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Tensor Approach to the Application Specific 
Processor Design  

Oleg Maslennikow, Anatolij Sergiyenko, Yurij Vinogradow 

Abstract - A method for mapping an algorithm, which is 
represented by the loop nest into the application specific 
structure is proposed. The method consists in translating 
the loop nest into the tensor equation. The tensor equation 
represents a set of structural solutions. The optimized 
solution finding consists in solving this equation in 
integers. The proposed limitations to the parts of the 
tensors help to derive the pipelined structure and simplify 
the mapping process. The method is illustrated by the 
example of the IIR-filter structure synthesis. It is intended 
for mapping DSP algorithms into FPGA. 
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I. INTRODUCTION 
At present, the field programmable gate arrays (FPGAs) are 

widely used to implement the high-speed DSP algorithms. But 
its programming is usually consists in the functional network 
drawing, which contains the ready to use modules. The design 
of such modules, or the programming tools like module 
generators remains the very complex task. This task is 
formalized now for the acyclic algorithms like FIR filters, and 
is still under investigations for the cyclic algorithms like IIR 
filters [1,2]. Therefore, the development of the programming 
tools which help to map the DSP algorithms into the networks, 
which are adapted to the FPGA architecture are of demand. 

Consider a DSP algorithm, which can be represented by a 
set of recurrent equations or a loop nest. In the kernel of the 
regular loop nest stay one or a set of assignments like: 

Sti: a[I] = f(a[I+D1], b[I+D2],...), 

where I is an index vector, which represents a point in the 
iteration space, Dj is an index increment vector of the j-th 
variable, which represents the data dependence between I-th, 
and (I+Dj)-th iterations. The irregular loop nest can be 
remapped into the regular one by the data pipelining or global 
transfer removing techniques [3,4].  

If the loop kernel has a set of independent operators Sti, 
then this set can be represented as a single vector I in the 
iteration space.  The methods of the systolic array synthesis 
are well known which utilize the mapping of such algorithms 
[3-5]. These methods are based on the affined transformation 
with the matrix P of the iteration space Zn, I ∈ Zn into the 
subspace of structures Zm and events Zn-m, so as the operator 

Sti belonging to the iteration  I is calculated in the processor 
unit (PU) with the coordinates   Ks = Ps I     in the clock cycle 
marked by Kt = Pt I,  Ks ∈ Zn,  Kt ∈ Zn. If we consider the 
usual situation when n − m = 1, then the conditions of such a 
mapping are Dj Pt ≥ 0 (monotony condition) and detP ≠ 0 
(injection condition). 

The systolic array synthesis methods have a set of 
limitations, which do not provide their direct utilization in the 
DSP system design. They consider that operators Sti, from a 
single iteration must be implemented simultaneously and their 
duration must be equal no more than a single clock cycle. 
Therefore, the complex operators could not be implemented in 
the pipelined mode. 

In the representation a new method of DSP application 
specific processor design is proposed on the base of mapping 
the algorithms, which are given by the regular loop nests. The 
resulting processors have the pipelined ALUs and fit 
effectively the modern FPGAs. 

 
II.INITIAL DATA FOR THE SYNTHESIS 

  
Consider the a single loop algorithm: 

    for i = 1, Ui do 
(y1(i), ..., yp(i)) = f(x1(i− di1), ..., yq(i− diq))             (1) 

    end. 

Here the function f is calculated using Uj binary 
assignments Stj. Therefore, the algorithm (1) can be 
represented as the following: 

     for i = 1, Ui do 
 {statement St1} 
     . . . 

Stj: y[i,j] = ϕj,k(y[i-di1, j], y[i-di2, j])                    (2) 
 . . . 
 {statement Stuj} 
     end, 

where ϕj,k(x,y) is the operator of the k-th type, which is 
implemented at the operands x, y. This loop can be 
transformed into the next three level loop nest, such that in the 
(i, j, k)-th iteration only j-th operator of k-th type is 
implemented. 

