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1. Logic network basics

1.1 Integral circuits

Integral circuits (ICs) form the basis both of the electronic industry and of all
its product applications. The transistor is the atom element of ICs. A single two
input logic element (LE), named a logic gate, can be formed by three or four
complementary metal-oxide-semiconductor (CMOS) transistors. The
digital IC volume is usually measured by the number of equivalent two input logic
gates. Due to this number, all the ICs are divided to small scale integration ICs
and to large scale integration (LSI) ICs. The small scale integration circuits
have the volume of up to hundreds of gates. The standard logic ICs, program-
mable logic arrays (PLAs) and different buffer ICs belong to these circuits.

A set of LSI circuits consists of microprocessors, microcontrollers, memory
ICs, application specific integral circuits (ASICs), and application
specific standard products (ASSPs). The modern LSI circuits can contain up
to tenths millions of gates. Besides, memory ICs have the volume of up to billions
of bits.

In the seventies, the most popular logic ICs were circuits of the series SN74,
which consisted of up to thousand of different transistor-transistor logic (TTL)
circuits. In USSR the analogous ICs were circuits of the series K155. Some analo-
gous representatives of this series are widely used now, but they are implemented
by the modern CMOS transistor technology. In most cases, these ICs are buffers,
registered buffers, multiplexers, invertors, simplest logic networks (LNs).

PLAs were designed at the end of seventies on the base of the read only
memory (ROM) technology. The PLA consists of a set of logic cells. Each of
them is a multi-input logic element with a trigger on its output. The PLA
programming means the forming bridges between the data sources and the logic
element inputs. In PLAs the metal-nitrogenium-oxid-semiconductor (MNOS)
transistors play the role of bridges, and they are programmed as the similar brid-
ges in the flash memory. Usually the number of logic cells and the data source
number do not exceed ten and fifty, respectively. Now PLAs are widely used as, so
called, glue logic circuits, because they "glue" the LSI circuits together in the
system.

The microprocessor is the main operational unit of the computer. Its
functionality is undefined not only by its production but also during its use. It
depends on user programs and operational systems. The microcontroller has
the similar properties as the microprocessor has, but its functionality is usually
fixed strictly in the user device where it is built in. This means that it performs a
single program, which is usually not exchanged during all its living time. The
digital signal processing (DSP) processors form a separate subset of
microcontrollers. Microprocessors are described in the 4-th chapter of this book.

The memory ICs are divided into random access memories (RAMs) and
ROMs. These ICs are described in the 2-nd chapter.

ASIC has its name because of its functionality which is fixed during the design
and manufacturing processes. Therefore, ASIC implements a single but complex
function. ASIC examples are modem circuits, hard disc controllers, parts of the
computer chipset. Because of the increase of circuit design cost, the ASIC manu-
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facturing is worth of the profit when their stocks have more than million of chips.

ASSPs form a wide set of different devices. Their functionality is less than one
of microcontrollers but it is enough to be adapted to a set of different applicati-
ons. They are application specific memory ICs, like graphic adapter RAM, flash
ROM. The microcontrollers with the specific set of peripheral units, for example,
MP3 player, MPEG encoder, belong to the ASSP set as well. The system which
contains microprocessor, application specific processors, memory units, periphe-
ral units, etc., coupled in a single chip, is named as the system-on-the-chip
(SOC). From the designer point of view, the ASSP is an ASIC which is developed
to satisfy the adaptation possibilities. Complex programmable logic devices
(CPLDs) and field programmable gate arrays (FPGAs) form the specific
subsets of ASSPs.

The CPLD structure consists of up to tenths of PLAs placed in a single chip,
and connected through a programmable switch array. Its logic volume is usually
less than ten thousands of equivalent gates (i.e. two input logic elements).

The FPGA was invented in eighties as the alternative to the CPLD. The FPGA
represents the array of 2-6 input logic elements, triggers (registers), and wire
parts, which are connected together by a set of bridges. These bridges are formed
by the field effect transistors (FETs), controlled by the special programming
triggers. The routes of the FPGA netlist are programmed by the exchange of the
electric field in the FET gates, and this is the root of the FPGA name. Before the
FPGA operation, the programming bit stream, named configuration, is auto-
matically loaded into FPGA from the outer ROM. This process is named as FPGA
configuring. Modern FPGAs contain RAM units, hardware multipliers, fast speed
interfaces, microprocessor cores and other units. Their logic volume reaches ten
millions of equivalent gates. Sometimes FPGA is a part of another complex ASSP.

The CPLD and FPGA project designing is cost effective and has the small
design period. Therefore, it is the alternative to ASIC when the series of produc-
tion of the specific device does not succeed hundred thousands of units. As a
result, the number of new FPGA and CPLD projects increases, and the number of
ASIC projects decreases every year.

Due to the standards, accepted by countries of former USSR, ICs and their
parts are drawn in the schematic diagrams as rectangles, named the network
symbols. This symbol has three fields as is shown in Fig.1.1 (a). The left field
signs the input marks (xx, xy), the right field signs the marks of outputs (xz), and
the IC function name is placed in the middle (xxx). In the symbol of the simple IC
the left and/or right field can be absent. Due to standards of western countries,
the symbol fields are not separated by lines, and additional input-output fields
can be placed in upper and bottom sides of the symbol.

If the IC pin serves both as input and as
output, then its name can be placed in the

POXPXKE | X|X XlY RG left or right ' fi'eld. In sqch situation the
—XY XXX o| lor symbol <> (b}d}rectlonal) is attached to this
a) S\ = name. When it is needed, the IC symbol can

T ofE be rotated clockwise to 90° (Fig.1.1 (b)).

Fig.1.1
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Some name characters have the common meaning for many ICs, and they are
described in the Table 1.1. Fig.1.1(c) illustrates the register with inverse reset
input, direct and inverse output, and loading by the rising edge of the clock signal
when the enable signal is high.

Table 1.1
A - address bus G - generator
ALU - arithmetic-logic unit MUX - multiplexor
B - unidirectional or bidirectional bus MPU - multiplier unit
C  -clock input Mn - modulo n arithmetic unit
CILCO - carry input, carry output Q - data output, can be bidirectional
CD  -coder Q,nQ - negated data output
CPU - central processing unit R - reset input
CT,CTn - counter, counter modulo n RG - register
D - datainput, can be bidirectional S - set input
DC - decoder SHU - shifter unit
E - enable input SM - summator, adder, subtractor
F - control input, for function coding T - latch, 1-bit latch register
GND - signal of the logic '0' (ground) TT - trigger, flip-flop, 1-bit register
0 - negated input or output (see X/Y  -logic network, transfers X to Y
Fig.1.1(c))
/, b -rising edge clock input 1 - repeater, OR  function
(Fig.1.3(a))
\,d - falling edge clock input & - AND function (Fig.1.3(c))
{) - mark of open emitter (drain) == - equality function
output
Q - mark of open collector (source) =1,® - Exclusive OR function
output
& - tristate output # - digital function
% - not logical input or output <n> - mark of the grouped component
(component is repeated n times)

Logic elements (LEs) form a component basis of ICs, which is proper to
the given IC technology. The IC is designed on the base of the component library,
which is formed by the LEs of different kinds, with different input number, delay
t, power consumption and space on the chip surface. The quality, consumer
properties of ICs depend on its technology, component basis, delay ¢, maximum
clock period tc, supply voltage V, power consumption P, logic level voltages L,
and L,, its output buffer loading characteristics, and others parameters.

In the logic electric circuits bits a 0 and a 1 are represented by two logic
voltage levels V;, and V). Sometimes they are represented by low and high
current level, or positive and negative current. In any case, the low level is
marked as L, and high level — as H. When V;, = L and V; = H the IC is named as
one with the positive logic, and when V;, = H and V, = L then it is the negative
logic IC. Below we will consider the positive logic ICs. The working voltage range
(usually from 0 to V) is divided into three ranges: V-H;, Li-0, and Hi-Lt, which are
illustrated by Fig.1.2. If the signal magnitude is in the range V-H; (L-0) then LE
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v Vi accepts this signal as the bit 1 (0). And if the signal
H. N\ magnitude stays in the threshold Hi-L; then LE can
0.5 recognize it both as 0 and as 1, and LE operates
L [—/ \ unstable. Therefore, such signal magnitude is
o —t allowed only in the moment of LE switching.

Voot ot Some buffer circuits have the operation mode in
\4 which their outputs have the high impedance. Then
0H5t the signal on their outputs is allowed to be in the
L threshold Hi-L: for a long time, because this opera-
0 \——, tion is provided to build common busses. For this
Vs 7 29 reason the state, when signal is in range Hi-Ls, is
named as third state (Z-state), and these buffers

H and busses are named as tristate ones.
Oii Modern ICs often have two or more supply
0 — -, Vvoltages. One of them is usually equal to V=33
Fig.1.2 volts, and is used for feeding the input and output

buffers. Another voltages are much less (down to
V=1 volt), and are used to supply the inner circuits. Thus, inner and outer voltage
logic levels are different ones. The outer voltage logic levels in most of cases obey
the standard TTL logic levels, i.e. level Ht is 2,4 volts, and level Lt is 0,8 volts.

The IC speed is derived from the propagation delays t of its LEs and other
components. In general, these delays depend on the route of the signal
propagation, and on the capacitance at the LE outputs. This capacitance in CMOS
circuits is proportional to the number of LE inputs, which are attached to this LE
output. This number is named as the LE fanout.

Sometimes the delay "' of propagation of transition from L to H is different
from the delay t'° for transition from H to L. As a rule, these delays are shorter
than propagation delay of generating the transition from Z to H or from Z to L
and visa versa at the LE output (see the waveform Vzin Fig.1.2). Besides, all the
delays become shorter with temperature and power voltage increase. As a result,
each LE has the delay function which depends on the fanout, transition form, vol-
tage and temperature. In the computer-aided design (CAD)-tools the LE lib-
raries usually contain such delay functions, which are taken into account during
the logic synthesis. In the modern ICs, the propagation delays in wires can be
higher then delays of LE switching. Therefore, by the design of such ICs the
capacitance and inductance of the wires, which cause the delay, are taken into
account as well. In simple calculations the LE delay can be considered as that that
is equal to a constant for all the similar LEs, and is equal to the maximum delay
over all possible delays.

The power consumption of modern ICs is caused, in general, by the
switching processes in them. Some power consumption is forced by the current
leakage, but it is much less for CMOS circuits. The switching is the effect of
charging and discharging of the LE capacitances, and it can be estimated by the
formula:
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P=CLV?Esfc/2, ey

where Cy, is the physical capacitance at the LE output, Es is the average number of
output transitions per clock cycle (the switching activity, it is typically 20% in
most designs), and fc is the clock frequency. Due to the formula (1), reduction of
any of its factors will result in a lower power consumption of the IC. The
reduction of the supply voltage V is the most attractive, because it is in a
quadratic relation to power. But this has a negative impact on the speed of the
design because the voltage reduction increases the delay t of LEs. Ci, is the LE
loading, which is proportional to LE fanout and wire lengths. C. decreasing is
more effective because it decreases the LE delay, and thus increases the design
throughput. fc is derived from the maximum delay in the chains of LEs which
route the logic signals from the source trigger to the destination trigger, and
therefore, it increases by the minimizing such chains.

The IC design strategy is directed to minimize the LE number, its fanout, its
input number, and its number in logic chains, considering the given component
library. Therefore, the IC logic synthesis is complex task with respect to a set of
contradiction goals like hardware and power minimization, and speed maximiza-
tion. This task is implemented now automatically in many modern CAD-systems.
But to achieve success, the designer has to know excellently the rules and laws of
the logic synthesis to be able to direct this process. Moreover, often the excellent
IC projects are designed by hand, because the automatic results occur to be bad.
In the following chapters we will look into the logic design processes.

1.2 Boolean algebra

Table 1.2.

The LE is the circuit which operation can be X\ flhA H A
described by the simple combinational logic ojJol o 1 1
function or the Boolean function (BF). This 1|0 1 0 1
function can have only two meanings, or laple L.3
significances: 0 and 1 or false and true. The BF | X, | X, | X|-X, | XivX; | =1
arguments also have only two such meanings. 0 0 0 0 0

The simplest BF Y=f(X) is given by its 0 1 0 1 1
significances by X=0 and X=1. In general, there 1 0 0 1 1
are four such functions, which are given in the 1 1 1 1 0

truth Table 1.2. BFs fyand f; are constants 0 and

1. Significances of f; are equal to X, therefore LE which implements f; is named as
buffer. Its graphical symbol is illustrated by Fig.1.3 (a). Here in the left side is
the symbol due to former Soviet Union countries standards, or to IEEE standard.
In the right side is the symbol, which is adopted in western countries. BF f,
exchanges 0 to 1, and 1 to 0. Such transform is named as inversion, marked
as X , and spelled as not X. LE which implements X is named as an invertor, or
a NOT gate (see Fig.1.3 (b)). To define the two argument BF f{X|,X;) one has to
give its significances on four argument sets (X;,X5), which is illustrated by the
Table 1.3. Such a task can be implemented by one of 16 ways. And 16 different
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BFs can be distinguished. But practically, the following six BFs are used: X;-X,
(AND function, or conjunction or '&'), X;vX, (OR, disjunction, or 'l"),
Exclusive OR (shortly EXOR, or '=1"), and their negations: X,-X, (Not AND,

shortly NAND), X, v X, (Not OR, shortly NOR) and Exclusive Not OR (shortly

XNOR, or '=="that means equality). LEs or gates, which implement these BFs,
have the proper names (see Fig.1.3(c-h)).

In most of cases of analysis or synthesis of logic networks the functions AND,
OR, and NOT are used. These functions form, so called, Boolean algebra.
Besides, AND, OR functions can have large number of arguments. From the Table
1.3, one can derive the following Boolean algebra equalities and identities:

Xv0 =X, Xvl=1, XvX=X,
_._1 _'_1 N >° X0 =0, X1=X, XX =X,
. a)—[>_ . b) XvY=YvX, XY= YX
XvY)vZ=Xv(YvZ), (XY)Z=X(Y-2),

1 XvX-Y=XvY, X-YvX-Y=X,
& D THD

X(W2) = XV)Vv(X2), XvY=X-Y,

:l} :D* xziivizl,x-izo,ﬁzl,izo,
e) )

X-Y=XvY, XvY=X-Y.

D D Here and below the higher priority of AND
(point) operation is considered.
8 Fig.1.3 h) The number of different BFs is derived from

the argument number n, and is equal to2?", where
2nis the number of different argument sets. When n=3 we can get 256 BFs. But it
is not necessary to build a set of 256 LEs to select from it the needed function of 3
arguments. It is enough to have a set of gates of AND, OR, NOT-type. The fact is
that any BF is represented by the superposition of these functions using the
following equation, named as a sum-of-product form:

@

Q

ﬂXIXZr";XH) = Vﬂabab"'aan)'Xlal 'X2a2"' Xn n’ (3)

where the OR function is given on all the sets (a;,as,...,an), and

' Xi,whena=1; .
q L, sl
Xi' = {Xi, when a = 0; =(1,..,n) .

Really,
v X {lwhenX=a;

0 whenX #a.
As a result, the function, named the term, is equal to X lal -Xzaz... an“ =1 only
if Xi = aj for all values of i. And in this situation

fay,a,...,00) = 0VO...{A;,0,...,00)- 1V0...0v0,
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i.e. the left part of the equation (3) is equal to the right one. Table 1.4
Consider an example. There are three lighting switches in | X; | X, |X;| f
the room. The goal is to design the logic network which olololo
provides switching on and off by a single switch not to touch ofof1]1
the other switches. Consider one state of the switch is zero (0), oj1]of1
and another one is one (1). Because there are three switches, ol1]1]0
the network must implement the logic function of three argu- 1]0]0]1
ments. Let lighting is off when all the switches are in the state 110140
0, i.e. the switch state is 000. Then a single exchange of any Lj1jojo
switch forces lighting on. Therefore, BF has to be equal to 1 on L]l

the set of states 001, 010, and 100. Any exchange of these states

forces lighting off. Finally, when switches are in the states 011, 101, 110 then BF

has to be a 0, i.e. the light is off. The next exchange of any switch makes lighting

on, which gives f{(1,1,1)=1. The meanings of the BF f are shown in the Table 1.4.
Then we represent the derived BF in the form (3):

fX1,X,,X;) = ﬂo,o,o)-XszoX;’ vf(0,0,1 )-X10X20X31\/ 0,1 ,0)-X10X21X30\/f(0,1 ,1)-X1°X21X31v
vﬂl,o,o)-XlleX;v ]‘(1,0,1)-X1‘X2°X31 vﬂo,o,o)-Xl‘)X;’X}0 v ]‘(1,1,1)-X]1X21X31 =
=0XXXVIXXXVIXXXV0XX XVIXXXV0OXXXv
172773 172773 17273 L D 172773
VXXX viIXXX = X X XvX XXvXXXvX X -X.
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

The network, which implements this BF, is
shown in Fig.1.4 (a). It consists of three NOT gates X
for negating the input signals, four AND gates, ]
and a single OR gate. This network can be simpli-
fied by the use of the Exclusive OR gates. The %2 1p4 | 1] f
analysis of the Table 1.4 shows that this BF is the I
sum modulo 2 of input variables. Therefore, this  x, H
function can be implemented by two 2-input gates, EF 4
as it is shown in Fig.1.4 (b). a)

The sum-of-product form (3), named as X = (X1, X2, X3)
AND/OR form, is not unique method of deriving -

BFs. Really, using the relations X =X, and b) Fgl 4

X vY = X-Y for the previous example, we can get
the following forms

[=] =] =] =

F(X), X5, X3) = X X, X5 - X, X, X5 - X, X, X5 - X, X, X, = (AND-NOT/AND-NOT)

=X VX, VX X v X, v X X v X, v X X v X v X = (OR/AND-NOT) (4)
=X, VX, VX v X v X, v X v X v X, v X v X v X v XK. (OR-NOT/OR)

Both the function and its inversion can be represented by the form AND/OR.
This gives another four forms:
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FX), Xp, X3) = XX X5 v X X, Xy v X X Xy v X X, Xy = (AND/OR-NOT)
= X, X, X5 X X X5 X X X X X, X5 = (AND-NOT/AND)
=(X, v Xy v X3) (X v Xy v X)) (X v Xy v X)) (X v X, v X)=  (OR/AND) (5)

=X, VX, VX X v X, v X X v X, v XX v X v X, (OR-NOT/OR-NOT)

Each of the relations (3), (4), (5) is called as the normal form of the BF
representation. They can be useful by designing of LNs, based on the concrete
gate library.

Many transformations of BF can be usefully interpreted when BF is graphi-

cally represented. In the geometrical sense a set (X;"', X5 2,..., X, ™) can be repre-

sented by the vector, which forms a point in the n-dimensional space. All 2»
combinations of vectors form the nodes of the n-dimensional cube. Marking the
nodes, where BF is equal to 1, we derive the graphical representation of BF. These
marked nodes represent the terms of the equation (3). In Fig.1.5 (a) the 3-

dimensional cube of the function (4) is

11 11
100 X XX drawn. The number of variables X;, which
(] P 1(;) 111 %1 0]0 exchange its coordinate when traversing
010, ! o T ToTT o from one node to another one, is named as
o the distance between these nodes. Looking
0004y 00 b) X3 at Fig.1.5, one can to prove that the distar}—
Fig.1.5 ce between all couples of the nodes is

equal to 2. A single node of the n-dimen-
sional cube, which BF is equal to one, is named as a 0-cube. Two 0-cubes, which
are connected by an edge, form the 1-cube. This means that in the 1-cube the
distance between two nodes is equal to a 1, and two respective terms are different
in a single variable. Four nodes, which form the square plane, belong to the 2-
cube, and visa versa. Often the cubes are named as prime implicants, because
they represent the OR function of terms (implication), which can be reduced.

BFs are often represented graphically by Karnaugh maps (KM) or Veitch
diagrams (VD). KM is built by unfolding the n-dimensional cube to the plane.
The cube nodes are represented by squares of the KM, which coordinates are
equal to the coordinates of the cube nodes. To simplify the representation, the
rows and columns of KM, where the coordinate is equal to 1, are marked by the
bold line. KM of BF (4) is shown in Fig.1.5 (b). Due to the fact, that selecting the
k-cubes minimizes BF, and these cubes are easily found in KM, KM is often used
in the LN synthesis. Such a process is shown below.

1.3 Combinational logic networks

The operation algorithm for any digital network with n inputs and m
outputs can be described by m Boolean equations Yi = fi (X, X,..., Xn, Z,2,,...,Z%),
(i=1,...,m), where Yj, Xj are output and input variables (j=I,...,n), Z: are variables
which represent the inner state of the network (j=1,...,n). This is the state of some
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memory elements, which usually are triggers. Such a X1 \
network can be represented by two parts (see Fig.1.6).
One of them consists of triggers (T). Another one contains
LEs, which are connected into the combinational logic
network (LN). Both parts interact through variables Z,
which characterize the trigger states, and variables Dij,
which are the trigger stimulating functions.

The main feature of LN consists in the following.
When all the transition processes are finished in the inner
LEs, then the output signals depend only on the input
signals, and the inner signal states are not needed to
derive these output signals. Therefore, equivalent LNs can have different inner
structure. The goal of the logic synthesis is to minimize the LN complexity, and
maximize its speed, selecting its optimum inner structure.

To develop LN, based on the given LE library, BF has to be represented by the
superposition of LE functions. These LE functions are named as operators, and
their superposition is the operator representation of BF. Such representation
process is named as the mapping of BF into LN. As the base BF for the logic
synthesis, the minimum normal form is selected. The minimum normal form
is one of eight BFs (3), (4), (5), which has the minimum number of input signal
symbols and their negations.

Consider the example of the logic synthesis of the carry network of an adder
(Fig.1.7 (a)). The carry function Co is equal to a 1 if two or more arguments are
equal to a 1. KM of this BF is shown in Fig.1.7 (b).

The 1-cube of n variables, which was mentioned in the previous chapter, has
the property, that it can be represented by the AND function of n-1 variables.
Three 1-cubes are selected in the KM in Fig.1.7 (b). One of them is
((C,X,Y),(C.X,Y)). Due to the fact that the distance between terms in the cube is
equal to one, the conjunction of them is CXYVCXY = CX(YvY) = CX-1 = CX. As a
result, the "gluing" of terms occurs, and BF is reduced.

