Lecture Notes in Computer Science, Springer, -2006,3911, pp. 526-533.
FPGA Implementation of the Conjugate Gradient
Method

Oleg Maslennikow*, Volodymir Lepekha**, Anatolij $gyienko**

*Technical University of Koszalin, ul.Partyzanow,175-411 Koszalin, Poland
oleg@ie.tu.koszalin.pl
**National Technical University of Ukraine, pr.Penegy,37, 03056 Kiev, Ukraine
aser@comsys.ntu-kpi.kiev.ua

Abstract. The rational fraction number system is proposesbtve the algebraic problems
in FPGA devices. Such a number consists of the mirnerator and n-bit denominator,
and can represent numbers with 2n bit mantissaefiirpntal linear equation system
solver was developed in FPGA device, which impletsi¢ine recursive conjugate gradient
method. Its hardware arithmetic unit can calcuéatdition, multiplication, and division of
rational fractions with n=35 in pipelined mode. Tdwnputer solves the strip matrices with
the dimensions more than 1000.

1. Introduction

Field programmable gate array (FPGA) is consideéoelde an excellent computational
raw for hardwired applications in digital signalopessing (DSP), communications,
control, multimedia data computing, etc. Modern PPd&vices provide millions confi-
gurable gates, and millions bits of built in merasriwhich can operate at the frequen-
cies up to hundreds of MHz. FPGA platforms, whiokended for DSP applications,
provide tenths and hundreds of islands, each anhthas hardware multiplier and long
product accumulator. As a result, such an FPGAutatier has the peak throughput
more than 100 billion operations per second.

Linear algebra problem solving becomes the importask of the modern DSP
applications. They are adaptive filtering, curvéeipolation, system parameter esti-
mation, signal back propagation problem solvingidribody dynamic modeling, image
improvement and others.

Such problem solving affords high precision caltiates. Therefore it is usually
implemented using single and double precision if@apoint numbers. That is why
linear algebra problems are usually solved onli @and floating point DSP micropro-
cessors. Such calculations are made in usual D$Ppndbcessors very rare, and solve
very small problems (matrix dimensions are usuadly higher than 10) because of their
fixed point arithmetic unit (AU).

Modern high volume FPGAs give the opportunity tdlduhe highly pipelined
floating point AUs with double precision, such ascribed in [1], [2]. The disadvan-
tages of such AUs are comparatively high hardwatame and pipelining delays. For
these disadvantages such FPGA processors hardlpetenwith the widely used
floating point microprocessors both in speed ancbst.

FPGA Implementation of the Conjugate Gradient Mdtho 527

FPGAs can provide the very precise fixed point nembepresentation up to
hundreds of bits. But till now the efforts to solde linear algebra problems in FPGA
are very rare. Really, long word adders can addsaidract large integers very quickly
in them. Their high speed can be supported by ipipgl. But hardware multipliers for
such long words occupy much of chip area. For eXantg to 64 bit multiplier is built
from sixteen 16 to 16 bit hardware multiply units.

In the usual DSP algorithms the division operai@nrery rare. On the contrary, in
the linear algebra algorithms the division is frexilly used operation. Moreover, this
operation is the source of large calculation errditse hardware dividers are much
complex than multipliers in modern FPGA, becausghsan n-bit divider consists of n
adder-subtractor stages. Therefore some efforte werde to use the integer numbers
for linear algebra problem solving, which are basadhe division free algorithms. An
example is shown in [3], where the Givens QR-deamsitjpn algorithm, which is based
on rotations, was implemented in FPGA.

Among many linear algebra methods and algorithmes ¢bnjugation gradient
method is famous due its features like minimum apen amount during the sparse
matrix solving, full convergence to the exact siolutfor less tham iterations, whera
is the matrix dimension. Besides, this method umestly the convolution operation,
vector multiply and add, like in usual DSP algarmith It needs less tham 2livision
operations and none operation like square root. tBat most disadvantage of this
method consists in that, that its termination iargnteed only if all the calculations are
implemented without errors. Therefore this methedised rarely because the floating
point operations do not provide the needed preati§dy. If the precision problem is
solved than this method would be very useful fonynBSP applications.

