
146

CADSM’2009, 24-28 February, 2009, Polyana-Svalyava (Zakarpattya), UKRAINE

Proc.10th Int. Conf. “The Experience of Designing and Application of CAD Systems in Microelectronics”, CADSM' 2009, 24-28
Feb. 2009. –IEEE Library. –2009. –Р. 146-149.

Tensor Approach to the Application Specific
Processor Design

Oleg Maslennikow, Anatolij Sergiyenko, Yurij Vinogradow

Abstract - A method for mapping an algorithm, which is
represented by the loop nest into the application specific
structure is proposed. The method consists in translating
the loop nest into the tensor equation. The tensor equation
represents a set of structural solutions. The optimized
solution finding consists in solving this equation in
integers. The proposed limitations to the parts of the
tensors help to derive the pipelined structure and simplify
the mapping process. The method is illustrated by the
example of the IIR-filter structure synthesis. It is intended
for mapping DSP algorithms into FPGA.

 Keywords – Algorithm mapping, SDF, DSP, FPGA.

I. INTRODUCTION
At present, the field programmable gate arrays (FPGAs) are

widely used to implement the high-speed DSP algorithms. But
its programming is usually consists in the functional network
drawing, which contains the ready to use modules. The design
of such modules, or the programming tools like module
generators remains the very complex task. This task is
formalized now for the acyclic algorithms like FIR filters, and
is still under investigations for the cyclic algorithms like IIR
filters [1,2]. Therefore, the development of the programming
tools which help to map the DSP algorithms into the networks,
which are adapted to the FPGA architecture are of demand.

Consider a DSP algorithm, which can be represented by a
set of recurrent equations or a loop nest. In the kernel of the
regular loop nest stay one or a set of assignments like:

Sti: a[I] = f(a[I+D1], b[I+D2],...),

where I is an index vector, which represents a point in the
iteration space, Dj is an index increment vector of the j-th
variable, which represents the data dependence between I-th,
and (I+Dj)-th iterations. The irregular loop nest can be
remapped into the regular one by the data pipelining or global
transfer removing techniques [3,4].

If the loop kernel has a set of independent operators Sti,
then this set can be represented as a single vector I in the
iteration space. The methods of the systolic array synthesis
are well known which utilize the mapping of such algorithms
[3-5]. These methods are based on the affined transformation
with the matrix P of the iteration space Zn, I ∈ Zn into the
subspace of structures Zm and events Zn-m, so as the operator

Sti belonging to the iteration I is calculated in the processor
unit (PU) with the coordinates Ks = Ps I in the clock cycle
marked by Kt = Pt I, Ks ∈ Zn, Kt ∈ Zn. If we consider the
usual situation when n − m = 1, then the conditions of such a
mapping are Dj Pt ≥ 0 (monotony condition) and detP ≠ 0
(injection condition).

The systolic array synthesis methods have a set of
limitations, which do not provide their direct utilization in the
DSP system design. They consider that operators Sti, from a
single iteration must be implemented simultaneously and their
duration must be equal no more than a single clock cycle.
Therefore, the complex operators could not be implemented in
the pipelined mode.

In the representation a new method of DSP application
specific processor design is proposed on the base of mapping
the algorithms, which are given by the regular loop nests. The
resulting processors have the pipelined ALUs and fit
effectively the modern FPGAs.

II.INITIAL DATA FOR THE SYNTHESIS

Consider the a single loop algorithm:

 for i = 1, Ui do
(y1(i), ..., yp(i)) = f(x1(i− di1), ..., yq(i− diq)) (1)

 end.

Here the function f is calculated using Uj binary
assignments Stj. Therefore, the algorithm (1) can be
represented as the following:

 for i = 1, Ui do
 {statement St1}
 . . .

Stj: y[i,j] = ϕj,k(y[i-di1, j], y[i-di2, j]) (2)
 . . .
 {statement Stuj}
 end,

where ϕj,k(x,y) is the operator of the k-th type, which is
implemented at the operands x, y. This loop can be
transformed into the next three level loop nest, such that in the
(i, j, k)-th iteration only j-th operator of k-th type is
implemented.

 for i = 1,Ui do
 for j = 1,Uj do

for k = 1,Uk do (3)
 if (j,k) ∈ Φ then y[i,j] = ϕj,i(y[i− di1, j], y[i−di2, j])
 end

Oleg Maslennikow − Polytechnica Koszalinska, Poland,
E-mail: oleg@moskit.ie.tu.koszalin.pl
Anatolij Sergiyenko, Yurij Vinogradow − National Technical
University of Ukraine E-mail: aser@comsys.ntu-kpi.kiev.ua

147

CADSM’2009, 24-28 February, 2009, Polyana-Svalyava (Zakarpattya), UKRAINE

 end
 end,

where Φ is a set of allowed couples (j,k), which give type
and implementation order of operators in the algorithm (3).