By BF minimizing, its KM is fully covered by 0-,1-,...k- cubes, as it is shown in
Fig.1.7 (b). The conjunctions of terms, representing those (prime implicants) are
reduced as shown above. The resulting BF is the conjunction of all reduced prime
implicants. In our example it is Co = CXvCYvXY. This is the first minimum
normal form. Another 7 minimum normal forms can be derived as in (4), (5):

Fig.1.6

Co =&~&~W=(év XICvY)XvY)=CvXvCvYvXvY=CXVvCYVXY=
=CvXVvCvYvXvY=(CvX)(CvY)(XvY)=CX-CY-XY.

It should be mentioned that four last forms are derived when 1-cubes are
selected for the inversed terms, or for zeroed squares of the KM.

Consider the LE library that consists of only 2-input AND-NOT gates, or
shortly, 2NAND gates. Then we select the AND-NOT/AND-NOT minimum
normal form. We have to design the 3-input LN of the outer stage. Such a LN can
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be implemented due to the formula: XYZ —XYZ. The resulting operator

representation is Co= CX -CY - XY , and it is implemented on 6 gates (Fig.1.7(c)).
To minimize the LN some variables in the formula can be put out of brackets.

For example, CXvCYvXY = C(XVY)VXY = CX.-Yv XY =CX-Y -XY. The
resulting LN is shown in Fig.1.7 (d).

BF can be optimized by the method of decomposing by a variable. This meth-
od is based on the equation f(X|, X5,..., Xn) = X ;£ (0, X5,..., Xo)vX;-f (1, Xs,..., Xu).
Here BFs with variable 0 and 1 are derived from respective halves of KM. In our
example Co = C-Co(0,X,Y)vC-Co(1,X,Y) = CXYvC(XvY) = CXYVCXYVC(XVY) =

(CVOXYVC(XvY) = XYVO(XvY) =XYvCX-Y =XY-CX-Y, ie. we have
derived the same LN as is shown in Fig.1.7 (d).

The optimization process is finished by the selection of better LN due to a set
of criteria. As the simplest complexity criteron, the Quine complexity can be
selected which is equal to the amount of all the gate inputs. This criterion was
true for small scale ICs when their cost was proportional to their pin number.
Now in the ASIC design each LE from the library has its area, which it occupies
on the chip surface. Then the LN complexity is equal to the sum of all the LE
areas. When LN is configured in FPGA then all LEs are mapped into 4-input look-
up tables (LUTSs) or logic cells (LCs). Then the LN complexity is equal to the
number of used LUTs or LCs. In any case, there is the common practice to
measure the complexity in the number of 2-input equivalent gates.

Comparing derived LNs in Fig.1.7 (c,d), we can see that their complexities are
equal to 6 gates. But the complexity of the second LN is something less, because it
contains more NOT gates. This LN can be used as the subnetwork of some
complex LN, in which the variable sources and its invertors can be common for
the whole LN. In this situation these NOT gates stay on the LN inputs. Therefore,
they would not be considered.

The LN speed can be estimated as the number of gate stages in it, which is
equal to the number of gates in the longest path from any input to any output of
LN. Because the delay of CMOS circuits usually does not depend on the logic
signal levels then we can not consider the input signal levels in the speed
estimation. Comparing LNs in Fig.1.7 (c,d) shows that both of them have the
delay of 4 gates. For real ICs the delay of a single gate is equal to 0,1 ns. Therefore,
the delay of synthesized LNs is equal to 0,4 ns.

Due to the formula (1), the LN power consumption by clock frequency fc, and
voltage V can be calculated on the base of gate fanouts and of average switching
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activity Es. When Es is estimated to be 50%, then the power consumption is
proportional to the sum of input numbers of all gates. For examples in
Fig.1.7(c,d) these figures are equal to each other. More precisely the power
consumption is calculated by simulation of the LN model with the real input data
sets. Then the figure Es is calculated precisely for each gate.

In many cases, BF is not defined on some subsets of input data. Such BF is
called as partially defined BF. For example, in Fig.1.6, the trigger stimulating
functions Di would not be defined for the states which never occur in the network.
They are called as prohibited states. Taking in consideration this situation, LN
with minimized hardware can be derived. Consider the design of the LN for
encoding of binary decimal code (BCD) to 7-segment LED display code. Such
display has to view digits from 0 to 9, and another 6 possible combinations do not
occur. The KM of BF for coding the third LED switching is shown in Fig.1.8 (a).
Here unused subsets are marked by X sign and are "don't care" conditions.

The "don't care" conditions can be specified as either a 0 or a 1. Consider all of
them are equal to a 0. Then we can select the proper cubes (Fig.1.8 (b)), and
derive the following minimum normal form: Y = A DvA BCvBC D. Note that KM
is the unfolded 4-dimensional cube, and therefore, on KM the cut ellipses cover a
single 1-cube. It can be proven that the distance between its terms is equal to 1.
Here four squares, covered by the circle, form the 2-cube, which is reduced to
AD. We can assign the undefined states more speculative, to get the cubes of
higher order (Fig.1.8(c)). The derived BF is Y=DvBC, and is much simpler than
the previous one. Its operator representation in the 2NAND operators is

Y=D-BC. In such a manner, the inverse BF can be derived from the KM in

Fig.1.8(d): Y=B-DvC-D = 6(§vc): D-BC, i.e. we get the same representa-
tion. The resulting LN is shown in Fig.1.8 (e).

In the CAD tools for the logic synthesis the BF optimization and its mapping
into LN is made automatically without the designer interference. But many CAD
tools can optimize complex BFs of more than 8-10 variables not optimally. It is
explained by the fact that the logic optimization is the heavy combinatorial
process, and for the affordable period of time the optimum solution could not be
found. In this situation, the hand-made BF optimization may give better results.
Besides, only selected CAD tools provide optimization of partially defined BFs
(with "don't cares"). Therefore, the experienced designer must be able to optimize
complex BFs by hand.
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1.4 Triggers

A trigger is a logic element that can hold one of N stable states. The most
widely used trigger has N=2 states, and is named as binary trigger. The trigger is
said to store the figure 0 (or 1) if it is in the state zero (one). The triggers are
distinguished as latches and flip-flops. A latch is a trigger that can follow data
variations and transfer them to an output line. It is characterized by two main
properties: — it is transparent in that the output Qt follows changes at the least
part of the time t; — the storage is achieved using a bistable circuit, in which
Table 1.5 either Q=0 or Q=1 can be held.

— — An SR latch has two inputs that are labeled S and R.

R|SIQw Q”l This is associated with the quite general terminology "set"
0jo0} ? ? and "reset", that means that we force Q to a value 1 or 0. An
(1) (1) (1) (1) SR latch can be built using ‘two cross—_coupled NAND gates,
T — as shown in Fig.1.9 (a), and its symbol is shown in the Fig.1.9

Qe (b). The algorithm of this latch is conveniently represented
by the Table 1.5, which is named as the function
table. Here the symbol Q**' means the latch state at
the moment of time t+1, i.e. after the switching
process is finished, which is caused by the input
signals, that were active at the moment t. From the

b) latch equations Q=Q-S and Q =Q-R (see the
Table 1.5) the following equalities are derived:
Q=0Q-1=Q andQ=Q-1=Q, which are true for

any Q. Therefore, when R = § = 1 the state Qt*' is
fully derived from the previous state Q. The signal 0
at the output Q forces the signal 1 at the output Q,
which respectively keeps the signal Q=0 when it
enters the input of NAND gate (see Fig.1.9). When
R=0 and S=1 then the output signals are Q=0 and Q=1, which stay stable after
input signal exchange to R =S=1, because mentioned signals keep themselves.
But when R=5=0 the output signals are Q=1 and Q=1, which after the event
R=5=1 are switched into one of possible states Q=0 and Q=1, or Q=1 and Q=0.
The signals R=5S=0 cannot be simultaneously, because they force the indefinite
latch operation.

The similar latch is built on the NOR gates, which is distinguished from the
previous one by the direct inputs R and S (Fig.1.10).

In a complex digital system the designer must carefully control the flow of
data to insure that the proper information is available to each block when it is
needed. The common way to control the data movement within a network is to
synchronize the system operation using a well-defined reference such as a clock
signal. A clock is a control signal that periodically makes a transition from a 0 to
a 1 and then back to a 0. The clock is usually denoted as C or CLK. Using a clock

To lo

—
o lo
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signal to control the operation of a trigger S

provides us with the ability to dictate the times ﬁ RIT Q) RIT 2
when data values can be stored in the device. g —C 9
This allows for the design of complex digital R H S —S
networks in which the data is moved in a .
synchronous manner. Fig.1.11

The network diagram of a clocked SR latch Q Q
and its symbol are shown in Fig.1.11. Compa-  —1o—{R[T}—= —D|T}|—
ring this with Fig.1.9, we see that Cis ANDed o C Q o}
with both the R and S inputs. When C=1 the S| P~ —|C
latch is operated as SR latch, accepting the in- Fig.1.12

formation on the inputs R and S. When C=0 the
latch falls in the storing mode, in which the R and S inputs do not infer its state.

Two inputs R and S make the latch control complex, and afford two
interconnection wires. This makes the disadvantage of the SR latch, which is
absent in the D latch. A clocked D latch may be created in the same manner, as
illustrated in Fig.1.12. As with the clocked SR latch above, the input is only active
when C=1. The clocked D latch is often called a transparent latch due to its
behavior during this time. Clocked latches are useful in synchronizing the data
flow through a complex system. They also give more meaning to the name "latch"
as they can be visualized as circuits that "latch on to" data when C=0.

The latches are never used as the triggers in the digital networks with the
feedback like in Fig.1.6. For instance (see Fig.1.6), in some situation for the signal
Z,=0, LN generates the signal D,=1, and for the signal Z,=1, LN gives D;=0. Then
when latch T is opened by the clock, the high frequency oscillations occur due to
the feedback chain, which traverses through the latch and LN.

To prevent such a situation, the two staged triggers are used, named flip-
flops (FFs). The simplest way to design the FF is cascading two clocked SR
latches as it is shown in Fig.1.13 (a). The first latch is designated as the master
circuit and is responsible for securing the input data R or S. The second latch acts
as the slave. It is used to hold the value of the data that it receives from the
master. The master and the slave circuits are controlled by opposite phases of the
clock C. Since the master latch has C applied to it, it accepts inputs when C=1.
The slave, on the other hand, uses C for timing, so that it allows for changes in the
inputs when C=0.

The value, that is transferred to the slave circuit (and hence to the output Q) is
the value, that is in the master latch, when the clock makes a transition from C= 1
to C=0. For this reason, this master-slave
configuration is classified as being a falling

edge-sensitive device. And such a trigger is 2— R[THAR|T Q —R[TT—
the edge-triggered FF. In the FF symbol on i C g ¢
the Fig.1.13 (b) such edge sensitive input is S S —S
designated as '\'. The rising edge sensitive 1 a) b)

input is designated as '/'. Alternative
designations for rising edge and falling edge Fig.1.13
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clock inputs are B and <, respectively. Two letters T in the
J ﬁ RITH-Q  symbol associate with two latches in FF.
C C _ When the master latch is of D-type, then we derive the D

K ﬁ S Q  flip-flop. The JK flip-flop is distinguished by the feedback

E in the master-slave circuit (see Fig.1.14). It behaves as the

original SR flip-flop but when J=K=1 then FF exchanges its

state to the opposite one, i.e. Qt*' = Qt. JK-type FF used to

be dominant in designs that were based on small scale
integration ICs, but can be useful now in some special networks.

The toggle flip-flop is a circuit that has a single input 7. The operation of
this FF is exactly as implied by its name: the output toggles whenever T changes
from 0 to 1. When toggle FF has the edge sensitive clock input then its output
toggles with each clock rising edge when T=1. Such FF is derived from JK-type FF
when inputs J and K are coupled together. T flip-flop is a relatively special LE
that does not have the versatility of FFs discussed above but may be useful, for
example, in the counters.

FFs as well as latches are never designed as the networks of gates, because of
unpredictable behavior of the derived circuits. This is explained by the fact that in
modern circuits the delays in wires can supersede the gate delays. As a result, for
example, the prohibited condition R=S=1 can occur in unexpected moments.
Latches and FFs are usually designed as the transistor circuits when the proper
technology gate library is formed. By this process, the complex problem of signal
races both in gates and in wires between them is solved.

DFFs are most widely used. Additionally, they

Fig.1.14

Table 1.6 usually have S or R input, or both of them for asyn-
C|JIK|Q|D[Q"] chronous set or reset to the initial state. Very often
0 [ X|X|[X|X ]|t DFFs have the enable input CE, which enables the FF
t{ojofot| o ¢ clock sensitivity. Another FF types are designed on
tlol1|[X]Jo] o DFFs as on the component. Consider the design of
1o x| 1]1 JKFF. Its function table is the Table 1.6. Here the
Tl |oQ| Q| & arrow means the clock rising edge, the letter X means

the “don't care” state. The analysis of this table shows
that LN is needed which is attached
L K pe=QK | @ to the input D of the FF. The
K|[1}o]oj0 ] =l [ D|TT respective KM is shown in Fig.1.15
Iflinoj ¢ — (a), and the resulting FF network is
Q C illustrated by Fig.1.15 (b). Fig.1.16
a) b) illustrates the T-type FF based on
Fig.1.15 D-trigger. In the following chapters
the main components of logic networks are described,

-Cr =l DT Q which are based on logic gates and triggers.

——C
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1.5 Decoders

The combinational network, which implements a set of BFs:

n Az Az Ay Ay AL A
Q=44 . AT, © PR

is named as decoder (DC), where j = 0,...,2"-1, A; is the
input variable, (i=1,...,n), a is the i-th digit of the binary
representation of j.

From (6) one can see that to develop the DC network
the AND gates are needed. Consider the p-input AND ]
gates, and the variables A and A; are generated out of
DC. If p>n then the DC design is simple: this DC consists
of 2 gates (see Fig.1.17), each of them implements one
BF (6). If p<n then function Q; has to be formed by divi- !
ding A to the sets of up to p variables. LN in which the Fig.1.17
conjunctions are implemented in parallel has the highest speed. In Fig.1.18 (a)
the DC network is drawn, which has the maximum speed, and which implements
the 16-input AND function on the 3-input gates. Its delay is equal to 3t, where t is
the gate delay. The number of gates is equal to 8. In general,

t(n,p) = [logpn]t, L(n,p) =[(n-1)/(p - 1)], (7

where t(n,p) and L(n,p) are time delay and gate number of the LN, respectively,
[x] means the nearest higher natural number of x. The whole DC network for 2»
outputs contains 2°[(n — 1)/(p — 1)] of p-input gates. But such LN has large
hardware volume. Firstly, it contains up to 2" conjunction gates, in this example,
say A,A,A;. Really, only eight such conjunctions are needed. Therefore, it would
be better to take off the unnecessary gates. In Fig.1.18(a) the figures above the
gate symbols show how many gates are really needed. Secondly, it can occur that
some gate inputs in the last stages are not engaged (Fig.1.18 (a)). It would be
better to divide the input variables into the sets to minimize the free gate inputs,
as it is shown in Fig.1.18 (b).

—
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The optimum solution of DC network (according to both speed and hardware
volume) has the structure, represented in Fig.1.18(c). Its complexity is derived
from the formula

C(n,p)=2"+3" cn.p), (®)

where n; is the natural number, such that Zip:l nj =n . The formula (8) achieves

the minimum, when n; has the value that is nearest to the value of n/p. Getting
the optimum division of input digits to p groups, a set of decoders was designed.
Their parameters are shown in the Table 1.6.

Table 1.6
n 3] 4 5 6 7 8 9 10 11
- 32,00 | 22,1 | 222 | 322 | 332 | 3,33 | 3,32.2,D) | 3,2,1,1),2,1,1)
Cn3) | 8| 20 40 76 144 | 276 | 536 1060 2096

Consider ni~ n/p then the equation (8) can be unfolded:
Cn.p~2"+XP cn/ p,p)=2"+pC(n/ p.p)=2"+p2"' P+ p3_P C(n/ p?,p).-

Then we derive the resulting equation:
2 3
C(n,p) ~ 2" +p20/p +p22n/P + p32“/p +... “

Consider n=11 and p=3, then due to three first items of the formula (9)
C(11,3) = 2107, i.e. it gives rather good estimation, comparing to the Table 1.6. If

the DC output number is represented as M=2" then the equation (9) is represen-
ted in another form

C,p)~ M+ pIM + p**/M + ... . (10)

In many cases, it is useful to estimate the DC complexity as the sum of LE
inputs. Such estimation is equal to the formula (10) multiplied by p:

Cnp)~ pM +p* - IM + ... . an

The analysis of the formulas (7) and (11) shows that DC on 2-input LEs has
the minimum hardware volume and maximum time delay, and DC on n-input
LEs has the large hardware volume and the small time delay.

At present, small DCs with M<100 are implemented on PLA and CPLD. When
designing ASIC, DC network is usually got from the library or it is generated by
the special subprogram, or is synthesized from the behavioral description. The
LEs of FPGA usually have the limited number of inputs (mostly 4). Therefore, to
develop DCs in FPGA the designer must take into consideration the methods of
DC network building.
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1.5 Multiplexers

The combinational network which has up to 2" data inputs, one data output,
and n-bit wide control input, which selects one of the data input, is usually named
as an multiplexor. Consider the 2> = 4 — input multiplexor. Then its BF is

Y =E(DyX -X v D;-X -Xov Dy X- X v D3-X-Xp), (12) 1o Bl
where E is the enable signal, D is the input data, X, X, 31 & Y
are digits of the selected data position. Comparing this g, =
equation and equation (6), one can find that multiplexor % &
is the combination of DC, and AND/OR networks, which ] 2? bq (1’ J
is illustrated by Fig.1.19. M 2R

The standard 2- and 4- input multiplexers are usually —{E[ |3
in the project libraries. The large multiplexers are desig- Fig.1.19
ned on the base of them as the multiplexor trees. The o
example of the 6-input multiplexor, based on 2- p,
input multiplexers, is shown in Fig.1.20. IEB? MUX

In different projects the multiplexers are widely A Lo
used to provide the sharing of the computational o PMX— "|_
resources among different data sources. For exam- | {fa DO|MUX
ple, they are inserted at the inputs of ALUs to put  p={{Do|MUX |_'11 B
the input dates from different directions. o T

In ASICs the tri-state busses are implemented
rarely because of their high cost and low reliability. & ——— Fig.1.20

Therefore, the common busses are made on the
multiplexor basis. In this situation the output of the n-input multiplexor is
connected to all the bus destinations (for example, processor units — PUs). And
the output of the j-th source is connected to the j-th input of the multiplexor,
where j<n (see Fig.1.21). The bus address to the multiplexor and the enable
signals to destinations are formed by the arbiter network, which is not shown in
Fig.1.21. As the simplest case of the common bus, consider the registered memory
in which all the register outputs are connected together through the common
multiplexor.

In more complex situations, any source can be connected to any destination.
Then up to n-n multiplexers are needed, as it is shown in Fig.1.22.

Dol MUX |_DO MUX Do| MUX
PUj ;

I ol [ PYj oj| [ PUI
PUI ;) F—A el A

Commbn bus Fig.1.22

Fig.1.21
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Table 1.7

1.6 Encoders

Fig.1.24

most significant bit in the mantissa during its normalization.

Dy — The encoder is a combinational net-
DijA; Ay A1 Ao] D — 1 A, work, which transforms the input data into
Dyj0 0 0 0| D3 - [ the position of the most significant bit of
D0 0 0 1| D4 — this data. The example of the encoder is LN,
D0 0 1 0| Ds "2, which transforms the signals from the deci-
D;J0 0 1 1] Ds mal button array to the binary-decimal
DyJ0 1 0 0| Pz || code (BCD) A;A,A,4,, which represent the
Dsf0 101 ) pushed button from 0 to 9 (see the Table
Dg| 0 1 101 p, A, 1.7). One of the possible LNs of such an
D0 111 g 1 ’_3 encoder is shown in Fig.1.23. But when two
Dgj 1000 . buttons are pressed simultaneously then LN
Do! 0 01 Fig.1.23 generates the incorrect code. For example, if
D5=D6=l then A3A2A1A0=01 1 l, that repre-
Table 1.8 sents the signal D,=1. Besides, it is impossible to
. recognize the pressed button, for example, the
Do — Do JAs Ay Ay Al P| 5440 0.
000000000100 0 011 To remove these disadvantages it is necessary
000000001xf0 O O 1{1 . P
00000001xx10 0 1 0l1 to synthesize the priority encoder. Such
0000001xxxl0 0 1 111 encoder always forms the code of a single pressed
000001xxxxl0 1 0 01 button, for instance, more significant one. The
00001xxxxxl0 1 0 111 Table 1.8 is the truth table of such an encoder.
0001xxxxxx[0 1 1 0f1 When any button is pressed then the output bit
001xxxxxxx[|0 1 1 1|1 P=1. The proper Boolean equations are
Olxxxxxxxx[l 0 0 0|1
Ixxxxxxxxx[|1 0 0 1]1 A, =Dy v Dg, A, =(Dy vDg)(D,vDgvDsvD,
PRORRRRRRRL X XX A —(D, VD (D; v Do) (D5 v D,)(D; v D),
Do Ay =Dy v Dg(D; v Dg(Ds v D, (D5 v D, D)),
o] et Il P=DyvDvA;vAVA,.
BZ B§ ﬁ; To build many input priority encoders the
Ds_|D4 hierarchical LN is used, which consists of small
Bj— 32 P D0.0[MUX encoders. Consider we have the encoder unit, which
1oz D0.1 is built due the previous equations, but the inputs
BZ— 5ol & po-2 a, Ds, Do are not used (zeroed). Then one of possible
Dy5—{D1 A0 D1.0 — l6-input encoders is shown in Fig.1.24.
BE: o2 pL1 LA Here the multiplexor selects the group of bits,
Dy5—{D4 ' | &2 which is generated by the activated coder, which has
D1z |D5 P A A; the higher priority. Due to these principles, the
Dis BE priority encoders are built, which are used, for

example, as interrupt encoders. Another example is
LN which finds the number of zero bits before the
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1.7 Shifters

Table 1.9
The shifter is a combinational network, which trans- AA|Y; VL, Y Y
fers the input word to the output with the shift of its bits. 00 %3 Xo X; Xo
The Table 1.9 shows how the logic right shift of the 4-bit 0110 x;3 % X
word X is implemented in the shifter, giving the output 10]0 0 x; %
word Y. 11]o 0 0 x,

The shift bit number is given by the word A;A,. Due to

the logic shift, the bit, which is shifted in, is zero. In the §0 [0 TMux
case of the arithmetic shift, the left shifted bit would be X, > Yo
the sign bit, here X3. It is useful to build the shifters on the i(\; A30
base of the multiplexor. Such shifter, which implements A Aol
this algorithm, represented by the Table 1.9, is illustrated 1| v
by Fig.1.25. 0 AR
According to this principle, the shifter up to n—1 digits | A9
is based on the n-input multiplexers. But when n is larger 0 [mMux
than 6-8 then the hardware volume is too high. In this > LY,
situation the multistage shifters are formed. 3
One can design the shifter to 0, 4, 8, and 12 bits based TTIAL
on 4-input multiplexers. Then the complex shifter consists 3 [Mox
of such shifter, named as Ul, and the usual shifter to 2 RE
0,1,2,3 bits, named as U2. Such a shifter is illustrated by . _:ﬁ‘l’
Fig.1.26. Here the bit shift number is given by the code Fig.1.25
A3A,A Ay The most significant bits A3A, control the
shifter U2, and digits A,A, control the shifter Ul.
Consider we have to shift the code X to 13=1101 bits.