In the representation the rational fraction nundbetem is proposed to implement
the conjugate gradient method in FPGAs. Such a&sysias already used in the confi-
gurable DSP processor, represented in [5], whezeetample of the Toeplitz matrix
problem solving was shown. Then the FPGA proceissdescribed which solves linear
equation systems with sparse matrices. The procésb@vioral model description was
shown, which has provided the dependency searetebatthe problem dimension and
needed data bit widths. The processor was configureFPGA, and showed its high
effectiveness.

2. Fraction number calculations

Fraction number is the numerical object, which tstef integer numerator and integer
denominator. Its name proves that such fractioressmts any rational number. Rational
numbers are the real numbers, which are derivdites equation solutions, or integer
polynomial divisions.

Rational fractiona/b has the feature, that it can approximate the ginational or
transcendental numbegr If the fractiona/b is less tharx, and fractiorc/d is higher than
X, then the fractionatc)/(b+d), named medianta, is nearestxt¢han that fractions.
Therefore if a set of mediantes is built, then \aa to approximate the numbemith
any precision.

O. Maslennikow, V. Lepekha, A. Sergyienko 528

If the noninteger numberis represented bynZigits with the errog€,, then it can
be represented by the fractiafb with the erroré, = §;, and the numbers andb have
no more tham digits in their representation [6]. The fractionnmher representation has
a set of advantages. Firstly, any binary fractisndepended on the binary data
representation, and not exactly represents thenteaber. The floating point number in
binary representation is equal to the fraction,clvhilenominator is the power of two,
and it is not equal to the respective decimal fomcbecause it has the denominator
which is equal to power of ten. For example, thienber 1/9 =1/100ilis the exact
fraction in any numeric system, and can be reptedenith error as the decimal fraction
0.111%, or binary fraction 0.11100011100G11

Secondly, the rational fractions help to find thmational or transcendental number
approximation with the given precision. Many eletaey functions are effectively
calculated by proper rational approximation formsuldany constants and constant
tables are effectively stored as rational numbers.

And thirdly, rational fractions provide comparafivesimple set of arithmetical
operations. The multiplicatioa/b to c/d and division of them are equal &/(bd), and
bd/(ac), respectively. Note, that the division of the rarator to the denominator is not
calculated. Addition of them is equal tad¢bc)/(bd). For comparison of two numbers
it is enough to calculatad-bc.

Comparing the operation complexity, one have te iako account that the numera-
tor and denominator bit number is more than in tintes less than the bit number of
integers, which provide the equal precision. Tremeefthe hardware complexity of the
fraction adder is near the complexity of the integmiltiplier with the same precision,
and the fraction multiplier complexity is in twartés less than the integer multiplier
complexity.

In seventies the main hardware implemented operatiamini - and microcompu-
ters was addition. The floating point operationsrevémplemented as subprograms
which lasted for a lot of clock cycles. To speedthp calculations in that time the
rational fractions were proposed to substitute ftbating point numbers. The main
disadvantage of rational fractions is that therhitnber increases dramatically when
operations are implemented precisely. Thereformitimize this increase the division
of numerator and denominator to their greatest comutivisor was made, as in the
rational fraction processor, which was proposed7ih But when the floating point
coprocessors became widely used, the fractionabeuprocessors became out of sight.

Then the rational fractions were built in many nestiatical CAD tools like Maple,
which are implemented in PC. Such fractions areelyidised to do calculations with
unlimited precision, to solve modern cryptograptiocblems and others. Therefore such
languages as PERL and Java are supported by pacgemeding unlimited precision
calculations. For this purpose in [8] a new stadd=rdata representation is proposed,
named composite dates. These dates among integefating point numbers include
rational fractions as well.

To solve many mathematical problems the high pi@tifAU are needed. For
example, the linear equation systems with spardeaes. is effectively solved by the
conjugate gradient method. But the only disadvanti#ghis method consists in that that

FPGA Implementation of the Conjugate Gradient Mdtho 529

its convergence is assured, when all the calcuigtare made precisely [4]. Therefore
this method could not be implemented when the sipgécision floating point is used.

Note, that all the floating point DSP microprocesduave the built in single precisi-
on floating point AU, and could not calculate theulile precision floating point num-
bers effectively. Therefore they are rarely useddive the linear algebra problems. In
this situation the rational fraction calculatiorenchave the high effectiveness. Below
the rational fraction effectiveness for the conpaggradient method implementation is
shown.