 

   for i = 1,Ui do 
       for j = 1,Uj do 

for k = 1,Uk do                                                    (3) 
 if (j,k) ∈ Φ then y[i,j] = ϕj,i(y[i− di1, j], y[i−di2, j]) 
            end 
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       end 
   end, 

where  Φ is a set of allowed couples (j,k), which give type 
and implementation order of operators in the algorithm (3). 

As a result, the loop (1), which contains a set of different 
operators, can be transformed into the loop nest of three cycles 
(3), and its calculations are mapped into the three dimensional 
iteration space K3 = {1 ≤ i ≤ Ui, 1 ≤ j ≤ Uj, 1 ≤ k ≤ Uk} ⊂ Z3. 
The loop nest of higher dimensions can be derived 
analogously. Each operator is represented in the space K3 the 
vector Ki ∈ K3. The data dependence between operators, 
represented by Ki, Kl, is equivalent to the dependence vector 
Dj = Ki − Kl. 

In the resulting structure each processing unit (PU) is 
specialized to implement a single function ϕk. The base set of 
such PUs for DSP applications contains the simplest PSs like 
adder, multiplier, ROM. Their local memory is the FIFO 
buffer, or a single result register. 

 
III. M APPING THE REGULAR LOOP NEST INTO THE 

PROCESSOR STRUCTURE 

In the methods [3-5] the algorithm graph GA is represented 
in the n-dimensional space Zn. Hence GA is the regular lattice 
graph. It is represented by its compact form of a set of 
different vectors-edges Dj of data dependences. If the loop 
nest contains a set of operators like (2), then the compact form 
is the synchronous dataflow graph (SDF) or the scalable SDF 
[6]. This oriented graph has N operators-nodes K i, which are 
connected by respective dependence vectors-edges Dj. 
Consider the following algorithm: 

for i = 1, N do 
 for   j = 1, M do 
        St1: a[i,j] = b[i−1, j−1];  
            St2: b[i,j] = a[i, j]; 
 end 
end. 

This algorithm is represented by the SDF graph shown in 
the Fig.1. 

 
 
 
 
 
 
 

Figure1. Example of SDF graph 
 
Vectors D1 and D2 represent the data a, b movings between 

operators St1 and St2. They labeled by the vectors of relative 
transfer delays (0, 0), and (1, 1). To represent the SDF graph 
GAR in the n-dimensional space both the matrix D of the 
vectors Dj of data dependences and the matrix K of the vectors 
Ki are needed. Here the vector Ki is equal to the coordinates of 
the i-th operator node. An incident matrix A of the graph GAR 

is needed to impress the linear dependence between both 
matrices K and D: 

D = KA;                                     (5) 

A set of matrices K, D and A form, so called, algorithm 
configuration KA. Due to its nature, the matrices  A, K, D are 
tensors of both algorithm and resulting structure, and the 
equation (5) is the tensor equation. In [7] it is shown that the 
properties of many technical objects can be described by the 
tensor equation. Due to the tensor theory, the complex 
technical system can be described by its tensor. The tensor is 
the generalized matrix, which can be exchanged by the 
allowed transformations. Therefore, a set of different 
implementations of a system can be described by a tensor, and 
one implementation can be transferred to another one by some 
transformation of its tensor. The system synthesis consists in 
building of the tensor equation, and in directed search of such 
tensor transformation, which minimizes the effectiveness 
criteria. In this representation it is shown how to find the 
optimized structural solutions by the algorithm mapping using 
the principles of the tensor theory. 

The next definitions and relations are true for the 
configuration KA. Configuration KA is correct, if Ki ≠ Kj; i,j = 
1,...,N, i ≠ j, i.e. if all the vectors-nodes are placed separately 
in the space Zn.  

A back linear dependence between configuration matrices is 
present, i.e. 

K = D0A0
-1,                                      (6)  

where A0 is the incidence matrix of the maximum spanning 
tree of the graph GAR , D0 is the matrix of the vectors-edges of 
this tree, including the base vector which connects the graph 
node with the coordinate system.  