Then the shifter U1 shifts it to 1 bit, and the shifter U2
shifts it to 12 bits.

1.8 Binary adders Fig.1.26

Binary adders or summators (shortly SM) are used for addition of binary
integer numbers

Q = B + D, where B = Bn- 2™ +...+ B2+By, D = Dn- 2™ +...+ D;2+D,.

The combinational binary adders, which consist of one bit adders (full ad-
ders), are mostly used. The Table 1.10 is the truth table of such full adder. Here
Qi is the sum of i-th bits Bi and Dj, Ci is the carry bit to the i-th bit. KM for the
output Cis+; is illustrated by the Fig.1.7(b) for X = Bi, Y = Di. And the proper
Boolean equation is Ci+; = BiDivBiCivDiCi . KM for the output Qi is illustrated by
the Fig.1.5(b) for X, = Bi, X, = Di,X3 = Ci. Therefore, this BF could not be
simplified, and is equal to Qi = BiDiCivBiDiCivBiDiCivBiDiCi. Additionally, BF Cis,
is needed to simplify the circuit of the (i+1)-th stage of the adder. The respective
network occupies 10 gates.
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Table 1.10 But BFs can use common terms, as in the following
B; D; C|C.,; Q] equations
00010 0 BB DO BD O B D C
00 1 0 1 o Ql __BI_DICLVBlglciVEIDICIVBIDIC_J’
o10lo0 1 Ci+; = DiCivBiDiCivBiDiCi, Cis; = Cisg .
(1) (1) é (1) (1) The resulting network is drawn on the Fig.1.27, and it
10111 o| occupies only 8 gates, to say nothing about input invertors.
1101 o| Thecarrysignal propagates through 3 gates. The n-bit adder
1111 1 is shown on the Fig.1.28. It is named as ripple-carry adder
because of the ripple-carry scheme to transfer the
B — carry bits. To perform the addition the input carry
D & bit is Cy = 0. Such an adder consists of n full adder
C — stages and has the delay 3nt, where t is the gate
c | [H o Ocay
- 1 i
e - Br1 Dot B; D; BF Do ¢, Table ’1.11 :
| [ | — B; D; |Gy Qf
1] G FA FA]|[FA 000 o
mi E C n-1 1 0 010 1
= C iy R ERRS N | Lofo 1
- & (13 Qn-t  Q 111 o
Fig.1.27 Fig.1.28

This delay can be decreased, and the hardware volume of the full adder can be
minimized when it is implemented on two half adders (HAs). The HA adds two
bits due to the truth Table 1.11. The following BFs describe it.

Q=BD,vB vD, Ci=BDi.

Then the carry bit to the (i+1)-th digit can be formed due to the BF: Ci.; =
C'+; v C"41, where C'is; and C"4 are the carry bits caused by the addition of
couples of digits B;, D, and Q', C;. The Fig 1.29 illustrates the resulting network.

To increase the adder speed the parallel carry networks are designed. Such a
network calculates the carry bit for the group of m digits using the two staged
logic circuits. The adder is divided to k=[n/m] groups of parallel adders, each of
them has its own parallel carry network. The resulting adder delay is estimated as
kt, where t is the delay of the parallel carry network. The development of parallel
carry networks by the designer is a bad praxis.
Such a network has a lot of lines, which
correct routing is very hard, because the line
propagation delays can be much higher than
gate delays. The common praxis is to use the
fast speed adders as ready-to-use library
components.
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The subtraction function is usually performed using the 2-s complement
approach. 2-s complement of n bit binary number D=0 is defined as

{D},=2—-D=(2—1-D)+1=(1..11 =D) + 1.

The number in brackets is 1-s complement of D, which is formed by
inversion of all the bits of the number D. The subtraction is calculated as B—D=
B+{D},. Therefore, to implement the subtraction, the second number has to be
inverted, and a 1 is added to the sum.

In applications both addition and subtraction are required. A single adder/
subtractor unit can be built using the ripple-carry adder discussed above. This
unit is shown in Fig.1.30. Inspecting the logic diagram shows that 2 basic modi-
fications have been made to the original adder in Fig.1.28. First, each Diinput line

has an XOR gate in its path. Second, a new

control bit F has been added to the circuit, F Bt ?n'] B D|] il D|0

which is connected to each XOR and also to =1 L 1’J

the carry-in bit of the adder. The circuit acts - —1C

as an adder when F=0, and as subtractor FA A A

when F=1. In the second situation XOR 1 1 0

gates work as invertors and carry-in bitisa Cn_J | T ] |

1, which is added to the sum. Qn-1 Q1 Qo
Fig.1.30

1.9 Registers

Register (RG) is a set of triggers, which have a common control network. A
single trigger can be considered as the one bit wide register. Therefore, triggers
often are named as registers as well. RG is used for data storing and implemen-
tation of some operations with them. The bit wise logic operation with the word Q
in RG and the word D at its inputs is such operation. Another operations are
different shift operations and data output.

RG is considered to be a logic network, which consists of a trigger set (plain
register) and logic network (LN) which implements the output functions and
functions of trigger stimulating (see Fig.1.6). The RG design consists in selection
of the trigger type and in LN synthesis.

When the computing system with RGs is designed, one has to take in
considerations the properties of the clock propagation system. Each modern LSI
circuit has one or small number of clock propagation trees. Such a tree provides
the stable clock signal to each trigger with the minimum clock skew. The clock
skew is the delay between the edge of the clock signal, which enters the trigger,
and the base moment of time. Only when the clock skew is zero, the minimum
clock period is estimated as the maximum delay from output of one trigger to the
input of another one plus the trigger delay. Thank to this feature, the proving of
the design correctness is assured for the circuit with thousands or millions of
triggers. Considering this feature of the clock propagation system, in most of
cases RGs are implemented on flip-flops.
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Table 1.12 To provide the minimum clock skew it is not re-
C|R|S|w|D|ot+t commended to attach any logic circuit to the clock
V(X[ X[ X|X]| & input of the trigger. Besides, when the races of the
T ool o o] o control signals occur, such circuit can generate
TTilolx 0] o ghtches. The glitch is a short, peedle forrped
o1 [ x |1 1 impulse, which forges the incorrect .trlgger switching.
TTolo 1 [Dr|DI 'Instead of cqntroll;ng the clock signal, the enable
T 1 XX X input of the trigger is usually used.

Consider the design of RG with the functions of
set, reset, and write (control signals S, R, W, respec-
tively) based on the D-triggers. The table 1.12 is its
truth table, and respective WD is shown in Fig.1.31(a).
Here the signals S, R have higher priority. The
resulting stimulating function for the i-th digit of RG
is the following:

D=Sv R_-W-DI\/R_'W'Q.

Fig.1.31 (b) illustrates the i-th bit of the register.

The shift operations in RG can be implemented as
left and right shifts to 1, 2,... bits. Fig.1.32. represents a

Fig.1.31 part of the shift RG with operations of left shift (SL),
and right shift (SR) to a single bit. When the left shift operation, the i-th output is
connected to the (i+1)-th input of RG. The input data DL is shifted in the first bit.
When the right shift, the input data DR is loaded into the (n-1)-th bit, i-th output
is connected to the (i-1)-th input of RG. Note, that DL=Qi-,, DR=Qi+, when n=3
(see Fig.1.32). When shifts are not done, i.e. when SRv 9 =1, then the i-th input
and output of RG is connected together to provide the information storing.

As was shown in the previous chapter, the subtraction is calculated through
the 2-s complement of the data. For this purpose, in some operational units the
data registers are used which outputs the direct or inverse code depending on the
addition or subtraction operation. A single bit of such RG is shown in Fig.1.33.
This is an example of RG with data output operation. The input E enables the
register data storing.

SR
SL
F
Qi+2 T D =1
1 —DTT:.
R o Cleli
] Hpfrmh—= ElE
c—fCli-1| [from
Q-2

Fig.1.33
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1.10 Counters

Counter (CTR) is a logic unit which implements the increment or decrement
operation to 1, 2, etc., and data storing. As any logic circuit, it can be designed as
a finite state machine (FSM). But there are some methods of the CTR synthesis,
which use its operation specific.

The CTR is a network with FFs. Therefore, the CTR synthesis must obey the
rules of the FF synchronization, which were mentioned in the previous section.
For example, two decades ago the method of sequential counters was widely used.
Such counters are based on asynchronous T-triggers, which are connected
sequentially in a chain. In this situation, each trigger is considered to have its own
clock signal, which feeds its T-input. When such a CTR is implemented in the LSI
circuit, then its design is complicated, and its operation can be unstable.

To prevent this situation, the synchronous T-type FFs are used. A set of such
FFs form the specific RG, which bits can be negated synchronously by the clock
edge. Consider the count impulse Ci comes to the T input of the first FF, and its
stimulating signal is T, = C1. Then its output Q, exchanges its state every impulse
Ci, i.e. every second impulse Qy = 1. The output of the second FF has to be
exchanged every second impulse Ci, i.e. its stimulating signal has to be T} = QyCr.
The resulting stimulating functions of CTR triggers are the following:

To=C1, T1 = QoCt, T2 = Q1QoCh,-.., Ti = Qi-1Qi2 ... QoCr. %I

The respective 4-bit CTR network is shown in Fig.1.34.
Here the signal on the FF input T enables the operation +1 _@_
modulo 2. Such CT has the name of parallel carry CTR
because the carry signal (here T3) to the i-th bit is formed
in parallel by the AND gate. K TR

=TT
ﬁ T

O -
=
|

The usual n-bit wide counter repeats its states after 2n
input impulses. Such CTR is said to have the period

(modulo) equal to 2n. Often the CTR counting period has 31_ T Qs
to be not equal to 2. Such CTRs are designed by excluding cls

the spare states. This is usually achieved by jumping

round such states. Fig.1.34

Consider the CTR with a period of k=5 cycles. To

design such a CTR n=[log,k] = 3 FFs are needed. The states of Table 1.13

the CTR with the period of 8 cycles are represented by the table |Q,|0Q, | Q, [State

1.13. Let three last states are to be excluded. Thentogoround [oJo|o | C

these states the following states are selected: the state before [0 0] 1

the first excluded state A=(a,,a;,ao) = (1,0,0), the first excluded |0 [1]0

state B=(b,,b;,by) = (1,0,1), the last excluded state but the next | 91 1|1

one C=(c,,c1,¢9) = (0,0,0). 110101 4
In the usual counter after the state A goes the state B, but in Ljoj1} 8

this CTR the jump from A to C has to be done. Then by the i } (1)

analysis of bits aj, bi, ¢i in the i-th digit the correction of the
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stimulating function of the i-th FF is found. The three situations are distin-
guished, when bi=ci; bi+ci=ai; and bi# ¢ # a;.

In the first situation the correction of the stimulating function is not needed,
because jumps ai—b; and b;—c; are equal to each other because of ¢; = b;. In the
second one the stimulating function provides the storing mode, due to ¢; = a;. And
in the third one it implements the inversion, because of ¢  aj, i.e. ¢i = ai.

When C is all zero state, then such correction is implemented by forming the
function F = Qan;'-...-Qf"-Q§°, which is equal to a 1 only for the set (a,, a;, ao).
Consider we have the T-type FFs. Then the stimulating functions are corrected

T, whenb =c;
due to the rule: T'={T.vF whenb #c #a;
T-F whenb #c =a,
where T}is a new stimulating function of the trigger.
For this example F = Q,Q,Q,. The KM of this function, which considers the
"don't care" sets, is shown in Fig. 1.35. From this KM the resulting function is

F=Q,, and T’y = ToQ,, T, = Ty, T = Ty v Q,. Because T = 1, T = Qo, T> = Q,Qy,
then the resulting functions are

To=Q,, Ti = Qo, T5 = Q1QoV Q.

The network of derived CTR is illustrated by Fig. 1.36. Its waveforms are
shown in Fig. 1.37, when the count enable signal is Ct = 1 . Before its operation
CTR has to be set in one of permitted states, for example, in the zeroed state

01 using the R-inputs of its triggers. The count enable signal Ci

Q°| 07X XV 0 feeds the clock enable inputs of the triggers.
Often the CTR is designed, which is based on the couple of
adder and RG. The adder adds the increment to the RG content,

@ and the sum is stored to RG each clock impulse when the clock
Fig.1.35 enable (i.e. count enable) signal is active. Here the various

increments can be used. Moreover, using the
e subtraction operation, CTR with the decrement is
implemented. In the last situation, to form the 2-s
complement the negated outputs of FFs are used.

In the digital network engineering also the ring
counters are used, which are based on shift RGs
T with the feedback. Consider the 3-bit shift right RG.
1 Q In general, the design of the ring counter consists in

1l the synthesis of the feedback LN (see Fig.1.38). The
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Fig.1.36 Fig.1.37
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well known ring CTR is the Johnson- |_ Table 1.14
type CTR. Its LN is a single NOT-gate, | DIIRG L] [Cyele] QQ1Q
which connects the output Q, to the R I Q0 0 1000
. . . C 1 100
input Dr. Then with each clock impul- e Q1 LN 2 110
se the state of RG is exchanged, as itis —CE[ |Q2 3 111
shown in the Table 1.14. The period of Fig 138 4 1011
state exchange is equal to 6. To pre- 1g.1. 51001
vent this CTR of beginning its operation in the prohibited 6 1000

states 101 or 010, it has to be reset by the signal R.

Consider the synthesis of the ring CTR with the period
of 5 clock cycles. Let CTR is in the state 000. Then depen-
ding on the output L (0 or 1) after the right shift CTR goes
to the state 000 or 100. These branches and another ones
are represented by the state diagram, which nodes and
edges represent states and branches, respectively (see
Fig.1.39). Five nodes are selected in the diagram, which are
connected into a ring by the respective branch edges. They
are marked in bold in Fig.1.39. To provide these branches
LN has to output the values 1, 1, 0, 0, and 0 on the sets 000,
100, 110, 011, and 001. Another values are "don't care" ones.
These values are represented by KM in Fig.1.40. The

respective minimized BFis L = Q,Q ;.

1.11 Programmable logic devices

Qo[ 0 X
As it was mentioned above, PLAs, CPLDs and FPGAs are | x[o]o{1)
widely used by many designers as the base of the customer 0,
made logic networks. In this chapter we discus the ways of Fig.1.40

developing the LNs based on these devices. Many companies
supply the designers by different CAD tools to develop such networks. Usually the
company, which produces such devices, provides the proper CAD tool. Such a tool
is easily installed in PC, and has the friendly user interface.

There are two different approaches to develop the program for PLAs. First of
them is based on drawing the schematic network using the library of standard
logic components in the proper graphical editor. The second one is based on the
behavioral description of the network by some hardware description
language (HDL). The second approach has many advantages like fast descrip-
tion and debugging of large projects, the description is independent on the
network basis and technology, and it is standardized, and can be accepted by any
CAD tool. The most widely used HDL languages are Verilog and VHDL. Therefore
all the projects of ASICs and most of projects of CPLDs and FPGAs are designed
on HDL. Below we will try to describe many LNs using VHDL.

One logic cell (LC) of PLA can implement any logic function in the form (3) or
its inversion. Such form can contain up to M terms, each of them has no more
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than N variables and its inversions, and the number of different input variables is
no more than K. For the modern CPLD devices like Altera MAX7000, Xilinx
X9500 these parameters are: M<5, N<52, K<52. To increase M the logic expander
cells are used. The connection of LC and logic expander is equivalent to
connection of two LCs.

For example, LN in Fig.1.1, (a) is described in VHDL by the following entity
and its architecture

entity SWITCH3 is
port(X1,X2,X3:in bit;
F: out bit);
end SWITCH3;
architecture BOOL of SWICH3 is begin
f<=(not X1 and not X2 and X3) or (not X1 and X2 and not X3) or
(X1 and not X2 and not X3) or (X1 and X2 and X3);
end BOOL;

The entity declares the interface of LN, which shows how to connect this LN
in the network of the higher hierarchy level. The architecture is the description of
LN behavior due to the designer's algorithm. In this example, such behavior is
represented by the operator (statement) of parallel signal assignment, namely, by
the Boolean equation. This operator can be freely exchanged by the following one

f<= X1 xor X2 xor X3 after 5 ns;

which represents LN in Fig.1.1 (b). Therefore, a single entity can have different
architectures depending on its behavioral description.

In examples the words in bold represent the language reserved words. In the
statements they are logic operators of the language. The identifiers represent the
signals. The signal in VHDL plays different roles simultaneously. It is the object,
which has some value (0 or 1, true or false, integer, etc). It makes signaling (the
signal exchange starts the execution the parallel operators in which it is used as
an argument), and its time history can be stored and reproduced as the
waveform. When the VHDL model is running, the parallel operator is executed
any time when any its argument is exchanged, and just in this time (or after
delay, which is given by the after clause) the result is exchanged.

In the FPGA as LC the look-up table (LUT) is used. LUT represents one bit
ROM with the k-bit address. In the i-th cell of this ROM the value fla;,ay,...,an) is
stored, where a;,a,,...,an are digits of the binary representation of i (see the eq.
(3)). In the modern FPGAs the 3, 4, 5 and 6 — input LUTs are used. When the
complex Boolean function is synthesized then it is decomposed in the subfunc-
tions, which are mapped into a set of LUTs. In Fig.1.41 the LUT is represented,
which implements the Boolean function from the previous example.
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The VHDL model is compiled into the 21110 1Q
gate level description by the synthesis  x1—]I2 LUT 8 8 (1) (1)
compiler. By this process, the Boolean x2—I1 O I
equations are usually optimized automati-  x3— 10 011]0
cally. If the target is PLA or CPLD then 1001
this description is transferred directly into . 10170

. . Fig.1.41 1 10]0
the programming bit stream. In another 11111

situation, using the implementation CAD
tools, this description is mapped into the LC set, which is placed into the target
chip, and the proper wire route set is found. The resulting configuration file can
be stored in the configuring EPROM or be directed in FPGA.

Consider some VHDL description examples for LNs of different kind. The
decoder in Fig.1.17 can be described by the following parallel statement

with A select

D<="00000001" when "000", "00000010" when "001",
"00000100" when "010", "00001000" when "011",
"00010000" when "100", "00100000" when "101",
"01000000" when "110", "10000000" when others;

Here the signal A is the input address, which selects one of alternative codes
to assign to the signal D. Therefore this statement is called as the selective parallel
assignment statement. Both signal A and signal D is, so called, bit vector. The
digits of D represent the proper decoder outputs. This signal has to be declared as
port in the entity as the following

D : out bit_vector(7 downto 0);

Here the word downto shows that the bits in this vector are numbered in the
descending direction, from D(7) down to D(0). The decoder can be used as part of
larger description, then the signal D is not outputted to the outer space through
the port, and is consumed in inner subnetworks. Then it has to be declared as the
signal in architecture body before the word begin as the following

signal D : bit_vector(7 downto 0);

The multiplexor can be described by the Boolean equation like (12), or by the
following two parallel assignments

with X select
T<=D0 when "00", D1 when "01", D2 when "10", D3 when others;
Y<=Tand E;

Here T is the intermediate signal, the bit vector X represents the address of the
multiplexor input, and E is the enable signal.

The priority encoder shown in Fig.1.23 can be represented by the following
when-else statement
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A <="1001" when D9='1" else "1000" when D8='1' else "0111" when D7="1" else
"0110" when D6="1" else "0101" when D5="1' else "0100" when D4='1' else
"0011" when D3="1" else "0010" when D2='1"' else "0001" when D1="1' else
"0000" when D0="1" else "1111";

The operator '=' compares bits and returns true when they are equal to each
other. The when-conditions are proven sequentially. The signal Dy is proven as
the first one, then Dy is proven, etc. Therefore, Dy has the higher priority level.

VHDL proposes effective tools to describe shifters. For example, the right
logic shift operation to A bits is described by the following operator

Y<= Xsrl A;

Here X is bit vector, and A has to be declared as integer.

Consider the example of the full comparer design. Such a network compares
the bit vectors A and B, representing positive integer values. It outputs signal
Ag=1 when they are equal, signal Ap=1 when A>B, and signal Ax=1 when A<B. The
following VHDL program describes such a LN.

entity COMPARATOR is

generic (n:integer:=8); -- bit width of A and B
port (A,B: in bit_vector(n downto 1); -- input dates
AE, AP, AM: out bit); -- equal, positive difference, negative difference

end COMPARATOR,;
architecture LOG is
signal aei,api:bit;  -- intermediate results
begin
aei<='1' when A=B else '0';
api<='1' when A>B else '0';
AE<=aei; AP<=api;
AN<= not aei and not api;
end LOG;

The words after two hyphens mean the comments. Identifiers aei, api are the
inner network signals, and are declared in the architecture as signals. The opera-
tors '=" and '>' compare the bit vectors and return the true value when they are
equal or left operand is higher than right one, respectively.

The generic clause shows that the network can be adjusted by the generic
constant n. The integer n means the bit width of input data. For this property this
project is multipurpose one, and can be adjusted to different bit widths in the
projects where it is used as the component. Moreover, during its instantiating,
some outputs can be left open. And in this situation, the synthesis compiler will
remove the unnecessary networks, which are directed to the open outputs.