3. Conjugate gradient method modeling

To prove the rational fraction number effectiventiss linear equation solving by
the conjugate gradient method was modeled using VeiBwlator. Firstly, the package
Fract_lib.VHD was designed in which the type otfran FRACTV was declared. The
object of this type consists of two bit vectorstbé lengthm. In that package the
functions of addition, subtraction, multiplicatiand division of fractions are described,
which overload the respective operations of the Hé@hguage. The type ARRAYFR1
represents the vector of fractions, the constaht ipresents the zeroed fraction, the
function FRACT_REAL translates the fraction int@ tkeal number.

Then the VHDL program was designed, which loadsititeal dates and solves the
linear equation system. The diagonal matkixof the system is symmetric, positively
defined one, and is represented by the amm8yal, a2 of its diagonals. The left column
of the system, and unknowns are represented byeittersb, andx. The multiplication
of the matrixA to the columnp is implemented in the procedure MATR_x_VECT
The conjugate gradient method is implemented irfalewing process.

process
variable k:natural:=0;
variable x,r,p,w:ARRAYFR1(1 to n);
variable pap,epsl,alpha,beta:FRACTV;
begin
wait for 1 ns;
xf:=(others=>NIL); r:=b; epsi:=NIL;
foriin r'range loop
epsl:=epsl+r(i)*r(i);

end loop;
loop
k:=k+1,
if k=1 then
p:=r;
else
beta:=epsl/eps2;
for i in p'range loop
p(i):=r(i)+beta*p(i);
end loop;
end if;

MATR_X_VECT(a0,al,a2,p,w);
pap:=NIL;

O. Maslennikow, V. Lepekha, A. Sergyienko 530

for i in p'range loop
pap:=pap+p(i)*w(i);
end loop;
alpha:=epsl/pap; eps2<=epsl; epsl:=NIL;
for i in x'range loop
x(i):=x(i)+alpha*p(i);
r(i):=r(i)-alpha*w(i);
epsl:=eps1+r(i)*r(i);
X(i))<=FRACT_REAL(x(i));
end loop;
sqe<=(SQRT(FRACT_REAL(eps1l)/real(n)));
wait on clk;
exit when sge<1.0e-4;
end loop;
report "End of calculation" severity failure;
end process;

This process is similar to the algorithm whichapnesented in [4]. All the dates are
represented byn bit fractions, and the resulting vectois the vector of reals. The array
A is constant one, and the artays randomized one. When the process is running, fo
the first nanosecond the input dates are initidlizéen on the each clock edge one
iteration of the algorithm is calculated. The c#dtions are stopped when the quadratic
mean errosge is less than the given threshold. To control #muilts the similar process
is running but with the double precision real dates

The result of the modeling is the dependence betlee fraction bit numben and
the maximum array length when the convergention process is stable. Theveteri
dependence is shown on the fig.1.

10000
1000 /r

n 100 -/

10 - //

1 T T T T T T T T T T T

16 18 20 22 24 26 28 30 32 34 36 38
m

Fig.1. Dependence between the fraction data widdmd the maximum array length

FPGA Implementation of the Conjugate Gradient Mdtho 531

Analysis of this dependence shows the followinge raf thumb: each data width
increase to 2 digits provides the twofold increatéhe maximum problem dimension.
Extrapolating of the dependence line shows thatdtta width 52 and 64 can provide
the solving the problem of dimension= 1 min., and 60 min. respectively. The given
threshold of the numbesge provides 4-5 true decimal digits of the result,ichhis
enough for most of DSP applications.

4. Processor for solving of sparse matrix equations

To prove the effectiveness of the conjugate gradigethod calculations using rational
fractions the FPGA — based processor was desigiexdprocessor consists of pipelined
AU, memory blocks and control unit, which genergtesper address sequences.

The algorithm calculations are based on vector iplidation and addition of
weighted vectors. Therefore the base operationuRiptication and addition of data
streams: P = AX+Y. The AU structure is shown onftge2.

A.-.Ad Xqu YnYd
| MPU | | MPU |
| |
| Normalizer 1 |
P
|MPU| |MPU| |MPU|
[[
\ s

| Normalizer 2 |

T
Pn Pd

Fig.2. Structure of ALU

Here the indexea andd sign the numerator and denominator of the fractitdre
processor is implemented in the Xilinx Virtex2-PX@€2VP4 device, which has built in
18 bit width multiply units and 18 kilobit dual gdRAMSs.

