-1,  where Ao is the 

incidence matrix for the maximum spanning tree of the graph GAR, and Do is the matrix of 

vectors-edges of this tree. 

Correct configuration CA can be transformed into equivalent configuration CA’  by any 

injection function. For example, the following transformations give equivalent configurations: 

permutations of vectors Ki , multiplications of the matrix K  and non-singular matrices P. 

The sum of vectors-edges Dj ,which belong to any loop of the graph GAR must be equal 

to zero. The configuration CT is correct if Dtj≥0, where Dtj is unweighted dependence vector of 

the graph GAR, inequality has lexicographic meaning, j =1,...M. Besides, the given algorithm is 

implemented in pipelined manner correctly iff 

∀KTl∈KT(KTl=(i,q)T, q∈(0,1,...,L-1)),                                   (1) 

where KTi is not incident to edge DTj=(p,0)T weighted by p, L is the period of time between 

two consecutive loadings of the same input operand or latency of the algorithm 

implementation. 

Searching for  algorithm mapping consists in deriving configurations CA, CS, CT which 

are optimised according to given criterion.  Directed searching for optimised configurations is 

implemented  taking into account mentioned above definitions, dependencies and constraints. 

At the first stage of the mapping, the searching for the space component CS  is 

implemented. The forming of the matrix KS consists of distributing Mk  operators of the k-th 

type among ]Mk/L[ processing units of the k-th type. As a result, MS groups of equal columns 



are formed in the matrix   KS , where MS  is the number of PUs in the resulting structure. The 

goal of this process is resource allocation and resource assignment. 

At the second stage, the time component  CT of the mapping is searched for. Derived 

matrices KT and DT must satisfy the condition of algorithm configuration correctness, 

correctness of the configuration of events, condition, that the sum of vectors-edges Dj ,which 

belong to any loop of the graph GAR must be equal to zero , and condition (1). Besides, if the 

operator represented by KTl is calculated for d clock cycles, then the norm R(DTj)=iL+q of the 

vector DTj=(i,q)T must be no less than  d . The clock period in which the operator represented 

by KTl=(i,q)T is implemented is equal to t = R(KTl) . As a result, the operator schedule is 

derived.  

In a large set of different exemplars of mapping results an optimum mapping is 

searched. Some heuristics can be applied to derive a quick solution, such as list scheduling, 

force directed scheduling, loop folding, or left - edge algorithm, etc. [9].  The advantages of 

this method consist in the following. Both stages of the mapping deriving can be executed in 

different order or simultaneously providing best optimisation strategy by time constrained 

scheduling and functional pipelining. The pipelined PUs with the given stage number can be 

taken into account. After some adaptation this method is well suited for mapping algorithms 

into FPGAs.   

 

3. Method for mapping data flow graphs into FPGA. 

The main significant PU type for DSP applications are adder and multiplier. Due to 

FPGA properties, these type PUs must be pipelined and have minimum input wires. 

Accumulator and pipelined multiplier to the coefficient correspond to these demands. The 

accumulator has one input and consists of an adder with register. The pipelined multiplier 

represent the combinatorial multiplying network which is divided by pipeline registers to d 

stages with approximately equal delay. When this delay is equal to the adder one, the high 

throughput rate is achieved. 

To synthesise the structures with accumulators and pipelined multiply units as well as to 

minimise the register  and multiplexor input numbers the third stage is introduced to  the 

method described above. This stage is executed after first and second ones. In this stage the 

additional delay nodes and adder type nodes are introduced to edges of the DFG and graph 

GAR which do not alter the algorithm. 



The introduced delay nodes which are represented by vectors KDi  are mapped into 

registers. The vectors-edges Dj which are incident by its begins to vectors-nodes KDi must be 

mapped into one clock cycle delay, i.e. R(DTj)=1. 

The vectors-edges Dj which are incident by its begins to vectors-nodes KMi , which 

represent multiply operation must  be mapped into d clock cycle delay, i.e. R(DTj)=d. The 

delay nodes are not introduced to these vectors-edges. By posterior mapping vectors-nodes 

KMi , d staged multipliers are gained. 

 The additional adder type nodes are introduced to vectors-edges Dj which are incident 

by its begins to adder type vectors-nodes KAi , and which are mapped into several clock cycle 

delay, i.e. R(DTj)>1. As a result, chains of up to L-1 adder type nodes are gained, which are 

mapped into the accumulator type PUs. Besides, the  additional adder type node is introduced 

to vector-edge Dj (R(DTj)>1) which is incident by its end to vector-node KAi which is the first 

in the chain of adder type nodes. This assures mapping addition operators into the 

accumulator type PUs with a single input. 

Finally, the stage of the searching for the space component CS  is implemented again. By 

this process the number of both multiplier, accumulator PUs and registers is minimised more 

precisely in a sigle stage and this fact testify the advantages of this method.  