The trigger behavior depends on its state in the previous moment of time.
Therefore, the behavioral description of triggers and networks based on them is
more complex than description of combinational circuits. For this purpose the
process statement is used. This parallel statement represents a small program,
which operators are implemented sequentially. There are input and output sig-
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nals of the process statement, and inner variables may be held. A subset of input

signals forms the sensitivity list. When any signal from the sensitivity list is

exchanged, then the process starts to run, and after implementation of its

operators it stops. At this moment of time all the output signals get its new value.
The latch in Fig.1.11 is described by the following process statement.

process(C,S,R) begin
if C="1"and R="1' then

Q<='0%

end if;

if C="1"' and S='1' then
Q<="1]

end if;

end process;

Here the list in the brackets is the sensitivity list; the sequential if-operators
realize the logic behavior of this latch. When C = 1 then the if-operators are
implemented sequentially and output signal Q accepts the value depending on R
and S, i.e. the latch is transparent. When C = 0, then the signal Q does not
assigned, i.e. it stores its previous value. When R = S = C = 1, the resulting value
is Q = 1, i.e. it is not undefined value, as for real latches. There are more complex
and precise VHDL models of such latches.

It is worth to be mentioned, that when the signal assignment is not implemen-
ted in some process running, then such a process describes some latch. In
another situation, the process describes some combinational circuit. For example,
the multiplexor in Fig.1.19 is described by the following process statement

process(E,D0,D1,D2,D3,X1,X0) begin

if E='1' then
if X1='0" and X0='0' then Y<=D0;
if X1='0' and X0="1" then Y<=D1;
if X1="1"and X0='0' then Y<=D2;
else Y<=D0;
end if;

else Y<='0";

end if;

end process;

The signal Y is assigned by some value during any process running, and it is
not a latch. Consider that the last else clause is absent, and then it is the multi-
plexor with the D latch at its output, which is controlled by the signals X1, X0.

To model the edge sensitive trigger the attribute ‘event is used, which returns
the true value, when the rising or falling edge of the proper signal occurs. Below is
the model of the D flip-flop with the clock enable, and asynchronous reset inputs.

entity DFFE is port(C:in bit; -- clock
D,R,CE: in bit; -- data, reset, clock enable
Q: out bit);
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end entity;
architecture beh of DFFE is begin
process(C,R) begin
if R="1' then
Q<=0" -- reset
elsif C="1" and C'event then

if CE=1" then -- clock enable is separated from the
clock condition

Q<=D; -- data loading
end if;
end if;
end process;
end beh;

Consider the design of the 8-bit shift register based on this FF entity, which is
functionally equal to one in Fig.1.32. The respective VHDL description is

entity RGS is port(C:in bit; -- clock
R: in bit; -- reset
SR,SL: in bit; -- shift right, shift left
DI: in bit; -- input data
Q: out bit_vector(7 downto 0));

end entity;
architecture beh of RGS is
component DFFE is -- component declaration
port(C:in bit; -- clock
D,R,CE: in bit; -- data, reset, clock enable
Q: out bit);

end component;
signal D,Y: bit_vector(7 downto 0); -- intermediate data
signal E: bit; -- FF enable
begin
D(0)<=DI when SL="1" else ‘0'; -- multiplexor of LSB
D(7)<=DI when SR="1" else ‘0'; -- multiplexor of MSB
MUX:for i=1 to 6 generate -- multiplexers for register inputs
D(i)<=Y(i-1) when SL="1" else
Y(i+1) when SR="1" else ‘0’;
end generate;
E<=SR or SL; -- logic of the register clock enable
RG:for i=0 to 7 generate -- 8-bit register
U_FF:DFFE(C=>C,R=>R,CE=>E,D=>D(i),Q=>Y(i));
end generate;
Q<=Y; -- register output
end beh;

In the declarative part of the architecture description the FF component, and
intermediate signals are declared. In the behavior description part the trigger
entity is instantiated in the network by the component instantiating operator.
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This instantiation with the label RG is implemented 8 times with the different
index 7 by the operator generate. Here the named binding of ports and signals is
used. The respective associative binding is

U_FF:DFFE(C,R,E,D(i),Y(1));

The named binding is preferable, because it provides less errors, and good
readability of the description. Moreover, in such a binding the order of ports in
the list can be variable. The operator generate, which is labeled by MUX, expands
6 times the operator, which describes the multiplexor at the i-th trigger input.
Due to the increment and decrement of indexes in assignments, for example,
D(i)<=Y(i-1), shifts right and left are implemented.

The counters can be described in VHDL as the set of FFs with the respective
LN. But the language provides more effective tools to do this. Consider the
counter, which is similar to one in Fig.1.36. This counter is described as:

library IEEE;
use IEEE.numeric_bit.all;
entity CT5 is port(R,CI: in bit; -- clock, reset, count enable
Y: out bit_vector(2 downto 0));
end entity;
architecture beh of CT5 is
signal Q: unsigned(2 downto 0); -- state of the counter

begin
process(C,R) begin
if R="1" then
Q<="000"; -- reset
elsif C="1" and C'event then
if CI="1' then -- count enable
if Q= 4 then -- state A
Q<="000"; -- state C
else
Q<=Q+1; -- direct counting
end if;
end if;
end if;

end process;
Y<=bit_vector(Q);
end beh;

In the first rows the library IEEE, and its package numeric_bit are attached to
the project. This package defines a set of types and functions, which are useful to
operate with bit vectors as with the integer numbers. The subtype means unsigned
that the respective bit vector is considered as the positive integer number without
a sign. The state of the counter is declared as unsigned, and therefore it provides
the increment operation Q+1 and comparing with integer Q = 4. As a result, the
counter behavior is described rather shortly and clear. To output the counter
state to the output port the near type conversion Y<=bit_vector(Q); is used.



2. Memory units

2.1 General properties

All the computing systems require the ability to "remember" the values of
binary variables. This is accomplished by using memory cells to store the variable
and then recall it as needed. These cells are found in a register, or as large arrays,
named memory units (MUs), that can store millions of bits of data.

Digital systems employ different types of MUs whose characteristics vary with
the application. One classification scheme is based on which operations are
provided by the cell design. A read/write memory is one where the user may store
values, hold them for an indefinite period of time, and read them out as needed.
It is usually called as random-access memory or RAM. In a read-only
memory (ROM), the information is permanently stored in the device before it is
used in the electronic system. A user may read the information out of a ROM but
is not permitted to change the data. A variation of this is the programmable
ROM (PROM) where the user may store the desired data, but the write
procedure requires a special electronics setup and is performed in a few times.

The MU parameters depend on each other. The MU volume increasing forces
its cost and delay increase. Therefore, in modern computers MUs are used, which
have different volume, speed, and they form the hierarchical system. The main
data storage in the computer is a RAM. This RAM is based on dynamic (DRAM)
or static (SRAM) memory ICs. The memory IC cost decreases approximately in
30% per year. DRAM is usually in 5 times cheaper than SRAM of similar volume.
Its energy consumption is less approximately in 4 times as well. But usually the
SRAM speed is in 2-3 times higher than one of DRAM. Modern synchronous
DRAM (SDRAM) combines in itself the high volume DRAM cell array and high
speed SRAM buffer. Due to the pipelined burst mode it provides the average
access time less than 5-7 ns.

There is a tendency to increase the RAM speed in two times per 5 years. But
due to the Moore's law, the twofold increase of the CPU speed occurs in two
years. This forces the increase of the margin between the CPU and RAM speeds.
The compromise solution was found, which consists in the use of small volume
but fast speed intermediate MU, where the frequently used data were stored. This
MU is named as the fast memory (FM). The representative of FM is cache-
RAM, which stores recently used pages of the virtual memory. Because the FM
speed depends not only on its technology, but on the distance to CPU, the most
effective way is to place FM near CPU in a single chip. The volume of such a FM is
limited by the chip technology, and is less than ca. 256 kbytes.

To increase the FM effectiveness, it is arranged as hierarchical FM. FM, which
is integrated in the CPU chip, forms a first level FM. FM, which is placed near
CPU, forms a second level FM. Often a third level FM is used. When CPU needs
new data and it doesn't find them in a first level FM, then this data is rewritten
from a second level FM to a first level FM, if any. Otherwise, this data is found in
a third level memory. To increase the data transfer speed, FMs of different levels
usually operate in parallel. When a portion of data is read from the first level FM
then another portion is rewritten simultaneously from the second level FM.
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Usually instructions and data are placed in different areas of the memory.
After reading, they are loaded into different parts of CPU: instructions come to
the control unit, and data enter ALU. Therefore, often FM is divided into two
parts of data FM and instruction FM. And such a division allows for reading both
data and instructions in parallel.

The large data arrays are stored in the non-volatile outer MU (NVRAM),
which have large volume (1012 —10% bytes) but relatively small speed. They often
are based on magnetic discs, and sometimes on tapes. Many recent NVRAMS in
portable devices like the memory sticks are based on flash EEPROM. The hard
disc drivers (HDD), named winchesters, are the most popular NVRAMs. Their
access time is 1-10 ms, and data transfer speed is 2—40 Mbytes/s. To adjust the
FM speed and speed of NVRAM it is arranged by the buffer memory of middle
volume and middle speed, named HDD cache.

The system of all MUs, which is used by the CPU, is named as a computer
memory. The mulilevel computer memory can be considered as a virtual memory.
Each level of such a memory is arranged by a special control unit, which provides
automatic data transfer between memory levels. This control unit usually uses
some strategy, which minimizes the average data access time. By the proper
access strategy the virtual memory behaves as MU with the volume of NVRAM
(~10" bytes) and the access time of FM (~10 ns).

2.2 Fast memory units

The access time of FM is much less than one of the usual RAM. FM is added to
CPU to minimize the stream of accesses to RAM, or the average RAM access time.
It increases the CPU speed, because it depends on the MU speed. Besides, the
data access in FM, and operations in ALU can be implemented in parallel.

FMs with direct, associative, pipeline and stack addressing modes are distin-
guished. By the direct addressing, the FM cells have the addresses from 0 to
m-1. The cell addresses are placed directly in the address field of the instruction.
When m is a small number, FM is usually called as a register file. To define the
register file address a small bit number is distinguished, for example, 4 by m=16.
In the direct addressing mode, the programmer or compiler has to optimize the
cell loading to increase the CPU speed, and this is a complex task.

In the associative addressing mode, the operand has not an address but a
tag or a set of tags. When the tag is input in the associative FM, then it outputs
one or several words with equal tags, or nothing, when tags mismatch. This
addressing mode is used in the cache memories, which are discussed below.

Two processing units often are connected through the buffer FM, with the
pipeline addressing mode. Such FM is considered as a set of registers, which
are connected in a pipeline. The source unit pushes the data in FM, and the
destination unit reads the pulled data in the very order, in which the data have
entered FM. This mode is named as first in — first out (FIFO). Hence, such a FM
is often called as FIFO. This FM is usually used when the source unit outputs the
data with unstable time intervals, for example, in the communication systems.
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In the stack addressing mode, FM is considered as a register stack. l.e. the
user has access only to a stack top, and can push the data to it or pull the data
from it. Hence, the read data is the data, which was pushed in the stack last time,
and this mode is called as least recently used (LRU).

2.3 Register file

The CPU provides a way to store data words that can be easily used as inputs
into its arithmetic and logic unit (ALU). These storage locations are made up of
several registers that are wired into the datapath in a convenient manner. Such a
group of registers is called as register file.

The register file can have a single input and output as the usual RAM has. But
to increase the datapath throughput, the register file has at least one writing
channel and one or two reading channels, which are associated with ALU ope-
rands. For example, the three-port FM provides loading of two operands of the
instruction in ALU and storing the result in a single clock cycle, which provides
the three fold increase of the speed. It should be mentioned that in FM with two
write ports the conflict situation can occur. When the writing to two channels is
provided, and equal addresses are used simultaneously, then the written datum
has the undefined value.

Consider the register file of 16 registers with two reading channels A and B,
and writing channel Q. Its structure diagram is shown on Fig.2.1. By the
addresses AB and AD the multiplexers MUXB and MUXD select one of 16

AB registers for reading. To write the data by the
address AQ = 1, and writing enable signal WE,

A

Q DIRG B one of the decoder DC outputs enables the
CLK ocl o . [Mux|—S clock signal CLK to the i-th register.

CE | B Such FM as well as RAM can be modeled in

: | — VHDL, and then synthesized in ASIC as a set

AQ : . S of triggers, which are addressed by the proper

WE | D|RG . b decoders and multiplexers. But the FM

C|[15 - |MUX{— description is more clear, when instead of

CE | D bit_vector type the array type is used. Consider

AD /r the mentioned above register file with the data

Fig2.1 width of 8 bits. Its VHDL description looks like

the following.

Library IEEE; use IEEE.numeric_bit;
entity FM16 is port(CLK,WE: in bit; -- clock and writing enable
AB,AD,AQ: in bit_vector(3 downto 0); -- 4-bit addresses
Q: in bit_vector(7 downto 0);  -- input data
B,D: out bit_vector(7 downto 0));  -- output data
end FM16;
architecture BEH of FM16 is
type TRAM16 is array (0 to 15) of bit_vector(7 downto 0); --register array type
signal RAM:TRAM16:=(others=>"00000000");-- array of 16 cells is initialized by zeros
begin
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RAM_16:process(CLK,WE,ADDR) -- process, which describes RAM
variable addrb,addrd,addrq:natural; -- intermediate address variables
begin
addrb:=To_integer(Unsigned(AB));-- bit vector is transferred to a natural value
addrd:=To_integer(Unsigned(AD));-- bit vector is transferred to a natural value
addrqg:=To_integer(Unsigned(AQ));—- bit vector is transferred to a natural value
if Rising_edge(CLK) then --clock rising edge finding
if WE="1" then
RAM(addrq)<= DI; -- data writing by the rising edge of the clock when WE=1
end if;
end if;
B<= RAM(addrb); -- asynchronous data reading by the address AB
D<= RAM(addrd); -- asynchronous data reading by the address AD
end process;
end BEH;

In such a manner the RAM of any volume can be modeled and then synthesi-
zed. Also the ROM can be modeled as RAM with specific cell initialization and
without the writing property. But usually the ROM is given as the array of
constants.

ER<
2.4 Stack memory @5,2

The stack FM can be implemented on the

base of the register file or RAM. Then the (1) S
operand address is derived from the previous rp | | CTR ocl M D
address by the increment or decrement to a 1. g -1 .

l.e. the addressing is implemented by a coun- +1 m ~
ter or by the array moving up or down to a OF>
single cell. The FM structure with the counter ER>
addressing is illustrated by Fig.2.2. When (&}~
writing (WR) of a word to the memory array Fig.2.2

M, a 1 is added to the CTR content. When
reading (RD), CTR is decremented to a 1. The next word is written to a cell with
an address, which is in a 1 higher than the previous cell address, and the reading
is implemented in the reversed order. Signals "FM is empty" (OF<), "FM is full"
(OF>) are formed in the zeroed and in m-th states of CTR. The error signals ER<
and ER> indicate the reading of empty FM and FM overflow.

2.5 Cache memory

The automatic exchange of data between FM and RAM is achieved in the
associative addressing mode. The FM structure with such a mode is shown on
Fig.2.3. It contains information MU (M), associative MU (CAM), control unit CU,
address register RGA, and data register RGD. Each data stored in M has a tag,
which is the data address, and which is stored in CAM. When addressing FM, in
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- RGA the address is written, and signals of

RD | cu = CMP | CAM| M reading RD and writing WR are entered in
CU. The address is compared with the

ML ﬁ?’{gﬂ addresses in CAM by a set of comparators
7 X D CMP. If the address is equal to some in CAM

A then the access is said to hit. In this

Fig23d situation the proper datum is read from M to

RGD or written from RGD to M. If the
address is not equal to any in CAM, the access is said to miss. Then CU organizes
the access to the outer RAM. The datum read from RAM is written to RGD and to
the empty cell of M, and its address is written to the respective cell of CAM. The
next reading of this datum is fulfilled from FM but not from RAM. When the
writing operation is implemented then the datum is written both in M and in
outer RAM.

When FM is in operation, all the cells of FM are full. Therefore, to access a
new address one of the cells has to be released. It is natural to release a cell that
is accessed less times. To distinguish such a cell CU contains a network, which
selects such a cell considering some strategy. The simplest strategy is the
following. Consider triggers Ti, which are tagged to i-th cells. At the beginning,
Ti = 0 for all i. If access to the i-th cell hits, then Ti = 1. This means that at least
one access to this cell has occured. If access to FM misses, then the first selected
cell is flushed, which Ti contains a 0. When at this moment Ti = 1 for all i, then Ti
=0 for all I, except one, which is selected for this access. To simplify the
assignment of the released cell, the randomized selection of the cell or the
selection due to the round robin rule is implemented.

The disadvantage of the associative FM consists in its hardware complexity
when its address volume is high. Its hardware effectiveness is increased when the
address-associative mode is used. Consider the example of the 8 kbyte cache RAM
of the i486 CPU. It contains 32-bit address bus and 4-byte data bus. One
associative cell contains four 16-byte rows of data and a 91-bit tag (see Fig.2.4).
The memory unit M contains only 128 associative cells.

Tags Data
21212121 4 3 16x8 16x8 16x8 16x8
A10-Aq row0 | rowl [ row2 [ row3 | cell 0
> DC row4 | row5 | row6 [ row7 | cell1
Memory ...
[T T T T Trow508]row509]row510]row511]cell 127
A 0—| MX \
317An 21 P 1 > Mx] o
g 2 i wnl V)
3 > MX
D
16?><8 MX
As—Ag 4 8

Fig.2.4



2.6 Memory integral circuits 39

The tag consists of four 21-bit address fields, 4 bits of the row correctness code
and 3 bits, which are used to find out the cell for releasing. 4 lowest address bits
select a single byte of a row. 7 middle address bits select the associative cell. And
the rest of them are the address code, which is compared to the proper 21-bit tag
field. When the access occurs, 7-bit address field selects a single associative cell;
four 21-bit comparators compare highest address bits with the proper tag fields.
If the comparing succeeds, and the data correctness bit is a 1, then the datum is
accessed. Otherwise, in the selected cell a row is released, to which the access did
not occur for a long time, and the datum from the outer RAM is written in it.
Simultaneously the respective tag field is corrected. We see that such a cache
RAM is based on the usual RAMs and on only four-address comparators.

Many microprocessor cache RAMs have the similar structure. They are
distinguished by MU volume, associative cell number, row length, etc. When the
access is missed, not a single byte is exchanged but a whole data row. Therefore, if
the address sequence is a randomized, then the average access time can decrease
in many times. But in most cases the address sequence is the incremental one, for
example, the program sequence. Therefore, the next instructions occur in the
same row, and cache misses happen more rarely.

2.6 Memory integral circuits

The MU can be a part of CPU or system on the chip. Here the memory cell is
usually implemented as a trigger. As a result, such a MU could not have large
volume (more than ~10° of bytes), and it consumes large power. This is the
reason that large volume MUs are usually manufactured as the separate ICs. Due
to the specific technology, special design of memory cells, read-write amplifiers,
decoders and multiplexers, such MUs have the minimized power consumption,
high speed and the volume up to ~10° of bytes. The memory ICs are divided to
SRAM, DRAM and EEPROM due to their technology and properties.

RAM stands for random-access memory, which means that any word in it can
be accessed in the same amount of time as any other word. The term static RAM
(SRAM) means that once data is stored in the RAM, the data remains there until
the power is turned off. This is in contrast with a DRAM, which requires that the
memory be refreshed periodically to prevent the data loss.

SRAMs are available that can store up to ~10’ bytes of data. For illustration,
we describe a CMOS SRAM that can store 2 K bytes of data. But the principles
illustrated here also apply to large SRAMs. Fig.2.5 shows the block diagram of
this SRAM. This MU has 16384 cells, arranged in a 128x128 memory matrix M.
The 11 address lines are divided into 2 groups. Lines A;g—A, select one of the 128
rows in the matrix using the row decoder DCR, which outputs are word lines WLi.
Lines Az—Aq select 8 columns in the matrix at a time, since there are 8 data lines.
The selection is performed by the bidirectional column 1/0 multiplexor MXCIO.
The matrix data outputs go through tristate buffers before connecting to the data
170 pins. These buffers are disabled except when reading from MU.
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WLo A SRAM cell (Fig.2.6) that stores one bit of

AsAs ! M data is (_:onstructgd by embedding the cross-
DCR| 128x128 coupled inverters in a large network that allows

us to set or reset the cell as a latch. The access

switches (SW) are controlled by the i-th word

line WLi, which is decoded by the row decoder.
When WLi = 0 the cell is isolated from external
influences and holds the bit consuming the
smallest leakage power. If WLi = 1 then both
switches are closed, which connect the bit line
D and bit-bar line D to opposite sides of the
cell. This allows us to writing to, or reading
from, the cell. The lines D and D are connected
to MUXCIO. The simplest cell is formed by 4
CMOS transistors of inverters and 2 transistors
of switches. This provides the small hardware
volume of SRAM. In a dual-port SRAM the
switches, bit lines and bit-bar lines are doubled,
as well as RDC and CIO are.

The truth table for the RAM (Table 2.1) de-
scribes its basic operation. Z in the 1/0 column
means that the output buffers have high impe-
dance outputs, and the data inputs aren’t used.

In the read mode, the address lines are

S| OE | WE Mode 170 pins| decoded to select 8 of the cells, and the
1] X | X lnotselected 7 data comes out on the 1/0 pins. In the
0] 1| 1 |outputdisabled 7 write mode, input data is routed to the
01 01 1 [read dataout| latch inputs in the selected cells when
01 X | 0 |write datain | WE = 0, but writing to the latches in the
cells is not completed until either WE = 1

WL or the chip is deselected.
T """ A DRAM array is similar to an SRAM array in that it
D allows us to store data using the concept of cell addressing.
The difference between the two types of MU is in the internal
c design of the cells themselves. The circuit schematic for such
S I a cell is shown in Fig.2.7. The cell consists of a single FET
! transistor and a storage capacitor Cs. This allows for a very
P high integration density and makes it possible to create a

Fig.2.7 single chip that has up to ~10° of cells.

