
Lecture Notes in Computer Science. –V.3019. –2004. -P.36-41.
Configurable microprocessor array for DSP applications

O.Maslennikov*, Ju.Shevtshenko**, A.Sergyienko**

*Polytechnica Koszalinska, Poland,
Email: oleg@moskit.ie.tu.koszalin.pl

** National Technical University of Ukraine,
Email: aser@comsys.ntu-kpi.kiev.ua

Abstract
The method for mapping parallel algorithms into FPGA is proposed which is based on
programming the configurable microprocessor array. The hardware volume of the based RISC
processor unit soft core is minimized, and adapted due to the used instruction subset. The
method provides both high throughput and minimized hardvare volume, and speedups the
design process. The method was proven in the microprocessor array for solving the linear
equation system with the Toeplitz matrix.

Keywords: FPGA, DSP, processor array.

1. Introduction.

Modern DSP applications, like MPEG-4 standard packing, vocoders, etc. are characte-

rized by both high algorithm complexity (thousands of instruction rows in the programs) and

computational intensiveness (several millions and billions of operations per second). Besides,

the algorithm set in the device can be substituted dynamically according to the data stream

parameters, or to the application exchanging. Both hardware and power consumption

minimization are of great demand. As a rule, such applications are implemented in the signal

microprocessors. To achieve the high throughput, the signal microprocessors become parallel

processor systems with several processor units (PUs). But the hardware of such

microprocessors is not utilized very well. This is explained by that that many DSP operators

could not directly mapped into the microprocessor instructions. Besides, the modern

compilers for such signal microprocessors are not effective ones.

Reconfigurable computing is the real alternative both to ASICs and signal

microprocessors now. Its advantage is provided by broad applicability, due to reconfiguration

properties and high performance, through the potential parallelism exploitation and direct

implementation of any algorithm operator. The field programmable gate arrays (FPGAs) is

the most commonly used raw for the reconfigurable computing.

In the last decade the density of FPGAs, their clock frequency, and routing capabilities

are increased dramatically. The high density and clock frequency of modern FPGAs provide

their extremally high throughput. For example, the Xilinx Virtex-2 FPGAs consist of several

tenths of combinational multipliers, data RAMs, and it takes about 200 configurable logic

block (CLB) slices per one multiplier. The expanding of FPGAs at the field of modern DSP

applications is limited now because of the labor consumable process of mapping the

algorithms into FPGA. One of the way to solve this problem is the intellectual property (IP)

core reuse. The another way is programming the parallel system of processing units (PUs),

which is configured in FPGA.

In the representation the method for mapping parallel algorithms into FPGA is

proposed which is based on programming the configurable microprocessor array, and

provides both high throughput and minimized hardvare volume.

 2. Mapping parallel algorithms into the configurable microprocessor array.

In [1] the PU array for image processing applications is proposed which is configured

in FPGA. Each PU is implemented as the IP soft core with the architecture of the well-known

microcontroller i8051. The core hardware volume is exchanged in the range of 500 - 1100

CLB slices, depending on the core functionality. This means that it takes from 3 to 6

multipliers per one PU core in the Xilinx Virtex-2 FPGA. As a result, the most of multipliers

are unused, and hardware utilization is not effective one. Such situation also occurs when

another IP soft cores of RISC microprocessors are used in the configurable microcontroller

array, like ARC core, or Leon SPARC core which consist of much more CLBs.

In the representation the method for mapping parallel algorithms into FPGA is

proposed, which provides balancing the PU hardware volume with the FPGA resources. That

means that the PU soft core must have the hardware volume less than 200 – 400 CLB slices,

and 1 - 2 multipliers.

As the PU core the RISC_ST soft core is selected which is described in [2]. This core

consists of the base core and the hardware extension unit. The base core has the RISC 16-bit

architecture with the 2-staged instruction pipeline. It performs each instruction for a single

clock cycle. The instruction RAM is separated from the data RAM. To achieve the high

performance in the control intensive applications, the delayed branch mechanism is used. The

high speed interrupts, and subroutine calls are supported by the hardware stack. After the

interrupt routine end the instruction pipeline recovery has not any difficulties, because the

heavy instructions, like jump instructions, delayed branch instructions, are not interruptable.

The base PU core has the hardware volume only 190 CLB slices.

The PU hardware extension unit implements the proper instruction set extension. This

extension is adapted to the different DSP applications. The hardware of this unit can vary

depending on the given instruction set, and precision of computations. The unit for

implementing the FFT algorithm is different from the unit for filter calculations, and provides,

for example, the hardware implementation of the bit reverse addressing.

The PU core is described by VHDL, and runs in Xilinx Virtex-2 devices at the clock

frequency, which is equal to 90 MHz. The core hardware volume is exchanged in the range of

190 - 500 CLB slices, depending on the implemented instruction set extension. The assembler

was developed which generates the program codes, and outputs the table of generic constants

for the hardware extension unit selection. An IP core generator was developed, which

generates this PU soft core with the program RAM, constant ROM content, and proper

hardware extension unit.