  

4. Example of the synthesis. 

Infinite impulse response (IIR) filters are widely used in digital signal processing 

systems because they have computational complexity several times as less as finite impulse 

response filters have. Implementation IIR filters in FPGA has a set of advantages, such as full 

adaptation of implemented in FPGA structure to the filtering algorithm, high throughput, 

hardware utilisation effectiveness, achieving high rate of calculating precision. But due to the 

feedback chains in IIR algorithms such popular methods of algorithm optimisation like 

retiming and pipelining give limited results. In the case when the clock frequency fC is 

L=2,3,... times as much as the quantisation frequency fQ of the digital signal is, there are a 

wide opportunity to enlarge pipelining of IIR filter calculations, and therefore to derive filter 

structures which support maximum hardware utilisation and high clock frequency when 

implementing in FPGA.  

Consider the second order all pass IIR filter design. It calculates the following difference 

equations  yi=xi+c1yi-1+c2yi-2;   vi= c2yi+c1yi-1+yi-2,         where    xi are initial dates,  vi are 

results, and c1,c2 are filter coefficients.  



The DFG of this filter is illustrated by the fig1. Here rectangles represent registers, 

circles with plus sign and with cross sign represent addition and multiplication operators, 

respectively. Consider the resulting structure which contains d=2 staged multiplier PUs and 

one input  accumulators. According to the rule that the minimum time period of one algorithm 

iteration is equal to maximum sum of delays in separate loop of DFG, divided by the register 

number in it [9], this time for the given algorithm is equal to sum of one multiplier delay and 

one adder delay. Taking into account that one multiplier delay is approximately equal to two 

adder delays, it is recommended to consider the latency period be equal to L=3 clock cycles. 

This assures deriving the structure with maximum throughput and minimum cost. 

Then first and second stages of the filter structure synthesis are implemented. The 

resulting optimised algorithm configuration CA is illustrated by the fig.2. Here coordinates i, q, 

j represent iteration number, clock cycle in the iteration, and PU number, respectively, the 

dotted lines represent edges weighted  by the factor  one and two which correspond to delay 

the variable yi to one and two iterations. This configuration is mapped into the filter structure 

which consists of one multiplier unit, two adders, and nine registers. 

After executing the third stage of the synthesis  the optimised algorithm configuration 

CA
’ is derived, which is illustrated by the fig.3. Here small circles represent additional delay 

nodes. The respective structure configuration CS is shown on the fig.4. It represent the 

structure graph which can be derived by  connecting together the vectors-nodes on the fig.3 

which have equal coordinates j .The bold lines on the fig.4 represent respective multiplexers.   

The resulting structure is shown on the fig.5. Its hardware cost  consists of one pipelined 

multiplier, two accumulators,  three multiplexers and nine registers, and is minimum for the 

given latency L. After third stage of the synthesis the number of multiplexers and their inputs 

in the target structure is decreased by one. When multiplier is designed as a scaler then the 

clock period is equal to the sum of delays in the multiplexor , adder and register, and can 

achieve the minimum clock period which afford FPGA. 

 

5.Conclusion . 

Implementation DSP algorithms in FPGA has a set of advantages, like full adaptation of 

implemented in FPGA structure to the algorithm, high throughput, hardware utilisation 

effectiveness, any rate of calculating precision. The DFG of the signal processing algorithm is 

mapped into the application specific structure. But due to the feedback chains in many DSP 

algorithms like in IIR filtering ones such methods of algorithm optimisation like retiming and 



pipelining give limited results. Most of known mapping methods intended for automatic ASIC 

design, and are not targeting FPGAs. Besides, optimisation demands to FPGA projects are 

more strict than ones to ASICs due to restricted place and route possibilities of FPGAs.    

In this paper a new method for mapping DSP algorithms into application specific 

processor is proposed which takes into account structural properties of FPGA, minimises its 

hardware volume, and provides designing pipelined structures with high clock frequency. The 

method is based on the representing DFG in multidimensional space with time, resource 

number, operation type coordinates and its mapping into subspaces of structures and events. 

Searching for the optimised structure is implemented by the linear algebra and linear 

programming methods or by another approaches. The operator sheduling and allocation are 

performed implicitly and simultaneously by the direct searching and therefore the optimisation 

process has decreased complexity. The register allocation is performed simultaneously with 

another resource allocation, which assures the maximum hardware utilisation effectiveness.  

Some heuristics direct the mapping to implement pipelined processing units like 

multipliers and accumulators, that is preferable for FPGA. Derived structures are operating in 

pipelined regime providing high hardware utilisation effectiveness and minimised clock cycle 

period.  

This method has showed good results by the development of the library of IIR filter 

structures. The development and mapping of algorithm configurations was held by means of a 

framework Paredit which is described in [7]. The library contains a set of parametrised IIR 

filter structures and is intended to computer aided design of digital signal processing systems 

on the base of FPGAs. The structural parameters are filter order and latency L. The library 

consists of structural models of filters described by VHDL language in synthesable style, and 

therefore can be translated both into FPGA of any type and into ASIC using such synthesis 

tools like Synopsys. 
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Fig.1. DFG of all pass IIR filter.

Fig.2. Initial algorithm configuration.
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Fig.3. Algorithm configuration after inserting delay nodes.

xi

q
0 1 2 0 1 2 0 1

0

1

2

3

4

i i+2i+1
i

j5

6

7

8

9

j

vi

yi

 



 

Fig.4. Structure configuration.
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Fig.5. Resulting structure

 