When WLi = 1, the FET acts as a closed switch allowing a write or read
operation. A hold state is obtained by bringing the word line to WLi = 0, shutting
off the direct conduction path between the data line and the storage capacitor.
But closed FETs admit a small leakage current that removes charge from the
capacitor. This is an explanation that the data bit can only be held for a short
period of time (<100 ms). The data must be periodically updated to insure that it
is valid. This is called a refresh operation. It is performed by readout of the data,
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amplifying it, and then writing it back into the cell. In A-A;[ A0 [DRAM
modern ICs the row selection for reading forces the refresh of I
the whole row of cells. The refresh circuitry is included on the Ras RAS
chip and makes it appear that MU has long-term retention CAS DO
S =—=-OCAS
characteristics. Refresh rates are on the order of a few WE WE
kilohertz. For a single refresh clock one row of cells is DI
refreshed. To refresh the whole DRAM, all the rows have to
be traversed. Therefore, a thousand of rows are traversed Fig 2.7
with the speed of at least a few megahertz. 19.2.
The difference in row and column addres- Table 2.2
RAS | CAS| WE Mode

sing is usually utilized in all DRAM devices.
Consider the smallest DRAM device of the
volume of 65_ K bits, which drawing symbol is latched, refresh
shown on Fig.2.7. Its truth table (Table 2.2) 01 01 1 lread

shows the DRAM mode depending on control 0l ol o [writ

signals. The wafeforms in Fig.2.8 illustrate its
usual operation. RAS and CAS are acronyms for A

the row address select and column address gas —— —
select signals. When RAS = 1, the circuit stores

the data. When RAS = 0, CAS = 1, the row CAS /
address bits, which are set in the address bus, w=

are latched in the inner address register.
Simultaneously all the cells of the respective Fig.2.8

row are refreshed. When CAS = 0, the column

address bits, which are set in the address bus, are decoded as well as the row
address bits do. Simultaneously the writing or reading operation is implemented
depending on the WE signal, which is finished when CAS = 1.

As we see, the address in DRAM is loaded in two cycles. Due to this property,
the pin number of this IC is much less than this number for SRAM. The access
period is often minimized when the row address is latched a time, and the cells of
a single row are accessed using only the column address exchange. The disadvan-
tage of such a mode consists in the need of the outer address multiplexor, which
forms the row and column address bits. Nevertheless, modern SOCs and micro-
processors, which access the DRAM devices, usually have the special DRAM con-
trollers, which provide both address control and refresh control, not to say about
timing control, IC initialization, and control bit checking. Therefore, the DRAM
disadvantages are "unvisible" for the user.

Due to the deep address decoding networks, slow column data amplifiers and
two-cycle access mode, DRAMs usually had the access time of tenths and
hundreds of nanoseconds. Modern DRAMSs provide the high-speed access, thanks
to a set of improvements. A set of memory banks is placed in IC, which provide
the access in parallel. The whole address is the concatenation of row, column and
bank addresses. The DRAM ICs have usually bidirectional data bus with the
width up to 36 bit. To access the parts of this data (bytes, nibbles), the data mask
bits (DQM) are used. To provide the automatic refresh mode, DRAM has the

1 | X | X | notselected
0 1 X | row address
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refresh counter, which is attached to the row address register.

In SDRAMSs the network is pipelined, i.e. the input data, address, output data
and even the read row data are synchronously stored in the buffer register
networks for a clock cycle. Therefore, the read operation latency reaches 2—4
clock cycles. But the clock frequency increases up to hundreds of megahertz.

Besides, if a set of similar operations is performed, for example, reading
sequence, then a single access can occur in a single clock period. The fast page
mode (FPM) or burst mode serves to this process. In FPM, the row address is
latched, and the access is performed for different column addresses. To provide
the burst mode, the column address register is implemented as the fast speed
counter. Therefore, when CPU writes or reads a set of data to incremented
addresses, the burst mode is usually used.

To control the fast page mode correctly, its timing is programmed in the
DRAM controller by four figures. For example, the set 5-1-1-1 shows that to
implement the first access 5 clock cycles are need, and to access the second, third
and fourth data, it takes a single clock cycle. The DRAM controller has to consider
that DRAM operates in different modes (initialization, read, write, read burst,
write burst, no operation, refresh, load mode and others), which need the proper
timings. The RAS, CAS, WE, DQM signals are considered as a command word
and are stored by a clock edge. In the load mode, the address bits are considered
to be the control word, which controls burst length, burst type, access latency, etc.

CMOS technologies provide for a large variety of ROM circuits to be
manufactured. Although most of them allow user data to be entered. EPROM is
an acronym for Erasable-Programmable ROM. Programming in it is achieved by
a process in which a high voltage is used to transfer charge to a "floating"
capacitor of a memory cell. The capacitor is usually implemented as the gate of a
MNOS transistor. When the charge is present, then the transistor is open. The
charge is trapped on the capacitor and it cannot escape under normal
circumstances. In this type of devices, erasure is achieved by placing the device
under an ultraviolet light source, and keeping it there for several minutes. Now
these devices have been replaced by ones that can be erased electrically.

The electrically erasable EPROM (EEPROM, EPROM) has the advantage
that the data may be erased using electrical circuitry and does not require that the
chip be physically removed from the system. To erase the cell, the capacitor
voltage is reversed and the charge moves in the opposite direction. New
technology allows us that a large number of cells can be erased at a time. These
devices are called flash EPROMSs, with "flash" referring to the speed at which
the array may be erased.

The ferroelectric RAM (FRAM) absorbs in itself the advantages of DRAM
(high volume, fast speed) and NVRAM (data storing after power off). Its cell
circuit resembles the one of DRAM. The datum in it is stored not as a charge but
as a polarization sign of the cell capacitor. For this purpose, the capacitor is made
of the ferroelectric insulator. When reading, if the capacitor has changed its
polarization, then a 1 is considered to be read. But at this process, the polari-
zation is reversed, i.e. a 0 occurs in it. Therefore, the reading process is finished
by storing the read data back.



3. Networks for arithmetic and logic
operations

3.1 Arithmetic and logic units

In the first chapter, we discussed the design of networks for arithmetic and
logic operations like adder, subtractor, AND gates, shifter, etc. In the network for
arithmetic and logic operations of CPU or application-specific processor these
units are usually combined in a single unit, named as an arithmetic and logic
unit (ALU). Usually the ALU has two n-bit input data busses A, B and an n-bit
result bus D. The k-bit control word F can set one of 2% arithmetic or logic
operations. Additional input CI serves as the carry bit input. One or more flag
outputs are used for signaling carry output C, zero result Z, negated result N, or
overflow V.

The simplest way to design an ALU is to merge the outputs of the separate
units (adder, AND gate array, etc) by a multiplexor, which is controlled by the
word F. Such a network has potentially the maximum speed. But its hardware
volume is too high. Another approach consists in the synthesis of the
multifunctional LN, which contains n equal stages, may be, except first and last
one. And each stage, named a bit slice, represents the Boolean function of
operand bits A;, B, C;, and control word F. Sometimes the additional inputs and
outputs are needed, for example, to provide the shift operations.

Consider the design of a simple 8-bit ALU, which we name as a multipurpose
summator (LSM). It implements two arithmetic functions — addition and sub-
traction — and three logic bit-wise functions — a 1 output, AND and Exclusive OR.
The output flags are carry CO, negative result (sign) N and zeroed result Z. Let the
design is based on 4-input PLA cells. It can

be implemented on 4-input LUTs as well. Table 3.1

Firstly, the truth table for the outputs of |FyF; F,=0 F=1
the i-th bit slice of LSM is composed (see Di Ci+y Di
Table 3.1). In three sets of the control code F | g0 1 X X
the function D;is undefined and it is marked 01 X X AiBi

by "X". The subtraction is implemented as | 10 | g0BeG | AiBvACNCE: | X
an addition with negated operand plus a 1 717
(see the chapter 1.8).

The idea of the LSM synthesis consists in
the following. The output function can be A G
decomposed and be represented by the inter- E’i LNX LNo| D
mediate results Xj, Y; and Ci.1. The resulting > vl T —>
network is searched as the network in Fig.3.1. LNY
The output of the unit LNO implements the >

addition modulo 2 of X; Y; and C; i.e. —,
A@B©C;. Units LNX, LNY, and carry circuit LNC
CH-’I

AeBioG | AiBivAiCyvCiBi |Ai®Bi

LNC generate the proper operands X;, Y;, Cis1,
depending on the code F. The modulo 2 func- Fig.3.1
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tion of 3 bits is (see the chapter 1.2):

D; = XiYiCivXiYiCiv X YiCivX:YiCi.
Table 3.2
F(}F]_ F2 =0 F2 =1
Xi Y1 Ci+1 )(1 Yl
00 | Ai | A 0 Ai| X
01(A4;|X X Ai | AiB:

10 J Ai | Bi | XaVivXiCivCiYa| Ai| X
H; )

From this function we can derive

Cir, | the Exclusive OR function XeY;, when
X C; = 0. Now we can build the truth tab-
0 les of the functions Xj Y;, and Ci«q
X (Table 3.2). The "don't care" states of
2 Ci+1 by F, = 1 can be defined as zeros.
Fol[ X B:i [Bi]Bi] Pol[BY B [ B> [Bil Then Ciuy = Fo(Xi¥aXiCivCiY7), which
X |AiBi| X | Ai |AX4iBi [AB?{A:]| is a function of 4 arguments. The
Fi Fi value Ciy1 = 0 by F = 000 is formed
a) b)
. when C;j=0and Y;=0.

Fig.3.2 It is useful to do without LNX
unit, i.e. this unit outputs always X; = A;, and when C; = 0 we have D; = A@Y;.
When arithmetic operations are done, the function Y; is equal to B; for addition
and to B; for subtraction. To derive the function Y; for AND and a 1 operations,
we have to solve the following equations: A;®Y; = A;B; and AY; = 1. The solution
of the first equation is Y; = A;B}, because A®A;B ;= AjA{(1eB;) = AjeA®AiB; = AiBi.
The solution of the second equation is ¥; = A; because A; ® A; = 1. These solutions
are put in the Table 3.2. The Boolean function Y;is represented by KM, which is
shown in Fig.3.2 (a). Fig.3.2 (b) illustrates this KM, but with assigned "don't

cares". The resulting function is Yi= FoFAiB v FoF 1BivEF1BvFoF 1 A .
The function Cy has to be a 1, when subtraction, and a 0, when another
functions. If it is equal to the input signal CI, then it can be given the proper value
by outer networks. Carry flag is CO = Cg, sign flag is N = D; and zero flag is

Z=(Dy,vDyvDyvD)v(DyvDy,vDiv D). The synthesized ALU network is
shown in Fig.3.3. Its hardware volume is equal to 27 PLA cells or LUTs.

cs co
AO..A7
B0..B7 gg---g; o[PLA $8"'¢; 0[PLA %o PLA
FO..F2 1BL-B71 () Ny Y7 |1|LNC D1 || or
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The speed of LSM is found from the longest path. It contains seven PLA cells,
which form Cg, one cell to calculate Dg, and two cells to derive Z. The amount
delay is equal to 10 delays of PLA cells.

This LSM can be easily described by VHDL as the following

C<=1when CI='"1" else 0;
with F select

T<="011111111" when "000", —-al
RESIZE(A,9) + not B + C when "010",-- subtraction
RESIZE(A,9) +B+C when "011", -- addition
"0"&(A and B) when "101", -- AND
"0"&(A xor B) when others; -- XOR

D<=T(7 downto 0);
CO<=T(8);
N<=T(7);

Z<=not(T(7) or T(6) or T(5) or T(4) or T(3) or T(2) or T(1) or T(0));

Here signals A,B,D,T are of type signed, which is declared in the
IEEE.Numeric_Bit package. They support both logic and arithmetic operations, and
synthesis of respective logic networks. The temporary signal T is the bit vector of
the length 9. Its most significant bit (MSB) serves only to derive the carry bit CO
after addition. To provide the vector width match by the signal T assignment, the
resize function RESIZE and concatenation (function ‘&’) with zero bit are used. The
assignment depending on the code F is implemented as the selective parallel
signal assignment (with...select). The "don't care" meanings in it are assigned in
the when others clause.

This program piece can be inferred by the synthesis compiler as the adder-
subtractor and the logic circuit, which are coupled by a multiplexor. Hence, the
hardware volume of the derived network is much higher than one of the network,
shown in Fig. 3.3. This example shows the advantage of the manual synthesis.

3.2 Datapath

The main CPU units are the control unit and the datapath. The control unit
provides fetching and decoding the instructions, and outputting the respective
control signals. The datapath circuits provide the logic for every instruction that
can be performed by CPU. In general, the datapath network can be broken down
into three main groups of circuits: the register file, the ALU and the local MU.
The register file is a group of general-purpose registers, which are used to store
data words for use in the current chain of calculations. ALU provides all of the
arithmetic and logic functions. The local MU serves as a cache MU. It is included
in CPU to provide fast read and write operations that will not slow down the CPU
operation. The register file and cache MU were discussed in chapters 2.2, 2.4.

Consider the simplest datapath, which contains only register file (FM) and
ALU. The block diagram of the datapath, which utilizes the three-channel FM, is
shown in Fig.3.4. The block diagrams of its FM and LSM are shown in Fig.2.1, and
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Fig.3.3, respectively. The access to such a FM needs three addresses AB, AD, and
AQ. The datapath is connected to the outer space (I/O ports, RAM) through the
busses DI and DO. Through the bus DI the data is loaded into FM, and through
the bus DO the result is outputted using the load and store instructions.

To achieve the algorithmic completeness, the ALU needs the shift operation
implementation. The left shift can be implemented by addition of the same
operand (B+B=2B). To shift right a shifter SHU> to a single bit is needed. If it is
synthesized as one in the chapter 1.7, then it is represented by the two-input
multiplexor, which is controlled by the bit F>. The shifter has the shifted in bit
input QI and shifted out bit output QO.

When the two-channel FM is used, then only two address codes are needed.
Then the register-accumulator (AC) is of demand, which stores the second
operand. Two methods of AC switching are possible: at the LSM input (Fig.3.5)
and at the LSM output (Fig.3.6). The second method is preferable, because both
PLA and FPGA cells have the structure, in which the logic circuit result is stored
in a trigger. Therefore, AC can be mapped together with the logic circuits of
SHU> and LSM, and this minimizes both hardware volume and signal delays.

The simplest operations like addition, shift, logic operations are performed
for a single clock cycle. And the complex operations like multiplication, division
are calculated by the subprograms. In the RISC processors these subprograms are
formed by the processor instructions, and in the CISC processors they are usually
microprograms. In the second situation, the signals AB, AD, AQ, WE, F, CI, F>,
QI usually form the control fields of the microinstruction.

Qy ] AE,Q ! AB Q¥
AD,| FM
AQ
WE
i

D B
F
7\ LSM
—»{ SHU>
AC
DI MUX...D.B

Fig.3.4 Fig.3.5 Fig.3.6
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3.3 Binary multipliers

The multiplication is the frequently used operation in all the computers.
Consider the multiplication of natural values, i.e. unsigned integers X and Y:

P =YX = Y012 .. 40128 4302%) = 2 (Vg ... 42 (V%1 +2- (Y % +0))...),

where Y’ = Y2 That means that the multiplication affords up to n additions and
shifts, and it can be implemented as n iterations of the cycle IT;;; = 231 + Yxy)
by the initial conditions IT; = 0, i = 0. Such an algorithm is named as multi-
plication, beginning at the least significant bit (LSB) of the multiplier and with
the shift right of the sum of partial products. To implement this algorithm in
the network, the multiplicand register RGY, AND network for the bit
multiplication Yx;, adder SM for addition of IT; and Yx;, 2n+1 bit shift register
RGP of partial products IT;, and shift register of the multiplier RGX are needed.
The block diagram of such a multiply unit (MPU) is shown in Fig.3.7.

Table 3.3
Cycle | RGX | xi |RGY | RGPh | RGPI | Operation
0 | 1011 | 1 |1100] 00000 | 0000 | initialize
1 | 1011 |1 01100 | 0000 +Y
2 | o010l |1 00110 | 0000 shift
> RGP | 3 0101 |1 10010 | 0000 +Y
4 | 0010 | O 01001 | 0000 shift
Fig.3.7 5 | 0010 | O 01001 | 0000 +0
6 | 0001 | 1 00100 | 1000 |  shift
7 | o000l |1 10000 | 1000 Y
. . 8 | 0000 | O 01000 | 0100 |  shift
The register RGP consists 3 0000 1 0 01000 | 0100 ond

of the higher n+1-bit part
RGPh and lower part RGPl
Because RGX and RGPI shift the data in the same direction, and RGX becomes
empty in the operation process, then these registers can be combined in a single
register RGX (see the dotted line in Fig.3.7). Let we see an example of 4-bit
multiplication of 1100 to 1011. The state chart of this process is shown in the table
3.3. It is obviously, that the addition can be combined with the shift in a single
cycle. Then RGPh is an usual n-bit register, the sum is transferred from SM to
RGPh with the shift right, and the sum LSB is shifted in RGPL

This multiplier unit (MPU) structure and its behavior can be considered as
the multiplication scheme, i.e. the computational model, which represents the
multiplication algorithm. Such a scheme can be implemented as a subprogram in
the computer. For example, it can be programmed in the datapath, considered in
the chapter 3.2. Then RGX, RGY, RGPh are mapped in 3 registers of FM, LSM




48 3. Networks for arithmetic and logic operations

makes addition, SHU> shifts multiplier and partial products, bit x; is the shifted
out bit from SHU>, and it serves as the branch condition.

There are another three multiplication schemes, which are different in begin-
ning at LSB or beginning at most significant bits (MSB) of the multiplier and in
the shift of partial products or shift of multiplicand. This type of MPU is referred
to as a serial-parallel MPU, since the multiplier bits are processed serially, but
the addition takes place in parallel. Such kind of MPUs, and multiplication
schemes were widely used in computers in sixties and seventies. But now they are
implemented only in the simplest controllers and some application specific
processors. Instead, the parallel MPUs are most popular ones, described below.

Consider the 4-bit unsigned multiplication. On the bit level it can be
represented as

P=YX= 23x0y3+22x0y2+21x0y1+20x0y0+
+24x1y3+23x3y2+22x3y1+20x1yo+
+25xy3+24x2y2+23x2y1+22x2yo+
+26x3y3+25x3y2+24x3y1+23x3y0

2'p7 + %6 + 2ps + 2'pa + 2p3 + 2%pp + 2'p1 + Ppo

v3 V2 Vi Yo It is easily to understand,

that each row of this formula

X0 — & & & except the last one represents
x1 L 4 . a I_)artlal product of the multi-
/_5 /[ @ [ D— A 4 plicand Y to the bit of the

A A ?Aﬂ _[*,':A] multiplier X. Each bit product

J xyj can be calculated by a

single AND gate. The partial
[ | product summation consists
Al in the addition of the bit pro-
ducts with the equal weights
(columns) considering the
carry bits from the low bits.
The network, which calcula-
" P2 P1l PO tes this formula, is the
parallel MPU, and it is shown
in Fig.3.8. To build this MPU,
n® AND gates, n?— 2n one bit full adders FA and n half-adders HA are of demand.
The MPU components form an array. For this feature, this kind of MPUs is
usually named as the array multiplier. For an nxn array multiplier the longest
path from input to output goes through 2n adders, and corresponding worst-case
multiply time is estimated as 2nt4, where 4 is the full adder delay. This means that
the array multiplier speed is in 2 times less than the adder speed, considering that
the n-bit adder delay is nta.
After nxn multiplication the 2n-bit result occurs. When calculations contain a
set of products, then the data width can increase dramatically. To prevent this
process, products are usually truncated to n high bits. In this situation, the array




3.3 Binary multipliers 49

multiplier can be abridged, that minimizes its hardware volume. In Fig.3.8 the
dotted line shows the truncation line, which separates such

abridged MPU. To provide the result correctness, n+m Table 3.4 .
columns of the array are left, where m=2, 3, 4, depending on Data Vii){l'
n. able

Some algorithms are available for multiplication of 1.101 X

0.101 Y
0.000000 17,
0000101 +¥/8
0000101 17,

signed binary numbers. The straightforward way to carry out
such multiplication consists in complementing the multi-
plier and/or multiplicand if negative, multiplying the two
positive binary numbers, and complementing the product if

it should be negative. The procedure for multiplying signed 0.0101 12
. . . . . . . 0.011001 113
2's complement binary fractions is widely used, which requi- Lo11 >

res only the ability to complement the multiplicand. It is the
same as for multiplying positive binary fractions, except that
one must be careful to preserve the sign of the partial product at each step. If the
sign of the multiplier is negative, the multiplicand should be complemented in
the step of multiplying to the sign bit. The hardware is almost identical to that
used for unsigned MPU, except a complementer unit must be added for the
multiplicand. Consider an example of multiplying ¥ = 5/8 = 0.101 to X =
-3/8=1.101. The multiplication steps are shown in the Table 3.4.

In the application specific processors, the hardware multiplier to a constant is
widely used. Due to its specific structure, such a MPU provides both high speed
and small hardware volume. Usually this MPU is built as an adder tree. It sums
the multiplicand, which is shifted to different digit numbers, according to the
weights of a 1 in the binary representation of the constant. Therefore, the MPU
contains in average n/2-1 n-bit adders. This figure can be decreased to n/3-1,
when both adders and subtractors are used, and when the constant is decompo-
sed to bits 1, 0, —1. Consider MPU, which multiplies to the fraction C=0,110111.
By subtracting a 1 from LSB, it can be transformed to 0,111001. In such a man-
ner, this result is transformed to 1,001001. Then due to this multiplier represen-
tation, the product can be factorized as P = XC = X — 2‘3(X +2‘3X).

The derived block diagram of MPU is shown in Fig.3.9. Here the
small black rectangles mean the right shift of the data to the
respective bit number. It is easy to prove that the use of such
constant decomposition has decreased the adder number from 4 to “
2, which shows its high effectiveness. 3

MPU is easily described by VHDL, because the multiply =
operator is inferred by the synthesizer as MPU (if the operand types “
allow the use of this operator). For example, the operator p

P<=Y*X; Fig.3.9

1110001  P=II,

X

represents the MPU, which gives the n+m-bit product P from n-bit multiplicand
Y and m-bit multiplier X. If X and Y are of unsigned or natural type, then we
derive the unsigned MPU, if they are of signed or integer type, then the MPU with
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sign will be synthesized. If X or Y is a constant, then the compiler will try to
synthesize the constant MPU. Some synthesis constraints make the synthesizer to
implement the pipelined MPU, which has higher throughput.