The parallel processor system has the ring structure. But it can be freely exchanged to

any structure, which is suported by the reconfigurable nature of FPGA. The PUs interact each

other by data buffers and interrupt mechanism. Such architecture provides the wave

propagation processor implementation, and expanding the PU number due to the increase of

the FPGA device number in the system. Due to the small PU hardware volume one FPGA

device can contain more than a hundred of PUs, and provide the throughput up to ten billions

of multiplications and additions per second.

The system configuring process has the following three stages. On the first stage the

user microprocessor programs are designed and compiled. By this process the software

pipelining for the processor array is used, which described in [3]. The derived parallel

program is debugged, tested, and tuned using the behavioral model of the processor array in

the VHDL simulator. Such a process can be accelerated when the hardware accelerator is

attached to the simulator, which is based on the very FPGA device. By the program compiling

the unused instruction codes and data addresses are fixed.

On the second stage the PU cores are generated, in which the unused units and logic

cells are taken off. Each node program is mapped into the separate PU core. If the resulting

architecture is SPMD - architecture, then the only one PU core is generated. When the

application needs the intensive calculation of some special functions, for example, floating

point operations, then the proper functional unit can be attached to the PU core. This unit has

to be a fully pipelined data flow path with the high throughput, which can supersede the

throughput of the signal microprocessor. The structure of such unit is synthesized by the

method, described in [4].

On the third stage all the PU cores, or copies of a single PU core are attached to the

microprocessor array netlist, and the whole project is translated into the configuration file of

the target FPGA device.

3. Experimental results.

The configurable microprocessor array was probed in programming the solving the

linear equation system with the Toeplitz matrix. This problem is solved in DSP systems for

adaptive filtering, spectrum estimating, voice coding, etc. Usually this problem is solved

using the floating point data representation or the integer dates with doubled length, and

specific algorithms which support the error minimization. The N+1 processor systolic array

solves the N*N Toeplitz matrix problem for N iterations using the Schur algorithm [5]. Such

computational schema is used in our example as well.

The disadvantage of this schema consists in that that the nodes with the division

operation form the critical path. And this operation is time consumable in the RISC

processors. Therefore it limits the throughput of the whole array.

To minimize the division delays the untraditional data representation is used. Each

data x is represented by two integers which are numerator nx and denominator dx, i.e. the data

is equal to the fraction x = nx/dx. At first N-1 iterations all the calculations are implemented

with such a data. Multiplication, division, and addition look like:

 x*y = nx ny /dx dy ; x/y = nx dy/dx ny ; x+y = (nx dy + ny dx)/ dx dy.

At the last iteration denominators divide numerators to derive the algorithm results.

Such data representation provides both small calculation errors and expanded dynamic range

comparing to the usual integer data representation.

The PU hardware extension unit consists of two multipliers, and implements the

multiplication and division for a single clock cycle, and addition for two clock cycles. To

provide the minimum calculation errors each operation is finished by the normalization of

resulting numerator and denominator, shifting left their codes to the equal bit number.

The PU hardware volume is equal to 380 CLB slices, 2 multipliers and 2 RAM blocks.

The PU system for N=10 is fitted the 75% of the hardvare volume of XC2V1000 device. It

implements the algorithm for 1.23 microseconds to take not to account the data input-output.

The average speed is equal to 170 millions operations per second, like addition,

multiplication, division of fractional dates. The system with up to 84 such PUs can be

configured in the XC2V8000 device, and provide approximately 1900 millions operations per

second when implementing this algorithm.

4. Conclusion.

The method for mapping parallel algorithms into FPGA is proposed which is based on

programming the configurable microprocessor array, and provides both high throughput and

minimized hardvare volume. The proposed configurable microprocessor array is very useful

in such DSP applications where logic intensive calculations, or computations of dates in the

unusual format, or complex algorithm computing are of demand. These applications cover

MPEG-4 packing, multichannel CELP vocoders, open key encryption systems, etc. The

method was successfully proven in the microprocessor array for solving the linear equation

system with the Toeplitz matrix.

References.

[1] . Maslennikov O., Shevtshenko Ju., Sergyienko A.. Configurable microcontroller

array. Proc. of the 3-d Int. Conf. on Parallel Computing in Electrical Engineering.

PARELEC'2002, Warsaw, Poland. 22-25 Sept., 2002. P. 47-49.

[2]. Sergyienko A. VHDL for computer development. Kiev. Korneychuk, 2003. 184 p.

(In Russian).

[3]. Sergyienko A., Kaniewski J., Maslennikov O., Wyrzykowski R. Mapping regular

algorithms into processor arrays using software pipelining. Proceedings of the 1-st Int. Conf.

on Parallel Computing in Electrical Engineering. PARELEC'2002 Bialystok, Poland. 2-5

Sept., 1998. P.197-200.

[4]. Kanevski Ju.S., Sergienko A.M., Piech H. A Method for the Structural Synthesis of

Pipelined Array Processors. Proc. of the First Int. Conf. "Parallel Proc. and Appl. Math.

PRAM'94" (Czestochova, Poland, 1994). P. 100-109.

[5]. Kung S.Y. VLSI processor arrays. Prentice Hall, Englewood Cliffs, 1988.