As a result, the loop (1), which contains a set of different
operators, can be transformed into the loop nest of three cycles
(3), and its calculations are mapped into the three dimensional
iteration space K3 = {1 ≤ i ≤ Ui, 1 ≤ j ≤ Uj, 1 ≤ k ≤ Uk} ⊂ Z3.
The loop nest of higher dimensions can be derived
analogously. Each operator is represented in the space K3 the
vector Ki ∈ K3. The data dependence between operators,
represented by Ki, Kl, is equivalent to the dependence vector
Dj = Ki − Kl.

In the resulting structure each processing unit (PU) is
specialized to implement a single function ϕk. The base set of
such PUs for DSP applications contains the simplest PSs like
adder, multiplier, ROM. Their local memory is the FIFO
buffer, or a single result register.

III. M APPING THE REGULAR LOOP NEST INTO THE

PROCESSOR STRUCTURE

In the methods [3-5] the algorithm graph GA is represented
in the n-dimensional space Zn. Hence GA is the regular lattice
graph. It is represented by its compact form of a set of
different vectors-edges Dj of data dependences. If the loop
nest contains a set of operators like (2), then the compact form
is the synchronous dataflow graph (SDF) or the scalable SDF
[6]. This oriented graph has N operators-nodes K i, which are
connected by respective dependence vectors-edges Dj.
Consider the following algorithm:

for i = 1, N do
 for j = 1, M do
 St1: a[i,j] = b[i−1, j−1];
 St2: b[i,j] = a[i, j];
 end
end.

This algorithm is represented by the SDF graph shown in
the Fig.1.

Figure1. Example of SDF graph

Vectors D1 and D2 represent the data a, b movings between

operators St1 and St2. They labeled by the vectors of relative
transfer delays (0, 0), and (1, 1). To represent the SDF graph
GAR in the n-dimensional space both the matrix D of the
vectors Dj of data dependences and the matrix K of the vectors
Ki are needed. Here the vector Ki is equal to the coordinates of
the i-th operator node. An incident matrix A of the graph GAR

is needed to impress the linear dependence between both
matrices K and D:

D = KA; (5)

A set of matrices K, D and A form, so called, algorithm
configuration KA. Due to its nature, the matrices A, K, D are
tensors of both algorithm and resulting structure, and the
equation (5) is the tensor equation. In [7] it is shown that the
properties of many technical objects can be described by the
tensor equation. Due to the tensor theory, the complex
technical system can be described by its tensor. The tensor is
the generalized matrix, which can be exchanged by the
allowed transformations. Therefore, a set of different
implementations of a system can be described by a tensor, and
one implementation can be transferred to another one by some
transformation of its tensor. The system synthesis consists in
building of the tensor equation, and in directed search of such
tensor transformation, which minimizes the effectiveness
criteria. In this representation it is shown how to find the
optimized structural solutions by the algorithm mapping using
the principles of the tensor theory.

The next definitions and relations are true for the
configuration KA. Configuration KA is correct, if Ki ≠ Kj; i,j =
1,...,N, i ≠ j, i.e. if all the vectors-nodes are placed separately
in the space Zn.

A back linear dependence between configuration matrices is
present, i.e.

K = D0A0
-1, (6)

where A0 is the incidence matrix of the maximum spanning
tree of the graph GAR , D0 is the matrix of the vectors-edges of
this tree, including the base vector which connects the graph
node with the coordinate system.

The sum of vectors-edges Dj, belongig to a graph cycle,
must be equal to a zero, i.e. for the i-th cycle

Σ
j
bi,jDj = 0, (7)

where bij is the element of the i-th row of the cyclomatic
matrix of the graph GAR.

Configurations CA1 = (K1,D1,A1) and CA2 = (K2,D2,A2) are
equivalent if they are correct and represent an algorithm
graph, i.e. A1 = A2. Correct configuration CA1 is equivalent to
the configuration CA2 iff A1 = A2 and K2 = F(K1), where F is
the injection function. For example, the following
transformations give the equivalent configurations: vector Ki

transposition in the space Zn, row or column transposition of
the matrix K1, multiplication of the matrix K1 to the non-
singular matrix P.