3.4 Binary dividers

In most of computers, division is implemented as a subprogram, because it is
used rarely. In high-end CPUs, some microcontrollers and ASICs the binary divi-
ders are used. Just as binary multiplication can be carried out as a series of add
and shift operations, division can be carried out by a series of subtract and shift
operations. In one division scheme, the divisor is shifted right, the dividend is
motionless before each subtraction. In another one, the dividend is shifted left,
and the divisor is fixed. Consider the binary

I divi o
ivider example for positive numbers, based

| RGX ||RGYh |"‘| RGYI |< on the second scheme. It contains 2n+1-bit
X Yi i dividend register RGY, n-bit divisor register

RGX, quotient register RGZ, subtractor SM,
as shown in Fig.3.10. The shift register RGY is
i divided to the high RGYh and low RGYI parts.
Fig.3.10 On each step i the divisor X is subtracted
from the remainder Y;in RGYh, Y;— X = S;. If
the result overflows, then the carry out bit is CO = 1. That means that the recent
bit of the quotient is a 0. Otherwise, the result bit is a 1 and S; > 0 is stored in
RGYh. After that, RGY is shifted left, and the bit of the quotient is shifted in RGZ.
The first step proves that RGYh content is less than the divider. Otherwise, the
quotient overflow occurs. After n steps in RGYh the remainder remains, and in
RGZ the quotient is. To get the remainder at its correct position, the register RGY
is not shifted at the last step. Consider X = 1101 = 13, Y = 10000111 = 135. The
state chart of the division process is shown on the Table 3.5. We get the correct
result Z = 1010 = 10 and remainder 101 = 5, i.e. 135/13 = 10 with a remainder 5.
This network hardware can be minimized, when the quotient bits are shifted
not in RGZ but in RGYI substituting the low bits of the dividend (see the dotted
line in Fig.3.10). The speed can be increased, when shift and subtraction are
performed in a single cycle. The shift is done by the additional multiplexor, which
selects shifted output of SM or RGYh to load in RGYh depending on signal CO.

Control

RGZ

Table 3.5 This multiplexor' can be remove(‘L
Cycle | RGYh | RGYl [CO| RGZ | Operation when anqther division S‘Chema 1S
0 1010001 o111 0 | 0000 | initialize used. In it, the subtraction result
1 101000 0111 | 11 0000 X (even the negative) is stored in
2 110000 | 1110 | 0 | 0000 Shift RGYh in each step, and in the next
3 100011 | 1110 | O | 0000 X step, to the negative remainder the
4 | 00111 | 1100 | 0 | ooo1 Sshift dividend is added but not sub-
5 [o00111 | 1100 | 1 | 0001 -X tracted.
6 |o01111] 12000 | 0 [ 0010 shift The binary divider achieves the
7 | 00010 | 1000 | O | 0010 -X maximum speed when it is built as
8 00101 | 0000 | O | 0101 shift an array LN. Such a divider con-
9 00101 | 0000 | 1 | 0101 -X
10 00101 | 0000 | O | 1010 | shift,end
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sists of n stages; each of them subtracts the divisor from the remainder calculated
in the previous stage, and derives a single result bit.

The division of signed data consists in complementing the divisor and/or
dividend, if negative, division the two positive binary numbers, and comple-
menting the quotient if it should be negative. However, some algorithms combine
the data complementing with the division flow.

The division is simply described in VHDL by the operator slash "/". But the
synthesizer infers this operator only as a shifter, when the divisor is equal to 2.
Therefore, the binary divider should be described carefully as its behavior. The
simplest unsigned divider of 8-bit dividend Y to 4-bit divisor X deriving 4-bit
quotient Z is described by the following process statement

process(X,Y)
variable yi: unsigned(8 downto 0);
variable si: unsigned(4 downto 0);
begin
yi:=Y&'0";
foriin0 to 3 loop
si:=yi(8-i downto 4-i)-X; vyi:=yi;
if si(4)="1' then
Z(3-i)<="'0";
else
Z(3-i)<="1"; yi(8-i downto 4-i):=si;
end if;
end loop;
end process;

where the for - loop statement implements 4 division iterations, each of them
derives a single result bit. Note that all the signals are of unsigned type, which is
declared in the IEEE.Numeric_Bit package. When compiling, the for — loop state-
ment is unrolled, and each iteration is inferred as a stage of the array divider.

3.5 Hardware pipelining

Pipelining is a special processing method, which makes it possible to
execute simultaneously several computations on the same hardware by using its
different parts. In this case, the computation is divided into execution steps and
different steps are executed by different pipeline stages. A new computation is
started before the old one finishes its execution. Several computations co-exist in
the same pipeline, each of them being in a different execution phase. Hardware
pipelining and software pipelining are distinguished. The first one is usually
implemented in the datapath and in the control network of the computer. The
second one is arranged at the software level, and it provides the effective
utilization of the hardware pipelining, or plans the computations in separate units
in the pipeline manner.

Consider the datapath, which implements the operation S = AX + Y. The
datapath contains the input and output registers RGA, RGX, RGY, RGS,
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multiplier MPU and adder SM (see Fig. 3.11(a)). The minimum clock cycle for

this network is equal to the maximum delay
[RGA|RGX[RGY| [RGA|RGX|RGY| between the outputs of the registers RGA,
RGX, RGY, and input of the register RGS, and
is estimated as

Terky = tm +ts = 3ts.

We decompose the operation to two sequ-
ential steps: P = AX and S = P + Y. The result
of the first step is stored in the intermediate
register RGP, named as the pipeline register.
The additional pipeline register RGY2 is
needed to delay the operand Y to a single clock. The resulting pipelined datapath
is shown in Fig. 3.11(b). Its minimum clock cycle is estimated as Tcrx, = max(tu,
ts) = tm = 2ts. This means that the hardware pipelining provides the 1,5 times
increase of the clock frequency of this datapath.

When the calculations are planned properly, i.e. the input data loaded in the
input registers in each clock cycle, then the pipelining provides the respective
throughput increase of this datapath, which asymptotically achieves in our
example the figure 1,5. To find out such a calculation plan, usually the
reservation table is used. It is, in principle, a timing diagram, which shows the
flow of data through the data path units. Each row of this table represents a data
path unit and each column represents a time step. When the mark is set in a cell
of the table, it means that the pipeline stage represented by this row is used

during the execution step indicated by the column. A

Table 3.6 set of marks filling the table represents the execution

Step |1[2[3|4|5| pattern for a given computation.
RGA | X * Consider the datapath in Fig. 3.11(b) with the
RGX | X * shortened register RGY2 (i.e. it is absent). Then the
RGY | X | X : * possible reservation table filling is in table.3.6. Here
I\ggl; X X " marks X and * mean the data of two neighboring
M X % computations. We see that RGY has to store the
RGS X % | operand Y for two cycles to provide the correct
addition operation. As a result, we have not any profit
Table 3.7 of the pipelining. Table 3.7 is the reservation table,
Step [1]2]3]4]5 which considers the register RGY2. In this situation,
RGA | X | * the computations are made in the pipelined mode
RGX | X | * providing the high throughput.
RGY | X | * By the deep pipelining, the logic network is cut
MPU | X | * several times by the pipeline registers, minimizing
RGP X | * the critical path. Therefore, the hardware pipelining
RGY?2 X|* is widely used in modern computers, first of all,
SM X|* because it provides the increase of the clock
RGP X]* frequency. Other goals are the signal integrity in the

circuits, network hardware reusability, power consumption minimizing. The
hardware pipelining is one of the principles of the RISC processor architecture.
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4.1 CPU control unit

In the previous chapter it was mentioned, that the CPU consists of the control
unit (CU) and the datapath, and the problems of the datapath design were
enlighten. This chapter is devoted to the problems of the CU design. The von
Neumann model of a computer is based upon a repeating four-cycle procedure
to execute a program.

During the first cycle, named as instruction fetch, the CPU sends a signal to
MU, telling it which instruction is needed. MU responds by sending the
instruction to the CPU, where it is held in CU.

During the instruction decode cycle, the process is held of interpreting the
instruction and determining what needs to be done within the CPU to implement
this operation. The derived information is sent to the datapath from the CU.

The third cycle is the instruction execute. After the datapath receives the
information from the CU, the instruction may be executed. The datapath receives
the necessary input data, either from MU or a local storage within the datapath
itself, and outputs the results.

In the storage cycle, the results are stored back in MU.

Every instruction in the program is treated using the same sequence of
procedures. CPU repeats the same four cycles so long as the program is running.
The main difference among the instructions is handled by changing the function,
performed by the datapath network. Some instructions, which perform the
program branches, may not control the datapath at all.

All the mentioned above functions except ones implemented by the datapath
hardware are to be performed by the CU. These functions can be divided into
categories depending on the purpose and target of them. The fetching functions
control the instruction flow. They are responsible for fetching the next instruction
depending on a set of conditions. They are condition branches, subroutine calls,
etc. To recognize which of the functions have to be computed, CU implements an
instruction decoding function. The datapath control functions provide the
proper control flow for the arithmetic and logic operations in the datapath. The
addressing functions provide the proper data addressing depending on the
given addressing mode. Some functions handle with the memory
management including virtual memory support, page mapping and memory
cashing. Tasking functions provide the simultaneous computing by CPU of a set
of tasks, for example, in the multiprogamming mode. Here the context
switching functions take place.

An exception is an interruption of the normal flow of instruction processing.
There are two situations, in which this occurs. The first, which is called as a trap,
occurs when CPU recognizes that the execution of an instruction has caused an
error of some kind (overflow, fall in the protected address area, etc.). The second,
which we call an interrupt, occurs when a device external to CPU signals that a
certain event should be processed. Usually CPU has hardware support for
interrupts and traps, which we concern as the CU function as well.
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4.2 CPU instruction set

The instruction word can be decomposed to operational part, named
opcode, and address part. In the opcode the code of the function is placed, which
implements the CPU when this instruction runs. Obviously, if more bits are used
in the opcode, then more distinct instructions can be supported. The cleanest
approach is to use a fixed number of opcode bits for all instructions. In practice, a
designer will recognize that certain operations are much more common than
others, and its opcodes can be shorter. For example, if we have determined 4-bit
opcode for the most commonly used instructions then 16 possible bit patterns are
available. 15 of these are used for the most common instructions, and 16-th is
used to indicate all of the other instructions. Additional bits then attached to the
instruction format so that these less common instructions can be distinguished.
Due to this principle, the Intel complex instruction set computer (CISC) opcodes
were selected, which number of opcode bits ranges from 5 to 19.

On the other hand, the reduced instruction set computer (RISC) designs
strongly favour short opcodes and small number of uniform instruction formats,
preferably all of the same size. The regularity of these formats simplifies the
instruction decoding mechanism and pipelined instruction implementation.

The information about operand and result addresses, and place of the next
instruction stays in the address part. Four, three, two, one, and zero address
instructions are distinguished depending on the number of addresses, which are
given in the instruction. One kind of zero address instructions distinguishes the
implicit operand address, for example, a separate register like accumulator. The
instructions of another kind carry in itself the, so called, immediate operand.

The address number depends on the addressing spaces and it is usually
optimized when the instruction set is selected. One hand, the many address
instruction can substitute a set of short instructions, providing the performance
increase. The other hand, the modern MU address spaces afford the address
length up to four and even eight bytes, and many address instructions take a lot
of memory space and decrease the instruction access time. Therefore, the instruc-
tion format selection is a complex optimization task. It is usually finished by
comparing the time of the testbench program implementation on the CPU models
with different instruction sets.

One of the ideas of the RISC computers consists in division of the instructions
to ones, which handle only with the datapath, and others, which do not. The first
type instructions are three and four address instructions. Here the addresses of
the register array are used, which are 4-5-bit width codes (sometimes up to 7).
And the second type instructions are zero, one, and two address instructions. In
the two-address instruction, first address points to the MU cell, and the second
one is the register address. Such instruction provides the data loading to or
storing from the register.

The address field can represent either direct address or code, which plays the
distinguished role in the address calculation, i.e. for the indirect addressing. CPU
can provide a lot of addressing modes. In choosing a set of addressing modes, the
issues of instruction complexity versus utility arise as well.
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4.3 Control unit structure

At the beginning of the chapter, a set of functions of the CU was declared.
These functions can be implemented in the separated and relatively independent
units. The CU of the common CPU contains the instruction fetch network IFN,
address and memory management unit AMMU, interrupt handling unit IHU and
finite state machine (FSM) or microprogram controller (MPC) for the control
algorithm implementation. Its approximate structure is illustrated by Fig.4.1. The
instruction fetch network consists of program counter (PC), instruction register
(IRG) and instruction decoder DC. IR contains opcode field OP and address fields
Al A2,

IRG holds the binary instruc-

iond
s Instruction tion, which opcode is decoded by
Interrupts IRG the instruction decoder. PC is
[pc ] [or] A1 | A2 ] used to maintain the flow of the
+q>‘ | program b}il counting the ins(;ruc—
tions as they are executed. It
IFN contains the memory address for
L) v ¥ Data the mnext instruction that is
address  retrieved and executed by CPU.
F_SM or MPC—  AMMU i — The instruction address from PC
BranchT ¢ Register is fed to the program memory,
condition to the datapath ' addresses and the corresponding data word
Fig.4.1 is transferred to IRG. If the

instruction order is plain, then the
next address is PC = PC + ¢, where ¢ is the spacing needed to get the next
instruction. For example, when the instruction length is 4 bytes then @=4.

Once in the IRG, the instruction is decoded by DC, which causes the instruc-
tion to be carried out. When the procedure is finished, the instruction is retired,
and the next instruction is fetched from the memory and transferred to the IR.
When the branch instruction is decoded then depending on the branch condition,
the code from the address field is loaded to the PC. Then the next instruction is
selected from the cell with the branch address. When the subroutine call
instruction is decoded, then before the call address is entered PC, its content,
increased to @, is stored into the address stack as the return address.

The address and memory management unit AMMU performs the data
address generation using a set of addressing modes like direct, indexed, based,
indirect addressing and its combinations. It provides for efficient memory access
by separating the notion of logical and physical memory accesses. It is respon-
sible for the context storing when the context switching occurs.

FSM or MPC generate the main control signal stream both for datapath and
for other units of the CU providing the correct implementation of the decoded
instruction. FSM is a sequential logic network, which implements some control
algorithms. Its state depends on the previous one and on the input signals. Its
outputs depend logically on its state and, may be, on input signals. MPC is a kind
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of FSM, which state is the state of the microinstruction address counter. Its
output signals are the bits of the microinstruction, which is selected by the
microinstruction address counter from the microprogram MU. MPC is simple for
designing and expanding of its functions, but its speed is comparatively small.
FSM is hard to design, but it is the fastest sequential machine with small energy
consumption. Because the FSM synthesis is fully implemented by CAD systems,
most of CPU is based now on FSM.

The interrupt handling unit fixes the interrupt signals and trap conditions.
After that, it provides selection of the signal with the highest priority and call of
the respective interrupt subroutine. By this process, the CU provides correct
program flow abrupt, storing the CPU state and restoring this state after the
return from the interrupt subroutine.

CUs are divided into central and distributed CUs. Above the structure of
central CU was described. Such CUs are used in the simple CPUs and microcon-
trollers. In the distributed CU, the master and slave CUs are distinguished. The
master CU decodes the opcode and gives only the general control signals. These
signals control the slave CUs, which implement the direct control of the
instruction implementation in parts of the datapath, address and memory
management unit and others units. For example, the separate slave CU can
control the datapath for the division and square root implementation. In the next
chapters, the CU parts will be discussed in details.

4.4 Instruction fetch networks

All the CPU instructions are divided into two categories depending on the
way, how the next instruction address is formed. The instructions of the first type
do not violate the natural order of the instruction flow. After finishing the instruc-
tion in the j-th cell, the CPU starts the implementation of the instruction in the
Jj+1-th cell. They usually are data moving, arithmetic and logic instructions. The
second type instructions make the conditional or unconditional jumps. For
example, the instruction JZ A, which is placed in the j-th cell, checks the condition
flag Z. If Z =1 then a jump to the instruction in the cell A is performed. If Z = 0
then a new instruction is one from the cell j +1. The unconditional jump instruc-
tion JMP A behaves as the instruction JZ for which Z is always a 1.

The diagram of the subnetwork, which implements these jumps, is shown in
Fig.4.2. If the instructions JMP or JZ are computed, and the jump condition satis-
. A |IR G fied (the trigger Z is in the state 1) then the next

instruction address is formed by writing the

bC address from the instruction in the PC. In other
7z cases the next instruction address is formed by
ST addition a 1 to the PC. The signal ST strobes the PC

and it is formed by FSM in the cycle of the PC
modification. In the network in Fig.4.2 a single flag
Z is analyzed for jumping. In the real CPUs a set of
flags are used for this purpose. For example, in the
microprocessor 18080 the jump is performed using
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four conditions Z, C, N, and V, and their negations Table 4.1

(see Table 4.1). The three byte jump instructions | Instruction |Jump con-| g o
contain an opcode byte 11xxx010, and two bytes of | mnemonics | dition
the jump address, where xxx is the condition code. INZ Z=0 000
One of possible subnetworks for implementation iz Z=1 |o001
of this jump mechanism is shown on Fig.4.3. INC C=0 |[010
In the previous example, a 1 is added to the PC JC cC=1 |011
because the MU cell is considered to have a length JpO V=0 | 100
of a single instruction. Most of CPUs have instruc- JPE v=1 |[101
tion sets with the variable length. This length is JP N=0 |110
usually proportional to 8 bits. In this situation, the M N=1 ]111

instruction fetch goes by one, two and more
bytes; each of them has its own address.

The instruction address is equal to its first IRG
byte address. Note that in many CPUs the
big-endian byte addressing of the word is
used, where the most significant byte is
stored in the lowest addressed byte. Then

the instruction address is equal to its last

byte address. Anyway, the next instruction
address is higher to ¢, where @ is the exe-
cuted instruction length in bytes. As a
result, to form the next instruction address the instruc- oP A ]IRG
tion decoder has to generate the code of the instruction DC |—|—u——|
length ¢, which is used as an increment to the PC. !

A simple network to do this is shown in Fig.4.4. The iPC
least significant bits of the PC are implemented as a \sm”__/
register RG with multiplexor and adder SM at its input.
The address increment code ¢ from some instruction 1] \MUX £
decoder output is added to the register content. The CTR RG
adder overflow is used as an increment signal to the WR
counter CTR, which form the most significant bits of Fioaa
the PC. When the jump is implemented, then the jump 18
address is loaded to counter and register.

In modern CPUs, the instructions of the length from 1 to 12 bytes are used.
The data and instruction bus width is equal to 4, 8 and even 16 bytes. Therefore,
the instruction information has to be read as words of respective length of 4, 8, 16
bytes in a buffer, and then the executed instruction has to be selected from this
buffer. Such a buffer is named as a prefetching buffer. In this buffer, a set of
instructions can be stored except one under execution. Because this buffer has the
high speed, it plays the role of a cache memory between CPU and slower MU. It is
very important in pipelined and superscalar CPUs. But a bad situation occurs,
when the instruction length is higher than one of the buffer, or the address of the
long instruction is not aligned to the word bound. Then this instruction is read
from the buffer in two steps as higher and lower parts.

N A |WIN|=O
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45 Finite state machines

FSM is a sequential logic network, which implements the given control
algorithm as the predefined sequence of its states. Its next state Si+; depends on
the previous one S; and on the input signals X]. Its outputs Y, depend logically on
its state Si. Such a FSM is named as a Moore FSM. When its outputs Y, depend
both on its state S; and on input signals Xj, then it is named as a Mealy FSM. The
FSM algorithm is fully described by its state graph (state diagram) or by FSM
chart. Modern CADs synthesize the FSM from its state graph automatically.

The nodes of the state graph represent the FSM states, and its directed edges
represent the branches from one state to another. In the Moore state graph the
node Sk is labeled by variables Yp, separated by a slash "/", which output a 1,
when FSM stays in this state. The edges are labeled by the input labels which are
the Boolean functions of the input variables, and which derive the branch
conditions. They can be labeled by the output labels that are output variables,
when it is the Mealy state graph. In Fig.4.5 is an example of the state graph,
which has both Moore and Mealy outputs.

If we label an edge XiXj/Y,Yy, this means that if
inputs X; and X; are 1 (we don't care what the other
input values are), the outputs Y, and Yy are 1 and other
outputs are 0, and we will traverse this edge to go to the
next state. For example, in the graph in Fig.4.5 the state
Sk remains the same when X1X, = 1 and it is exchanged
to the state Sk when X; = 1, providing the output signal
. Y; = 1. In order to have a completely specified proper

Fig.4.5 state graph, in which the next state is always uniquely
defined for every input combination, we must place the following constraints on
the input labels for every state Sk:

If F; and Fj are any pair of input labels (Boolean functions) on edges exiting
state Sk, then F; -F; =0, if i#j.

If n edges exit state Sk, and they have input labels Fy, F5, ..., Fy, respectively,
then FivFov...v Fp=1.

The first condition assures us that at most one input label can be a 1 at any
given time, and the second condition assures us that at least one input label will
be a 1 at any given time. Therefore, exactly one label will be 1, and the next state
will be uniquely defined for every input combination. For example in Fig.4.5
conditions are satisfied for all the nodes.

As an alternative to state graphs, a state machine flowchart, or FSM chart is.
Just as flowcharts are useful in software design, they are useful in the hardware
design of digital systems. The state in it is represented by a state box. It contains a
state name, followed by a slash "/" and an optional output list. A state code may
be placed outside the box. A decision box is represented by a diamond-shaped
symbol with true and false branches. The condition placed in the box is a Boolean
expression that is evaluated to determine which branch to take. The conditional
output box, which has curved ends, contains a conditional output list.

XX
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An FSM chart is constructed from FSM blocks. Each of them contains exactly
one state box, together with the decision boxes and conditional output boxes,
associated with that state. Block has one entrance path and one or more exit
paths. Each block describes the operation during the time that FSM is in one
state. A path through a block from entrance to exit is referred to as a link path.

Certain rules must be followed when constructing an FSM block. First, for
every valid combination of input variables, there must be exactly one exit path
defined. This is necessary since each allowable input combination must lead to a
single next state. Second, no internal feedback within a block is allowed.

It is easy to convert a state graph to an equivalent FSM chart. The chart,
which is equivalent to one in Fig.4.5, has three blocks — one for each state. The
Moore output Y3 is placed in the state box S, since it does not depend on the
input. Some condition nodes X;, X; have a single output. This is explained by the
fact that the Mealy outputs Y3, Y, appear in conditional output boxes, since they
depend on both the state and input. The resulting FSM chart is shown in Fig.4.6.

The FSM network is searched as the network shown in
Fig. 1.6. It contains a set of triggers and LN. Triggers store
the FSM state, orher words, they form a state register. The
LN consists of two parts. One of them generates signals D;,
which are the trigger stimulating functions. Another one
outputs the resulting signals Y;.

First of all, the states Sk are given the concrete values.
There is a set of methods of coding the states. The method
selection depends on the number of states, whether the
FSM is optimized for speed or hardware volume, or error
immunity. The one-hot coding means that for n state FSM
the n-bit wide state word is selected, in which a 1 stays in
the k-th position, when coding the state Sk. For example,
FSM with the state graph in Fig.4.5 would have the state Fig.4.6
coding 001, 010, 100. This coding is usually used when the
state number is small. It provides usually the highest speed, because the trigger
stimulating functions occur to be rather small. When the state graph contains the
long chains of nodes, the state register can be implemented as a shift register.