The sum of vectors-edges Dj, belongig to a graph cycle, 
must be equal to a zero, i.e. for the i-th cycle 

Σ
j 
bi,jDj = 0,                                    (7) 

where bij is the element of the i-th row of the cyclomatic 
matrix of the graph GAR. 

Configurations CA1 = (K1,D1,A1) and CA2 = (K2,D2,A2) are 
equivalent if they are correct and represent an algorithm 
graph, i.e. A1 = A2. Correct configuration CA1 is equivalent to 
the configuration CA2 iff A1 = A2 and K2 = F(K1), where F is 
the injection function. For example, the following 
transformations give the equivalent configurations: vector Ki 

transposition in the space Zn, row or column transposition of 
the matrix K1, multiplication of the matrix K1 to the non-
singular matrix P.   

Due to the tensor theory, any tensor object description must 
have the invariant tensor, which is immune to any tensor 
transformations. Here the matrix A and its submatrix A0 
represent the invariant tensors.  The matrix K codes some 
variant of the synthesized structure. The structure optimization 
consists in generating of equivalent configurations, which are 
different in their matrices K, and in selection of the best one 
due to the some criterion.   

The processor structure graph Gs is represented by its 
structure configuration   CAs = (Ks,Ds,A),    where  KS is the 

1 2 K1 K2 
D1 

(0, 0) 

(1, 1) D2 
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matrix of vectors-nodes   KSi ∈ Zm,    which give the PU 
coordinates, and   DS  is the matrix of vectors-edges Dsj ∈ Zm,  
which represent the connections between PUs, m < n. 

The event configuration CT = (KT,DT,A) consists of the 
matrix KT of the vectors KTi ∈ Zn-m,  matrix DT of vectors DTj, 
and matrix A. Here vectors KT represent the events of the 
operator implementation. In the correct configuration CT 
vector DTj = KTl − KTi means that the operator, represented by 
KTi, must precede the operator, represented by KTl. 

The timing function R(KTi) = ti performs the mapping of the 
space of events Zn-m to the time axis, and derives the time of 
the operator implementation. 

The configuration CT is correct, in other words, the 
precedence condition is true if for any couple of vectors  KTi 
and KTl the inequality is true R(KTl) > R(KTi), where KTi 
precedes KTl. 

If the function R is linear and monotonous one then the 
configuration CT is correct iff DTj   0, j = 1,...,M, where  DTj  
the vectors-nodes of the SDF, which are not marked by the 
relative transfer delays (or zeroed ones).  

The function R(DTj) gives the delay between the variable 
computing in one PU and entering the another PU, i.e. the 
higher limit of the FIFO buffer length. 

Consider the mapping of the algorithm (2) into the 
structure, which calculates the loop kernel in the pipelined 
mode with the period of L clock cycles. When this algorithm is 
represented in the three dimensional index space, the vectors 
K = (j, k, i)T, where j,k,i means operator number, operator 
type, and cycle number respectively. Similarly the additional 
dimension q of the clock cycle is added to the algorithm 
configuration, then K = (j, k, i, q)T. The vector-edge, which 
represents the interiteration dependence, is equal to 
Db=(0,0,−p,0), where p is the distance between iterations. 

Algorithm configuration CA is equal to the composition of 
structure configuration CS and event configuration CT, and if  
Kl = (j, k, i, q)T, then KSl = (j, k)T and KTl  = (i, q)T. In the 
vector KSl = (j,k)T, the coordinates j,k are equal to the PU 
number, where the l-th operator of the k-th type is 
implemented. 

Firstly the space component of the mapping is searched. 
The matrix KS forming is the combinatorial task. By this 
process MK operators of k-th type are distributed among more 
than ]MK/L[ PUs of the k-th type. In the matrix KS    MS groups 
of equal columns are formed, each of them contains up to L 
columns, where MS is the PU number in the resulting structure. 
The j-th PU has the maximum loading if the number of 
columns with the j-th coordinate is equal to L. Then the matrix 
DS is derived from the equation DS = KS A.  