Due to the tensor theory, any tensor object description must
have the invariant tensor, which is immune to any tensor
transformations. Here the matrix A and its submatrix A0
represent the invariant tensors. The matrix K codes some
variant of the synthesized structure. The structure optimization
consists in generating of equivalent configurations, which are
different in their matrices K, and in selection of the best one
due to the some criterion.

The processor structure graph Gs is represented by its
structure configuration CAs = (Ks,Ds,A), where KS is the

1 2 K1 K2
D1

(0, 0)

(1, 1) D2

148

CADSM’2009, 24-28 February, 2009, Polyana-Svalyava (Zakarpattya), UKRAINE

matrix of vectors-nodes KSi ∈ Zm, which give the PU
coordinates, and DS is the matrix of vectors-edges Dsj ∈ Zm,
which represent the connections between PUs, m < n.

The event configuration CT = (KT,DT,A) consists of the
matrix KT of the vectors KTi ∈ Zn-m, matrix DT of vectors DTj,
and matrix A. Here vectors KT represent the events of the
operator implementation. In the correct configuration CT
vector DTj = KTl − KTi means that the operator, represented by
KTi, must precede the operator, represented by KTl.

The timing function R(KTi) = ti performs the mapping of the
space of events Zn-m to the time axis, and derives the time of
the operator implementation.

The configuration CT is correct, in other words, the
precedence condition is true if for any couple of vectors KTi
and KTl the inequality is true R(KTl) > R(KTi), where KTi
precedes KTl.

If the function R is linear and monotonous one then the
configuration CT is correct iff DTj 0, j = 1,...,M, where DTj
the vectors-nodes of the SDF, which are not marked by the
relative transfer delays (or zeroed ones).

The function R(DTj) gives the delay between the variable
computing in one PU and entering the another PU, i.e. the
higher limit of the FIFO buffer length.

Consider the mapping of the algorithm (2) into the
structure, which calculates the loop kernel in the pipelined
mode with the period of L clock cycles. When this algorithm is
represented in the three dimensional index space, the vectors
K = (j, k, i)T, where j,k,i means operator number, operator
type, and cycle number respectively. Similarly the additional
dimension q of the clock cycle is added to the algorithm
configuration, then K = (j, k, i, q)T. The vector-edge, which
represents the interiteration dependence, is equal to
Db=(0,0,−p,0), where p is the distance between iterations.

Algorithm configuration CA is equal to the composition of
structure configuration CS and event configuration CT, and if
Kl = (j, k, i, q)T, then KSl = (j, k)T and KTl = (i, q)T. In the
vector KSl = (j,k)T, the coordinates j,k are equal to the PU
number, where the l-th operator of the k-th type is
implemented.

Firstly the space component of the mapping is searched.
The matrix KS forming is the combinatorial task. By this
process MK operators of k-th type are distributed among more
than]MK/L[PUs of the k-th type. In the matrix KS MS groups
of equal columns are formed, each of them contains up to L
columns, where MS is the PU number in the resulting structure.
The j-th PU has the maximum loading if the number of
columns with the j-th coordinate is equal to L. Then the matrix
DS is derived from the equation DS = KS A.

The time component of the mapping represented by the
matrices KT and DT is searched with respect to the conditions
of the correctness of the algorithm configuration and event
configuration, and equation (7). Besides, the algorithm is
implemented correctly with the iteration period L iff

∀KTi ∈ KT (KTi = (i, q)T, i ≥ 0, q ∈ (0, 1,...,L-1)).

The strategies of searching of the space and timing
components can be investigated in the following example of
the structure synthesis.

IV. EXAMPLE OF THE PROCESSOR SYNTHESIS

Consider the synthesis of the second order IIR filter
structure, which calculates the equation:

 y[i] = x[i] + a⋅y[i−2] + b⋅y[i−1].

This equation is calculated by the following loop:

 for i = 1, N do
 St1: y1[i] = a*y[i−2];
 St2: y2[i] = b*y[i−1];
 St3: y3[i] = x[i] + y1[i];
 St4: y[i] = y2[i] + y3[i];
 end.

The SDF graph of this algorithm is shorn in Fig.2.
Each operator is calculated no less then a single clock cycle.

The loaded edges mean the delays of the variable y[i] to one
and two cycles, and could not express the delay of the operator
St4. Therefore, in these edges additional nodes are set. The
modified SDF graph is shown in the Fig.3.

Figure 2. Initial SDF graph of the IIR filter

Figure 3. Extended SDF graph of the IIR filter

This graph represents the following algorithm

 for i = 1, N do
 St1: y1[i] = a*y5[i−2];
 St2: y2[i] = b*y6[i−1];
 St3: y3[i] = x[i] + y1[i];
 St4: y[i] = y2[i] + y3[1];
 St5: y5[i] = y[i−2];
 St6: y6[i] = y[i];
 end.