The natural number coding is used in most of cases, especially, when the state
graph contains the long chains of nodes. In the example on Fig.4.6, the codes are
00, 01, and 10. In this situation, the state register behaves as a counter. When the
states are coded by the Gray codes, then in most of state branches, only a single
bit of the code is exchanged. This serves both to LN minimization and to error
immunity. In the combined coding, the code word is divided into 2 or more fields,
each of them are coded by some coding method. Here the advantages of different
methods can be used. For example, when the code word has two n-bit fields,
which have one-hot coding, then such a code word can code up to n? states.

Then, the state table is built. This table has the columns of present state, next
state and present output. The next state column contains the subcolumns, which
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are coded by the bits of the input signals. These subcolumns show what next state
is for the given value of the input variable. The present output column has the
similar form. Table 4.2 is the state table for the FSM chart in Fig.4.6.

From the next state columns of the state table the trigger stimulating functi-
ons are derived, as signals that force the D triggers of the state register to be set:

Table 4.2
Present state Next state, X3XoX1= Present output, X3X,X1=
Z2Z1 [000]001]010]011]100] 101[110] 111]000] 001]010] 011 [100] 101] 110] 111
Sc00 |00]OL]|10| —Jo0|oOL]10] = Y,
S, 01 10 Y
Sq 10 10 | oo | 10 | 00 0 | Y, Y3

D1 = ZoZn(XaXoXivXaXoXiv XaXoX1vXaXoX1) = ZoZn Xy L
Dy = Z,71(X3XoX1v X 3Xo X1 v X XoX v XaXo X1 )V ZoZi v ZoZyv 27 X o =

= Z_ZZ_leleszZ_l}? 2.
Note that the don't-care states in the
= Y1 combination X,X; = 11 and in the state
XL| | +—T&]PLIpFT] Z»Z, = 11 (for D,) are assigned as a 1. The
X2 | R[1| ¢ & output functions are derived from the
Hg HD[TT|[Z2Hg L v3 present output columns as well:
lC I
X3 K A0 Yi=Zy Yo=2Xy Ya= ZiZvZoXs
C . . .
Fig.4.7 The resulting FSM network is shown in

Fig.4.7.

Once the state graph or the FSM chart is built, then the FSM can be easily des-
cribed in VHDL and then its network can be synthesized by a compiler. Here a
case statement can be used to specify what happens in each state. Each condition
box corresponds directly to an if statement. The following program describes
FSM with the chart in Fig.4.6.

entity FSM1 is port(C,X1,X2,X3:in bit;
Y1,Y2,Y3:out bit);

end FSM1;
architecture beh of FSM1 is
signal S,D:bit_vector(0 to 1); -- state codes
begin
LN:process(X1,X2,X3,S) begin --LN mode/
Y1<='0;Y2<="'0";Y3<="0"; --usual output states
case S is
when "00" => Y3<='1"; -- current state Sk
if X1="1" then

D<="01"; --next state
elsif X2="1' then
D<="10";
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else D<="00"
end if;
when "01"=> D<="10"; Y1<="1"; -- state Sp
when others=> if X3='1"' then -- state Sq
D<="00";Y2<="1"}Y3<="1";

else D<="10";
end if;
end case;
end process;
RG:process(C) begin -- state register

if C="1' and C'event then
S <= D; -- update state on rising edge of C
end if;
end process;
end beh;

The first process represents the LN of FSM, and the second process updates
the state register on the clock. The signals Y1, Y2, Y3 are turned on in the appro-
priate states, and they must be turned off when the state S changes. A convenient
way to do this is to set them all to a 0 at the start of the process.

The methods used to derive either state graph or FSM chart for a CU are
similar. First, we should draw a block diagram of the system we are controlling.
Next we should define the required input and output signals to the CU. Then we
can construct an FSM chart or a state graph that tests the input signals and
generates the proper sequence of output signals.

Consider an example of the CU design for the multiplier unit, shown in
Fig.3.7. Its operation is described by the Table 3.3. Let the unit starts his opera-
tion by the signal Start. The output control signals are register reset R, shift
signal Sh, register loading L, result ready Rdy. Because the output signals depend
only on the FSM state, the FSM is of Moore type, except the reset R. The
multiplier registers shift data not in the cycle, when the shift signal enters, but in
the next one. And the shift signals have to be generated in the previous state
comparing to the Table 3.3. The resulting state graph is shown in Fig.4.8. Let the
state coding is coding by natural numbers. The Table 4.3 is the resulting state
table. The trigger stimulating functions are the following:

D1=Zy; Dy=ZoZyvZpZo = Zy®Zy; D3= Z3®(ZoZy); Da= St ar t-(ZzZoZy);

The output signals are:

L=27,71; Sh=_2y; Rdy= Z;; R=Start-Z,.
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Table 4.3 We can see that this FSM behaves as a counter,
Present | Next state,| PTe- and really, it is that. Therefore, such FSM can be
state | gq= | Sent | based on the counter network, and on the contrary,

ZoZoZoZo [T | 1 |OWPUt|  counters can be synthesized as FSMs.
S, 0000 | 0001 | 0001 When a FSM becomes large and complex, it is
S, 0001 | 00100010 desirable to divide the machine up into several
2 X

S5 0010 | 0011|0011 smallfar FSMS that are hnkeq together. Each of that

FSM is easier to design and implement. Also, one of
S, 0011 | 0100|0100 . " s "

the submachines may be "called" in several different
S5 0100 | 0101|0101 . o . ..

places by the main FSM. This is analogous to divi-
Se 0101 | 0110] 0110 ding a large software program into procedures that
S7 0110 | 0111 0111 are called by the main program. Fig.4.9 shows the
Sg 0111 | 1000/ 1000 FSM charts for two serially linked FSMs, which have
Sg 1000 | 1000 | 0000 the common clock source. The main FSM A execu-
tes a sequence of "some states" until it is ready to
call the submashine FSM B. When state Sa is reach-
ed, the output signal Ya activates FSM B. FSM B
then leaves its idle state and executes a sequence of
"other states". When it is finished, it outputs signal
Zp before returning to the idle state. When FSM A
receives Zg, it continues to execute "other states".

As an example of using linked FSMs the CPU
can be considered, which contains the multiply unit
in Fig.3.7 as a component with the local FSM, which
the state graph is shown in Fig.4.8. When the mul-
. tiplication operation is decoded, the main FSM
Other sends to the local FSM the Start signal, which runs
states the multiplication. After multiplication finishing,
the local FSM falls in the idle state Sg and returns
the signal Rdy, which continues the operation of the
main FSM.

gg.—gz.—gu—gu—

4.6 Microprogram controllers

CISC computers obtained their large instruction set by using a technique
called microprogramming. The microprogram approach breaks down every
basic operation into a microinstruction. The microprogram is written in the
similar way as the computer program is. But the microcode instructions are one
level deeper and more primitive than assembly language. In fact, an assembly-
level instruction is created by using a sequence of micro-operations. Micropro-
gramming allows the designer to create an instruction by combining the
operations at the microcode level.

The block diagram of the usual microprogram controller (MPC) is shown in
Fig.4.10. Each microcode sequence is stored in a microcode ROM. When CPU is
given an instruction such as load word, the respective microcode sequence is
accessed. This sequence includes the operations: start, get address data from
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given register, send address to MU, get data from
MU, send data to given register, end. [op | A |IRG

By this process, the instruction opcode from
IRG is sent to the sequencer SEQ. The sequen-
cer is a unit of the MPC, which determines the
location of the microcode corresponding to the

specified instruction, reads the first micro-
instruction, then the second, and so on, until the
ch' ' Cv

COND

instruction sequence is completed. The type of

the microinstruction, like normal flow, conditio-

nal branch, subroutine call, etc., as well as the Fig.4.10

branch address information, is derived from

special fields of the microinstruction. The multiplexor MUX selects the input
signals COND, which serve as the conditional branch signals.

The control fields of the ROM are divided to ones with the horizontal coding
Ch, and ones with the vertical coding Cv. By the horizontal coding, each
control signal has its own bit of the microinstruction word. The disadvantage of
this coding is that for complex CPUs the microinstruction is too long (hundreds
of bits). By the vertical coding, a set of control signals, which could not occur as
a 1 simultaneously, are coded by a single bit field. They are generated by the
decoder of this field. As a result, the microinstruction length is much shorter. But
the critical path in the network is increased in the decoder delay, and some
independent control signals have to be generated in sequence. All this decreases
the CPU speed.

The microprogramming is a powerful approach for increasing the instruction
set of CPU. Adding a new instruction simply requires that additional code be
written and stored in the ROM, so that modifications to the instruction set do not
require extensive hardware changes. Comparing to FSM, the main MPC
drawbacks are the following. The MPC could not analyze large set of input signals
simultaneously (usually only a single condition), the number of independent
output signals (by the horizontal microprogramming) is limited by the
microinstruction width. Therefore, the microprogram can grow dramatically by
the cost of microinstructions, which prove a set of conditions and output many
signals (by the vertical microprogramming) in sequence, which is followed by the
unnecessary decrease of the CPU speed. The control of two executed instructions
is impossible, because only a single microprogram could run in a time. Therefore,
the parallel execution of the program in CPU, for example, by the pipelining, is
impossible too. The critical path in the MPC includes the condition selector,
sequencer, address decoder, ROM array, microinstruction field decoder, etc. As a
result, the MPC is usually too slow comparing to the FSM. The easy way of the
microprogram writing is not actual now, because all the modern digital hardware
CADs support the FSM design, and do not provide the microprogramming.
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4.7 Example of CPU design

Consider the design of CUs for the simplest but convenient CPU. It contains
RAM, three-port FM and a simple ALU, named LSM (see Fig.4.11). The access to
the asynchronous RAM needs the 13 bits of the address A (when the RAM volume
is 8K words) and the control signal WR. The access to the FM needs three
addresses AB, AD, AQ and write signal WR. When the FM volume is 8 words,
then AB, AD, AQ are 3-bit wide busses. The 3-bit wide control code F controls
LSM, which performs up to 8 operations. The shifter SHU performs the right shift
to a single bit. CU contains instruction fetch network (IFN) based on the program
counter (ICTR) and instruction register (IRG), and on FSM with the flag register
(CCRG).

¥ Consider CPU which per-
0::1_|__1'3_’ D forms arithmetic (AO) and
o MUX & C\/ ER%M logic (LO) operations, data mo-
ST ICTR cit > ving instructions from FM to
“=WE 45 0 RAM (FR) and in reverse order
A (RF), conditional (JC) and un-
c i 1 1 conditional (JMP) jumps, input
C_‘Il IRG (IN) and output (OUT) ins-
CEWE tructions. 4-bit wide code con-
=3 BYO: BYl:BY2 trols the arithmetic and logic
! c1 operations (3 bits for LSM and
e one for SHU, see Table 4.3).
FSM __;_CIO Three 3-bit wide address fields
) — needed for the FM. The
CCRG = 0 amount bit width is 13 bits,
—T X _ which gives 2%2%2%2° = 213
DI_,] DO different codes. In the instruc-
F¥ tions FR and RM the moving
Fig.4.11 cot Ic1o direction, FM address are

Table 4.3 assigned, which gives 2x2°x2™ = 2/ different codes.
FiFy| M=0 | M=1 Instructions JC break the natural instruction flow,
00 0 B-DvB-D| when the given condition is satisfied. Consider four

01 | B+D+Ci| BuD such conditions (RZ — zeroed result, SI — negative result,
10 |B+D+C:| B.D CO — carry output and ng) —lﬁshifted out bit) with its
11| BiD+C 1 inversions, then up to 8x2°=2"" different JC instructions
may occur, where 2*2 is the jump address number. The
IN and OUT instructions give the moving direction (to CPU or from CPU) and the
peripheral unit address (PU). The peripheral unit number is considered to be less
than the RAM volume, and then 2x2"* = 2 such different instructions may be.
The resulting amount of the instructions is estimated as 2'%. Then for the
instruction code at least 3 bytes are needed. But 3 bytes provide to code up to 2**
different instructions, which are redundant. This redundancy can be used to de-
crease some instruction length, especially for that, which code number is much
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less than 2. Such instruc- op BYO BY1 BY2
tions are two—byte ones. 76543210 76543210| 76543210
The instructions that need JMP 11111111 | 111 A RAM
the RAM address are the ]C 11111110 | ACC A RAM
three-byte  instructions. FR,RF 1111110%1| AFM A RAM
The derived instruction | INOUT | 11111111 (109 A RAM (A I0)
set is shown in Fig.4.12. 0 00001

To simplify the LN, 1 00011
which provides the add- | a0 [co | AQ [ 00101 | AB | AD |F1,
ress transfer from IRG to SI 00111 FO
ICTR, this address is Q0 01001
placed in the second (BY1) LO 10001
and third (BY2) bytes. The 0 10000
first instruction  byte 1 10010
(BYOQ) is used for opcode |SH>| CO | AQ | 10100
coding (OP). For example, SI 10110
the code 11111111 is used Q0 11000
for coding the instructions Fig.4.12

JMP, IN, OUT, the code

11111110 is used for JC, etc. In the instruction JC except the RAM address the
condition code (A CC) is placed. Such condition number is equal to 8 (4 direct and
4 inverse), and for their coding 3 bits are used, which are placed in positions 5, 6,
7 of BYL. In the instructions FR, RF these positions are utilized to code the FM
address, which plays the role in the data transfer. And the transfer direction is
coded by the zero bit of BYO, i.e. the code 11111101 represents the FR instruction,
and 11111100 — does RF.

To distinguish codes of instructions IN, OUT, JMP the positions 7, 6, 5 of the
byte BY1 have the coding 100, 101, and 111, respectively. Consider that input and
output are implemented through a fixed register of FM (say, the zero).
Instructions AO, LO output the codes in LSM, operand addresses AB, AD and result
address AQ. All these codes have the length of 3 bits. The instruction AO is
distinguished from LO, that the bit M blocks or unblocks the carry bits in LSM.
This bit has the position of the 4-th bit in BYO.

When the instruction AO is implemented, the carry in bit C; has to be con-
trolled. For example, when the subtraction B — D is calculated, then the addition
B + D + Ciis carried out, and the carry in bit has to be C; = 1. And by addition B +
D this bit is a zero. By the shift left operations the addition B + B = 2B is fulfilled,
and the bit C; plays the role of the shifted in bit. In general, in the LSB of LSM can
be put in O, 1, CO, SI, and QO from CCRG. Therefore, each AO instruction has 5
types (0, 1, CO, SI, and QO) depending on the bit, which is used as a carry input for
LSM. These types are coded by the codes 000, 001, 010, 011, 100, respectively,
which stay in positions 3, 2, 1 of BYO, and code 01 in positions 4 and 0 of BY1
distinguish the AO code.

The instruction LO does not afford the code for the carry input, because by the
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logic operations all the carry bits are blocked. Therefore, LO is distinguished by
the code 11 in positions 4 and 0 of BY1.

The right shift operations (SH>) are the single address instructions, because
the operand Q is loaded from FM, is shifted and is stored in the same register of
FM. By this process, the MSB is released, and it can be written as 0, 1, CO, SI, or
QO. Therefore, 5 kinds of this instruction are present. Because according to Table
4.3, LSM needs two operands, then LSM will translate a single operand, when one
of the following logic operations is implemented: B -D or BvD when B = D. If the
shifted in bit is coded as well as it is in AO operation, then all the needed coding
information can be placed in a single byte BYO (see Fig.4.12). It is important to
take in consideration by the FSM synthesis, that Fy = F3, which selects B -D or
BvD, and AB = AD = AQ.

The instruction cycle is the period of time, when a single instruction is
performed. The algorithm of the instruction cycle fulfillment depends on the
opcode and on the instruction length. Consider the two byte instruction, which
adds two words from FM. Then the instruction cycle consists of the next steps:

1) first instruction byte is selected from RAM by the address from ICTR;

2) this byte is stored in the first byte of IRG, and ICTR is incremented to a 1;

3) second byte is loaded in IRG as well as the first byte is in steps 1), 2);

4) operands B and D are selected from FM by the addresses AB and AD, and
they are transferred to LSM;

5) result from LSM is stored to FM.

The next instruction makes the steps 1) — 5) and so on. All these activities are
controlled and synchronized by the output signals of the FSM. Consider the FSM
which is built on the PLA cells, which triggers are switched on the rising edge of
the clock C. Then the waveform diagrams of the control signals in CPU looks like
ones in Fig.4.13. All the instruction cycles start from the clock cycle T; (the first
instruction byte fetching). At this process, the first byte address from ICTR is
transferred through the input 0 of the multiplexor (because C; = 0) to the input A
of RAM. This address selects a byte from the RAM, which is stored to 3-bit wide
IRG. For the proper CPU operation, these activities should be finished till the

T, T, T3 T4
I U e W e
IMP | CuCs CCa Cs Co M,
IC | CuCs C,,Ca Cs | Cy/CCC/CC| M,
FR |  CnCs Co,Ca CoCs CuCr | My
RE | CnCs Co,Ca CoCs | CuCaCro | M
IN Cy,C3 Cy,Cy Cy,Cs Cg,Co Ms
OUT | C,Cs C,Ca Cy,Cs OUT | M,
AOQ,LO C,,C3 Cy,Cy Cg Mg
SH> C,,C3 Cg Mg

Fig.4.13
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cycle T, beginning. The clock rising edge in T strobes this byte storing it in the
place BYO of IRG. This is provided by the signal C; = 1. This edge increments the
address in ICTR, controlling by the signal C, = 1. This means that the second byte
address of the current instruction or the first byte address of the next instruction
is calculated. This process illustrated by Fig.4.13, where the control signals are
indicated, which are equal to a 1.

The next activities depend on the opcode, which is stored in byte BYO. If it is
the code of the instruction JMP, then in cycles T> and T3 the second and third
instruction bytes are selected and fixed in IRG, and in the cycle T4 in ICTR the
jump address from the instruction field is fixed by the signal Cs.

The instruction JC waveforms are distinguished from JMP waveforms only in
activities in the cycle T, If the jump condition is satisfied (i.e. Cc = 1) then
microoperation Cg is implemented, else microoperation C; is (i.e. ICTR incre-
ment).

The features of the waveforms for instructions FR and RF are the next
instruction address forming in cycle T3 (signal C,), address transfer in the RAM in
cycle Ty (signal C;, in FR and signal Cgin RF). The signal Y, provides the word
transfer from the RAM through the input 1 of the multiplexor to the input Q of
FM.

In the cycle T, of the instruction IN, a byte is stored in FM (signal Cg) from the
bus DI (signal Cq provides that). The signal OUT in cycle T} of the instruction OUT
tells that the correct data will be set by the next clock edge in the outputs A and
DO for its output from the CPU.

Instructions AO and LO are two-byte wide ones, and instruction SH> is one
byte wide instruction. They are implemented for three and two cycles, and are
finished by the result storing to FM.

From the waveform diagrams (Fig.4.13) the decision is followed that the
control signals C; (i = 1,...,10) have to be formed according to the following
equations

C1 = TaMzvT4My; _
C. 2= Tl\/ TzM 1V T2M 2V TzM 5V TzM 6V TzM v T2M sV T3M 3V T3M 4V T3M 5V T3M 6V T4M 2CC;
Cs=T1;

C4= T2M 1v T2M 2V T2M 3V T2M A T2M 5V T2M v T2M 85

Cs=TsM1vTsMovTsMavTsMav T3Msv T3Me;

Co=T4sM1vT4M>Cc;

Cr=T4Ms3;

Co=ToMovTsM7vToMav ToMsvT3Msg;

Co=T4Ms;

C10=T4My,

where M; (i = 1,...,10) is a decoded opcode, i.e. (see Fig.4.13)
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M = BorBogBos'Boa'Bos: Bz Bor Boo B17-B16-Bis;
M3 = BorBogBosBoaBoz Boz Bo1-Boo;

M3 = Bo7BogBos*Boa'Boz Boz Bor Boo;

M= BorBog'Bos'Boa'BozBoz Bov-Boo;
Ms = BorBog Bos*BoaBosBoz B Boo B17-B1e+ B1s;
Mge = Bo7Bog* Bos' Boa Boz-Boz: Bo1 Boo B17-B1s* Bis;
M7a= _304'1?00; M1 = Boa-Bog-Boo;

Mg = BooBos,

where B;j is the j-th bit of the i-th byte of the opcode, M74 and M7;, are decoded
opcodes of the arithmetic and logic instructions.

From derived equations and diagrams it is followed, that the FSM contains a
set of AND gates and OR gates, decoder of opcodes and the clock cycle counter.
Its network diagram is shown in Fig.4.14. The array of 3x9 AND gates forms the
products T;:M; (i = 2,3,4; j = 1,...,9). The products T;-Mj may not be derived,
because in the cycle T; the signals C, and Cs are generated for any instruction.
The outputs of AND gates with the indexes i and j are OR-ed in the OR gates
according to the equations for Cx (k = 1,...,10). It is considered that the products
T4M,Cc and T,M,>Cc are formed in two steps: 1) the condition flag strobe S = TyM,
is formed, 2) the jump condition signals SC¢ and SCc are formed.

The analysis of equations Ci shows that they can be minimized, and at this
cost the logic hardware can be simplified. This is a usual praxis, but then,
regularity and visual properties of the FSM block diagram are lost.
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5. Interfaces

5.1 Common busses

The CPUs of first generations were built according to the centralized struc-
ture, in which all the units, like magnetic disc storage, 1/0 terminals, RAM, were
attached directly to the CPU, and they have operated under its control. Because
the speed both of CPU and peripheral units was relatively small, CPU most of its
time was utilized for the peripheral unit service. The common bus interface was
introduced at first in the computer PDP-8 in 1965. It has given the units the
opportunity to operate independently and then to send the data to each other. In
the common bus system, all the units are connected to a single bus through a
standardized hardware interface. Each pair of the units including CPU can
exchange the data. But in a moment only a single data exchange can be executed.
Therefore, all the units connected to the bus have to obey the common rules of
data exchange. These rules are named as an interface protocol. To attach a
new device to the bus, its hardware interface and protocol must satisfy the
common conditions of the bus.

The units, attached to the bus, are divided into masters and slaves. The
master occupies the free bus, activates the data exchange, and releases the bus
after exchange is done. Any unit can be master, but none couple of masters, or
none couple of data sources can be active simultaneously. The information from
the master is transferred to every unit, attached to the bus. The slave accepts the
information if it needed it. It can transfer the data to the master as well, if the
master selects this slave.