The time component of the mapping represented by the 
matrices KT and DT is searched with respect to the conditions 
of the correctness of the algorithm configuration and event 
configuration, and equation (7). Besides, the algorithm is 
implemented correctly with the iteration period L iff   

∀KTi ∈ KT (KTi = (i, q)T, i ≥ 0, q ∈ (0, 1,...,L-1)). 

The strategies of searching of the space and timing 
components can be investigated in the following example of 
the structure synthesis. 

 
IV. EXAMPLE OF THE PROCESSOR SYNTHESIS 

Consider the synthesis of the second order IIR filter 
structure, which calculates the equation: 

 y[i] = x[i] + a⋅y[i−2] + b⋅y[i−1]. 

This equation is calculated by the following loop: 

 for i = 1, N do 
     St1: y1[i] = a*y[i−2];  
         St2: y2[i] = b*y[i−1];                                  
     St3: y3[i] = x[i] + y1[i]; 
               St4: y[i] = y2[i] + y3[i]; 
 end. 

The SDF graph of this algorithm is shorn in Fig.2. 
Each operator is calculated no less then a single clock cycle. 

The loaded edges mean the delays of the variable y[i] to one 
and two cycles, and could not express the delay of the operator 
St4. Therefore, in these edges additional nodes are set. The 
modified SDF graph is shown in the Fig.3. 

 
 
 
 
 
 
 
 
 
 

Figure 2. Initial SDF graph of the IIR filter 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. Extended SDF graph of the IIR filter 
 
This graph represents the following algorithm  

 for i = 1, N do   
     St1: y1[i]  = a*y5[i−2];   
     St2: y2[i]  = b*y6[i−1];                                  
     St3: y3[i]  = x[i] + y1[i]; 
                  St4: y[i]  = y2[i] + y3[1]; 
                  St5: y5[i] = y[i−2]; 
                  St6: y6[i] = y[i]; 
 end. 

The calculation period is L = 2, which means that a single 
couple of adder and multiplier can calculate it. 
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By the search of the space component the permissible 
coordinates Ksi are set:  
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Here coordinates k = 0, 1, 2 mean multiplication, addition, 
equality operators. The matrix DS is derived from the equation 
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When the time component of the mapping is searched,  the 
known coordinates are set in the weighted vectors-edges 
DT6=(−2 0)T and DT7 = (−1 0)T. The timing function is selected 
R=(L 1)=(2 1). To minimize the register number the vectors 
DTj , which leave the nodes 1,…,4 must have the coordinates 
providing R⋅DTj = 1 or 2, i.e. (0 1)Т,  (1 −1)Т, or (1 0)Т, which 
provide the monotony condition.  

To provide the injection condition, the vectors KTi  with 
equal coordinate q must be different, for example, when KT1  = 
(X 0)T, or (X 1)T, then KT2  = (X 1)T, or (X 0)T where X is 
unknown value. The coordinates q of the vectors DTj are 
derived from the set of equations:  

DT=KTA; 
DT1+DT3+DT4+DT6 = 0; 

DT2+DT5+DT7 = 0. 

Due to these conditions the following solution is found:  
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Figure 4. Algorithm configuration of the IIR filter 
 
 
 
 
 
 
 
 

 
Figure 5. Structure configuration of the IIR filter 

 
Fig.4 illustrates the derived algorithm configuration, and the 

Fig.5 does the respective structure configuration. This solution 
is distinguished by maximum hardware loading of the PUs and 
operation in the pipelined mode. It is the only structural 
solution of the second order IIR filter, in which the minimum 

clock cycle is equal to a single multiplier delay, and the input 
data run with the period of two cycles. 

V. CONCLUSION 

A method of application specific processor design is 
proposed which is based on the tensor theory of the system 
design. Its expansion was proven and widely used in the 
successive development of a set of DSP applications 
configured in the FPGAs, for example, published in [9, 10].  
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