The calculation period is L = 2, which means that a single
couple of adder and multiplier can calculate it.

1 2

3
4

2
1

y y1
y3 x[i]

y y2

6

3
4

2
1

y
y1

y3 x[i]

y2

1 5 2

D1 D2

D3

D5 D4

D6 D7

149

CADSM’2009, 24-28 February, 2009, Polyana-Svalyava (Zakarpattya), UKRAINE

By the search of the space component the permissible
coordinates Ksi are set:

=

0

3

0

3

2

2

2

2

1

1

1

1

k

j
KS

.

Here coordinates k = 0, 1, 2 mean multiplication, addition,
equality operators. The matrix DS is derived from the equation

 −−
−−

==
1

1

1

2

1

2

2

1

2

1

0

0

1

1

1

1

k

j
AKD SS

.

When the time component of the mapping is searched, the
known coordinates are set in the weighted vectors-edges
DT6=(−2 0)T and DT7 = (−1 0)T. The timing function is selected
R=(L 1)=(2 1). To minimize the register number the vectors
DTj , which leave the nodes 1,…,4 must have the coordinates
providing R⋅DTj = 1 or 2, i.e. (0 1)Т, (1 −1)Т, or (1 0)Т, which
provide the monotony condition.

To provide the injection condition, the vectors KTi with
equal coordinate q must be different, for example, when KT1 =
(X 0)T, or (X 1)T, then KT2 = (X 1)T, or (X 0)T where X is
unknown value. The coordinates q of the vectors DTj are
derived from the set of equations:

DT=KTA;
DT1+DT3+DT4+DT6 = 0;

DT2+DT5+DT7 = 0.

Due to these conditions the following solution is found:

 +++
=

1

1

0

2

0

1

110

iiiiii

q

i
KT

.

Figure 4. Algorithm configuration of the IIR filter

Figure 5. Structure configuration of the IIR filter

Fig.4 illustrates the derived algorithm configuration, and the

Fig.5 does the respective structure configuration. This solution
is distinguished by maximum hardware loading of the PUs and
operation in the pipelined mode. It is the only structural
solution of the second order IIR filter, in which the minimum

clock cycle is equal to a single multiplier delay, and the input
data run with the period of two cycles.

V. CONCLUSION

A method of application specific processor design is
proposed which is based on the tensor theory of the system
design. Its expansion was proven and widely used in the
successive development of a set of DSP applications
configured in the FPGAs, for example, published in [9, 10].

REFERENCES

[1] J.Isoaho, J.Pasanen, O.Vainio “DSP Sytem Integration and
Prototyping With FPGAs” J. of VLSI Signal Processing. V
6, 1993, pp. 155-172.

[2] “System Generator for DSP. Getting Started Guide”
August, 2007, 85p. See http://www.xilinx.com

[3] S.V.Rajopadhye “Synthesizing systolic arrays with control
signals from recurrence equations” Distributed Computing.
V3, 1989, pp. 88-105.

[4] J.Fortes, D.Moldovan “Data broadcasting in linearly
scheduled array processors” Proc. 11 th Annual Symp. on
Comp. Arch., 1984, pp. 224-231.

[5] S.Y.Kung “VLSI Array Processors” Eigenwood Cliffs,
N.J.: Prentice Hall, 1988.

[6] S.Ritz, M.Pankert, and H.Meyr “Optimum vectorization of
scalable synchronous dataflow graphs” Proc. Int. Conf. on
Application Specific Array Processors. October. 1993.

[7] G.Kron “Tensor analysis of networks” MacDonald,
London, 1965. 635 p.

[8] A. Sergyienko, O. Maslennikov. “Implementation of
Givens QR Decomposition in FPGA” Lecture Notes in
Computer Science, Springer, 2002, Vol. 2328, pp. 453-
459.

[9] A. Sergyienko, V.Simoneko “DSP algorithm mapping into
FPGAs” Proc. Int. Conf. Simulation-2006. Kiev. Energy
Problem Modeling Institute of NAS of Ukraine. 2006. pp.
189-193.

[10] O.Maslennikov, Ju. Shevtshenko, A. Sergiуenko
“Configurable Microprocessor Array for DSP
Applications” Lecture Notes in Computer Science. V.
3019. 2004. pp. 36-41.

q
1 1 1 0 0 0

j 1

2

3

i i+1 i+2

k=0 ↔
k=1 ↔
k=2 ↔

i

j 1

2

3