The electric circuit of the common bus is usually based on the open collector
(open drain) buffers or tristate buffers. The open collector bus has a single
loading resistor, which consumes the energy when the bus is in the low state, and
which value is high (hundreds and thousands of Ohms). The process of sending a
1 after a O consists in the loading the wire capacitance through the loading
resistor. Therefore, this process is rather slow, and the open collector bus is a low
speed bus. The tristate bus has none loading resistor. The opened transistor in
the tristate buffer serves as such a loading. Because the open transistor resistivity
is rather small (ones and tenths of Ohms), the capacity loading process is much
quicker, and such a bus has higher speed.

The bus wire behaves on the high frequencies as a long electric line. All the
ends or unhomogenities in it can reflect the signal, generating the noise. To
prevent this process, the special loadings are attached to the wire ends. These
provide the input and output impedance, which is equal to the line impedance
(50—200 Ohms). Many modern ICs, like FPGAs have the 1/0 buffers with the
programmed impedance, providing the proper adjustment to the bus line
impedance.

The bus speed is optimized by increasing the signal current or by decreasing
the voltage range of logic levels. Then the bus capacitance can be loaded more
frequently. The second way is more attractive because of power consumption
effectiveness. But by this process, the noise magnitude increases comparatively to
the signal magnitude. To increase the noise immunity, the low voltage dual signal
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lines (LVDS) are introduced. Such a line consists of a couple of parallel wires, one
of them transfers positive signal, and another one — does negative signal. The
signal receiver is built as a comparator of signals in both wires. If a noise is ac-
cepted by wires, it has the equal magnitudes in both of them, and these magnitu-
des are subtracted in the comparator inputs, providing the high noise immunity.

Often, especially in SOCs, common busses are implemented on the base of
multiplexers, as shown in Fig.1.21. Here the bus speed achieves its maximum, be-
cause the wire capacitance is minimized. Such a bus architecture will be discus-
sed below. The another speed limit of the common bus is caused by the data edge
skewing in unhomogeneous parallel busses. This skewing is a root of the data
synchronization problem, when the data are latched in the bus receiver. To solve
this problem, the input ports are arranged by the programmed delays, which
compensate the data skews. It is an opinion, that in the near future the inter-
processor communications will be held using the sequential transfers through a
single bit width lines, where this problem is absent. In this situation, the only
solution to route the data flows is the use of multiplexor or switching matrix .

The bus lines are divided to address bus, data bus, control lines, power lines
and reserved lines. Address lines transfer the source or destination address. Each
unit has its own address range and has to distinguish by own if the given address
belongs to its range. The data bus can be from 8 to 64 bit wide. Some busses like
AMBA have the wide up to 1024 bits. It serves for the data transfer between the
units with the given addresses. The control lines serve to point the transaction
type (read or write), to indicate if the unit is ready to send or receive data or
interrupt signals, to synchronize units.

If the bus provides a set of bus masters, a situation can occur when two
masters try to access the bus simultaneously. To resolve this problem the bus
arbiter is usually used.

The busses are distinguished as synchronous and asynchronous ones. Fig.5.1
illustrates the interaction of a master and a slave in the synchronous bus. The
master generates clocks C and sends them through a separate line to all the
slaves. It sets the slave address on the bus AB strobing it by the address acknow-
ledge signal AAK, and then it sends the request signal RRQ for data reading or
writing. AAK and RRQ can be combined in time. The slave outputs the data in
the data bus DB as a response to the master's signals. The synchronous mode in
this example consists in that, that all the signals have to appear precisely in
accordance with the common clock signal. If the slave could not output the data
in time, then it has to activate the line "wait" and deactivate it if the data is ready.

Fig.5.2 illustrates the interaction of units
attached to the asynchronous bus. The
master unit outputs address to the line A and

AB—_——»— the reading request RRQ. The last one is simul-

AAK — \ taneously an acknowledge signal of the add-
RRQI\— ress correctness. The master activity is marked

as Uwm. All the slave units, which activity is
DB ) marked as Us, decode the address. Only selected
Fig.5.1 unit, which address satisfied, outputs the data D

12345678
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to the bus DB, and it acknowledges the data  AB
correctness by a signal in the line DAK. This RRQ
signal strobes the data input in the master.

After data receiving, the master resets the DB
signal RRQ signaling that the data is already pak
not affordable. By this signal, the slave releases —
the bus, setting it in the state of the high Un
impedance, and it resets the signal DAK. It Us
shows that the reading transaction is finished. address

Comparing synchronous and asynchronous decoding
busses, we can assign the simplicity of the Fig.5.2
synchronous bus, and the flexibility of the asyn-
chronous bus, which helps to devices with different speeds to operate together.

In the previous examples, the data transfer is performed by a single word and
it consists of two steps: address set and data transfer. Such a transfer mode slows
down the data array transfer, which is often used, for example, in the data
exchange between DRAM and NVRAM. To speed up such transactions, many
busses implement the block data transfer, in that the first word address is
followed by the block data length. Because the neighboring word addresses in the
block are different in a 1, both master and slave automatically form them using
the built-in counters. Such counters are named as direct memory access (DMA)
counters, and units, which provide the block transfer, are named as DMA units.
As a result, a single word transfer is decreased in the time of address setting, its
decoding and acknowledgement.

D output

5.2 AMBA interface in SOC design

A new approach to SOC designs is the use of platform technology. The
platform is a standard flexible integral architecture, which general properties
have to be not exchanged for several years. The platforms can be implemented
both in ASICs and in FPGAs. These platforms have libraries that contain pre-
designed and pre-verified intellectual property (IP) cores. An IP core is a docu-
mented project of a module, which can be adapted to the customer needs when it
is customized in the SOC. Users can mix-and-match the functional IP core from
the library to assist in design of the SOC. To connect IP cores together succes-
sfully, they have to be arranged with the standardized interfaces and communi-
cate with a particular bus protocol. Below the AMBA interface is described as a
bright representative of on-chip busses, which are widely used in the SOC design.

The ARM processor is a most widely used RISC architecture built in the SOC.
The ARM processor is provided with the AMBA bus, which is an open speci-
fication from the ARM corporation. This bus can be used not only with the ARM
CPU but also with another CPU cores and application specific devices. The pro-
perties of the AMBA bus are similar to ones of another standard busses like IBM
CoreConnect bus, Altera Avalon bus, VSIA Virtual Component Interface, and
others. In the AMBA bus architecture there are three distinctive busses:
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advanced system bus (ASB), advanced peripheral bus (APB), and advanced high-
performance bus, called the AHB.

Several masters and slaves can be connected to the AHB, but at a time only
one master is allowed access. The master to be allowed access is selected by an
arbiter. The AHB-APB bus bridge serves as a slave on the AHB, and the only
master in the APB. The various low performance peripherals on the APB serve as
the APB slaves. ASB is an alternative system bus suitable for use where the high-
performance features of AHB are not required. Below the AHB is considered,
which shows the main properties of the AMBA bus. Its signals are the following:

HCLK — bus clock. All signal timings are related to the rising edge of HCLK;

HRESETnN — bus reset signal, is active low and is used to reset the system;

HADDR[31:0] — 32-bit system address bus, which is given by the master;

HTRANS[1:0] — transfer type. Master indicates the type of the current trans-

fer, which can be Nonsequential (code 10), Sequential (code 11), Idle (code 00) or

Busy (code 01);

HWRITE — transfer direction, when high, master indicates a write transfer
and when low — a read transfer;

HSIZE[2:0] — transfer size, master indicates the size of the transfer, which is
typically byte (code 000), halfword (code 001) or word (code 010). The protocol
allows for larger transfer sizes up to a maximum of 1024 bits;

HBURST[2:0] — burst type, master indicates if the transfer forms part of a
burst. Four, eight and sixteen beat bursts are supported and the burst may be
either incrementing or wrapping;

HPROT[3:0] — protection control, master provides additional information
about a bus access, which intended for use by any module that wishes to
implement some level of protection. The signals indicate if the transfer is an
opcode fetch or data access (HPROT[O0] = 0 or 1), as well as if the transfer is a
privileged mode access or user mode access (HPROT[1] = 1 or 0). For bus
masters with a memory management unit these signals also indicate whether the
current access is cacheable (HPROT[3] = 1) or bufferable (HPROT[2] = 1);

HWDATA[31:0] — write data bus. It is used to transfer data from the master
to the slaves during write operations. Minimum data bus width of 32 bits is
recommended. However, this may easily be extended up to 1024;

HSELXx — slave select. Decoder each AHB slave has its own slave select signal
and this signal indicates that the current transfer is intended for the selected
slave. This signal is simply a combinatorial decode of the address bus;

HRDATA[31:0] — read data bus. It is used to transfer data from bus slaves to
the bus master during read operations;

HREADY — transfer done. When high, slave indicates that transfer has
finished on the bus. This signal may be driven low to extend a transfer;

HRESP[1:0] — transfer response. Slave provides additional information on
the status of a transfer. Four different responses are provided, Okay, Error, Retry
and Split (HRESP = 00, 01, 10 and 11, respectively);

HBUSREQx — bus request. Master x signales to the bus arbiter that it
requires the bus. There is such an signal for each bus master in the system;
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HLOCKx —locked transfers. When high, master indicates that it requires
locked access to the bus and no other master should be granted the bus until this
signal is low;

HGRANTX — bus grant. By this signal the arbiter indicates that bus master x
is currently the highest priority master. Ownership of the address or control
signals changes at the end of a transfer when HREADY is high, so a master gets
access when both HREADY and HGRANTX are high;

HMASTER[3:0] — master number. These signals from the arbiter indicate
which bus master is currently performing a transfer and is used by the slaves,
which support split transfers to determine which master is attempting an access;

HMASTLOCK — locked sequence. Arbiter indicates that the current master is
performing a locked sequence of transfers;

HSPLITx[15:0] — split completion request. This 16-bit split bus is used by a
slave to indicate to the arbiter which bus masters should be allowed to re-attempt
a split transaction. Each bit of this split bus corresponds to a single bus master.

Some bus lines can be absent, if needed. For example those, which support
the split transfers, can be removed.

The AMBA AHB bus protocol is designed for the use with a central multi-
plexor interconnection scheme. All bus masters drive out the address and control
signals indicating the transfer they wish to perform and the arbiter determines
which master has its address and control signals routed to all of the slaves. A
central decoder is also required to control the read data and response signal
multiplexor, which selects the appropriate signals from the slave that is involved
in the transfer. Fig.5.3 illustrates the structure required to implement an AHB
design with two masters and two slaves. The multiplexor MUXA selects address
and control information from the masters to the slaves, the multiplexers
MUXDW and MUXDR transfer the data when writing and reading, respectively.

All transfers must be aligned to the address boundary equal to the size of the
transfer. For example, word transfers must be aligned to word address boun-
daries (that is A[1:0] = 00). For

Arbiter transfers that are narrower than the
width of the bus, for example a 16-bit
HADDR or 8-bit transfer on a 32-bit bus, then
Master[HwDATA  |MUX HADDR the bus master only has to drive the
Slave .

1 [hroATA _,y HWOATA ] ®5™ | appropriate byte lanes (upper or
’7 g HRDATA lower halfword, 3-th,..., or 0-d byte).
Muﬂ Slave The slave is responsible for selecting

Master DW 2 the data from the correct lanes.
2 The AMBA protocol allows burst
transfers by a master which has been
MUX granted bus access. The individual
DR | transfers within a burst are called as
beats. Four, eight and sixteen-beat
Decoder [« bursts are defined in the AMBA AHB

Fig.5.3 protocol (HBURST = 010,...,111), as
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well as undefined-length bursts (HBURST = 001) and single transfers (HBURST
= 000). Both incrementing and wrapping bursts are supported in the protocol.
Incrementing bursts access sequential locations and the address of each
transfer in the burst is just an increment of the previous address. For wrapping
bursts, if the start address of the transfer is not aligned to the total number of
bytes in the burst (sizexbeats) then the address of the transfers in the burst will
wrap when the boundary is reached. For example, if the start address of the
transfer is 0x34, then it consists of four transfers to addresses 0x34, 0x38, 0x3C
and 0x30. Bursts must not cross a 1kB address boundary. The first beat of the
burst transfer has to be of Nonsequential type, and the others — of Sequential
type.
The address and data of the different beats in a single burst are transferred in
a pipelined fashion. A write burst which writes data D;, D,, D3 to addresses Aj,
Ay, Az respectively is shown in Fig.5.4. Note that data D; and address Aj+; are
transmitted in the same clock cycle on the HADDR and HWDATA lines. Thus the
address and data phases of consecutive beats within a burst can overlap.
1 2 3 4 The protocol allows a slave to insert wait
HCLK cycles by deasserting a HREADY signal if

the slave is not ready to service a transfer.
Al X A2X A3 f
HADDR (AZX ASK_ ) This extends the data phase of a transfer.

HWDATA Due to the pipelined nature of the bus, the

Fio.5.4 address phase of the next transfer also has
19-5. to be extended. Fig.5.5 shows the writing of
1 2 3 4 5 D4, D,, D3 to addresses A;, Ay, Az with

HCLKJ_|_|_|_|_|_|_|_|_|_|_ the insertion of a single wait cycle in the
transfer of D2.
HADDR {AL X A2 ¥ A3 X In order to prevent an excessive

number of wait cycles, the protocol

HWDATA '
@ D2 @ allows the release of bus access to the
HREADY [ \ | other masters. This is co-ordinated by
Fig.5.5 the slave which either informs the arbiter

of its temporary inability to service a
master (a Split response) or informs the master to retry the transfer (a Retry
response). The provision of split transfers, that is, temporarily suspending a
transfer and resuming it later when the slave is ready, raises many important
questions. The pipelined nature of the AMBA bus further complicates the
situation.

The AHB protocol specifies a certain behaviour that must be respected.
Firstly, the master must perform pipelined accesses: every transaction must be
performed in two phases. First comes an address phase during which the
address and control signals are driven. At the end of this phase, the slave selected
by the address samples the address and control signals and begins its response
during the data phase. The response includes the driving of certain control
signals and either the emission of the read data or the sampling of the write data
at the end of the cycle. This rule is referred to as the Pipeline rule.

Then the slave can drive HREADY low to stretch the length of a bus cycle. The
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master must be able to stall its execution to respect the slave's request. This is the
Stretch rule. The AHB protocol also has provisions for several bus masters: only
one master can have access to the slaves at a given time. All of the other masters
must wait until the bus is assigned to them. This is the Arbitration rule.

Several accesses must be made in an uninterrupted, or atomic, fashion. The
AHB protocol offers the possibility of performing locked access sequences, that
the arbiter cannot interrupt to grant the bus to another master. Before the first
address phase, the master must warn the system that the locked transfers are
about to begin by asserting the HLOCK signal. The signal must be de-asserted
during the address phase of the last access. This is the Lock rule.

Finally, a slave can issue various responses to a master's request. The Error
response indicates that the access has failed. The Retry and Split responses must
be handled in a special way: every clock cycle, the master must observe the status
of HRESP. If one of the two aforementioned responses is given, then the master
must immediately drive the Idle value on its HTRANS output. This cancels the
address phase that followed the one that caused the response. On the following
bus cycle, the master must retry the access that had caused the unusual response.
This rule is referred to as the Exception rule.

Consider the design of the master core, which has to be attached to the CPU
for the AMBA interface communication, so called, wrapper. The master FSM
provides the fulfilment of the interface protocol. The first step is to set up an FSM
initial state that respects the pipeline rule. The FSM diagram contains a single
step over the node RUN. Events or assignments that must occur at every bus
cycle can be performed on transition (1), which goes back to this node. The next
step is to include the Stretch requirement. The core must be stalled during the
extra clock cycles of the bus cycle, waiting on the resuming the process at every
cycle. Consider the core has a static design, then it is possible to stall it by
modulating the clock signal (i.e. stopping it at strategic moments). Fig.5.6 shows
a FSM state graph that can
handle bus cycle stretching: if
HREADY=0 at the end of a
cycle, the state becomes
NOT_READY, and the core's
clock is stalled (transition 2).
The FSM stays in the
NOT_READY state (3) until
HREADY =1 (4).

The next requirement to
implement is the Arbitration.
A master should not attempt
any access without first ma-
king sure that the bus belongs
to it. If the bus is granted to
another master, it must wait. A
maser that loses the bus has a

=1

HGRANT
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final bus cycle in which it can accomplish its data phase while another master
prepares its address phase. Fig.5.7 shows the new states that implement the
Arbitration rule.

Here, if the master notices that it is losing the bus (HGRANT = 0), then it
enters the RUN_LAST state (transition 5 or 5a), in which it completes its data
phase and prepares the address phase for the time when the bus will be given
back to it. At the end of the bus cycle, the FSM enters the HOLD state, where the
core's clock is inhibited in order to keep the address from changing again. The
master must sample the incoming data on the transitions (6) and (9) and "feed"
it to the CPU when the clock will be released. Once the bus is finally given back to
the master, the core enters the RUN_FIRST state (7). The clock is still inhibited
here, to keep the core's address from changing on entry. The address that was
prepared during RUN_LAST finally becomes visible on the bus and the
transaction can finally take place. The master stays in the RUN_FIRST state until
the end of the address phase (i.e. a bus cycle), where it returns to the RUN state
(8). There are also transitions that are taken if the arbiter grants the bus
immediately after taking it away (9) or vice-versa (10).

A wrapper requiring the Lock requirement usually has a signal that allows it
to indicate that it is beginning a locked sequence. This signal, say MLOCK, can
usually be driven to the AHB signal HLOCK. HLOCK must be asserted on the bus
cycle that precedes the first address phase of the locked sequence, and to be de-
asserted during the last address phase. MLOCK may be asserted or deasserted
earlier or later. If it is asserted or de-asserted early, it is possible to delay it in the
RUN state. If it is de-asserted late, the bus is locked for an extra cycle. The
problem is the situation where MLOCK is asserted late (i.e. in the same time as
the first address phase of the locked sequence). Then, the core must be delayed
by one bus cycle in order to allow the arbiter of the bus to become aware of the
change on HLOCK. Fig.5.8 shows the resulting FSM graph that allows this.

When MLOCK= 1 the master goes into the LOCK_FIRST state on the next
bus cycle (transition 11). This state sets a flag and stalls the core for one bus cycle
(by inhibiting the clock) before returning to the RUN state (12). With the flag
activated, the master don’t return to the LOCK_FIRST state, but must check at
every bus cycle (1) to determine if it must deactivate the flag (CORELOCK = 0).

Stalling the core causes a problem on the AHB bus: the access that caused the
transition to LOCK_FIRST appears as two identical accesses on the bus. The
master must thus disable one of the "two" accesses by driving HTRANS = IDLE.
It makes more sense to disable the first access than the second, so there must be
another condition in the RUN state that detects (CORELOCK = 1 and
LOCK_FLAG = 0) and drives HTRANS = IDLE if the condition is true.

The final requirement to observe is the Exception rule. During the data phase
of an access, the slave can indicate an error or an exceptional situation by using
the HRESP signal. The master usually has to perform the task itself, hiding the
details of the procedure from the CPU. In order to handle the exception
transparently, the master has to halt the CPU immediately after the address
phase that caused the faulty response. The CPU remains blocked until the
exception is handled. Fig.5.8 shows how the control unit handles the exceptions.
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Fig.5.8

The FSM enters the EX_FLUSH state upon detecting an exception. This
drives the HTRANS = IDLE signal as specified by the protocol. If the exception
was either RETRY or SPLIT, the wrapper proceeds to either the EX_HOLD state
(if the bus is not available) via transition (13) or the EX_TRY_AGAIN state (14).
In the EX_HOLD state, the wrapper simply waits for the bus to be granted. In
the EX_TRY_AGAIN state, the wrapper drives the address and control signals
that had caused the exception. This implies that the wrapper keep track of these
values every time the RUN or RUN_LAST states are entered (even when RUN
loops on itself). On the next bus cycle, the wrapper moves on to EX_RETURN
(15), where the slave can respond to the previous address phase. If the access
causes another exception, the wrapper returns to EX_FLUSH and the process
begins anew. Otherwise, the wrapper returns to the RUN or RUN_LAST state.
The clock restarts, allowing the core to pick up any read data that it might
require. The ERROR response is handled differently (17), the designer is free to
implement any behaviour that is appropriate.

The next step is the FSM design on the base of its state diagram on Fig.5.8.
This diagram becomes more concrete by adding the proper labels to all the nodes
and edges. The resulting FSM can be synthesized as it is shown in the chapter
4.5,

The derived graph serves as an example. The real wrappers can support both
the complex and simple interface protocol depending on the system functionality.
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ALU
ASIC

ASSP
BF
CAD
CD
CISC
CMOS
Cl

CO
CPLD

CPU

List of abbreviations

arithmetic and logic unit
application specific
integral circuit
application specific
standard product
Boolean function
computer-aided design
encoder

complex instruction set
computer
complementary metal-
oxid-semiconductor
carry in bit

carry out bit

complex programable logic
device

central processing unit

CTR,CTn counter, counter modulo n

cu
DC
DFF

control unit
decoder
D-type flip-flop

DRAM dynamic RAM

DSP

digital signal processing

EEPROM electrically erasable PROM

FA
FET
FIFO
FF
FM
FPGA

FPM
FRAM
FSM
HA
HDL
IC
ICTR

full adder

field effect transistor

first in—first out—type stack
flip-flop

fast memory, register array
field programmable gate
arrays

fast page mode
ferroelectric RAM

finite state machine

half adder

hardware description language
integral circuit

instruction counter, the
same as PC

IFN
IRG
KM
LC
LE
LED
LN
LRU
LSI
LSM

LSB
LUT
MNOS

MPC
MPU
MSB
MU
MUX

instruction fetch network
instruction register
Karnaugh map

logic cell

logic element

light emitting diode

logic network

least recently used

large scale integration
multipurpose summator,
ALU

least significant bit or byte
look-up table
metal-nitrogenium-oxid-
semiconductor
microprogram controller
multiply unit

most significant bit or byte
memory unit

multiplexor

NVRAM non-volatile RAM

PC
PLA
PROM
RAM
RG
RISC

ROM
SDRAM
SHU
SM

SOC
SRAM
TTL
WD
WE
XOR

program counter
programmable logic array
programmable ROM
random access memory
register

reduced instruction set
computer

read only memory
synchronous DRAM
shifter unit

adder, summator
system-on-the-chip
static RAM
transistor-transistor logic
Waych diagram

writing enable

exclusive OR
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