The fraction bit width was selected which is eqwaB5. This bit width provides the
maximum problem size 3500. But the memory sizehefdelected FPGA device provi-
des maximum vector length 1024. The samples imthigix A are represented by 18 bit
integers. When this matrix is multiplied then thasegers are expanded to full 35 bits
of numerators and 35 bits of denominators. In sacmanner the needed memory
volume is minimized.

O. Maslennikow, V. Lepekha, A. Sergyienko 532

Each multiplier MPU consists of four multiplicatiamits and three adder stages.
The normalizer shifts left both numerator and deinator of operation result to the
equal bit number to prevent of significant bit gipear after multiplication. First and
second normaliser shift the dates up to 7 and 1% reispectively. To calculate the
division the operands A and X are substituted wheather and operand Y is equal to
zero.

In the table the performance of designed AU isespnted and is compared to the
double precision floating point Aus, which are implented in similar FPGA devices.

AU parameter Proposed AU AU in [1] AU in [2]*
Hardware volume, CLB slices,| 1005 4625 2825
Multiplier units 20 9 9

Pipeline stages 9 34 13
Maximum clock frequency 138 120 140

* division is not implemented

The project comparing shows that the proposed AW high throughput and
minimized configurable hardware volume which i2i8 — 4.6 times less than in AUs
for similar purpose.

To implement the algorithm, usually less thaiterations are needed, each of them
consists ofi*n cycles of matrix multiplication, 5¥ cycles of the vector multiplication
and addition, and 2 divisions not to take into actdhe pipeline loading and flushing.
The solving of the equation system with the makixf dimensionsn=1024 and the
strip width 1=5 lasts about 77 milliseconds. The approximateughput of this
processor is equal to 270 Mflops.

5. Futurework

When configuring the processor in new Virtex4 FP@@Avices its speed will be
increased approximately in two times, and the hardwolume will be decreased
dramatically because such device supports the 85miitiplication and product
accumulation on the structure level.

The throughput can be increased in the paralletesysconsisting ofg such
processors. Each processor node calculates the th part of the algorithm using the
strip mining technique. Each of them can store whwle matrixA to minimize the
interprocessor communications. One of the nodeegstthe intermediate results, and
sends the variablespsl, alpha and beta to each processor. They are the only
interprocessor communications, and they could pend much time. Therefore the
speedup of the processor system is approximategd by

One modern FPGA chip like Xilinx XC4VSX55 can cantap toq = 25 processor
nodes. And such a system can provide up to 15000p8lf Note, that this device can
contain only 8 nodes, described in [2] due to thah hardware volume.

6. Conclusions

FPGA Implementation of the Conjugate Gradient Mdtho 533

The proposed rational fraction nhumber system hasattvantages that it provides
higher precision than integers do, and is simpldts implementation than the floating
number system. For these advantages it can betiedigcused in DSP applications,
which evolve the linear algebra problems.

The most advantages the rational fractions geténmtodern FPGA implementation
because of small hardware volume, high throughpassibility to regulate the precision
by selecting the data width. The VHDL modeling skdvthe possibility of use such
data representation in solving linear equationghey conjugate gradient method, and
showed the dependency between the data width amdikimum problem dimensions.

The experimental project of the linear equatiorveokhowed its high throughput
and small hardware volume comparing to the proecdsased on the floating point AU.
The system of] such processor in a single FPGA device can inertasthroughput in
g times, where can be equal to 25 for modern FPGA devices.

Besides, the rational fraction calculations can greffit when the algorithms are
implemented in fixed point DSP microprocessors,abse they are much simpler than
floating point calculations and provide the needegtision for many DSP applications.

Refer ences

1. Underwood, K.D., Hemmert, K.S.: Closing the G&PU and FPGA Trends in
sustained Floating Point BLAS Performance. Proc.EHE Symp. Field
Programmable Custom Computing Machines, FCCM-2(#BD4).

2. Dou, Y., Vassiliadis, S., Kuzmanov, G.K, Gaydedj G.N.:64-bit Floating point
FPGA Matrix Multiplication. ACM/SIGDA 13-th Int. Swp. on Field
Programmable Gate Arrays, Feb., 2005, FPGA-20@®5Y, 86-95.

3. Sergyienko, A., Maslennikow, O.: ImplementatminGivens QR Decomposition in
FPGA. R.Wyrzykowski et al. (Eds.): PPAM 2001, Spen LNCS, Vol.2328,
(2002), 453-459.

4. Golub, G.G., Van Loan, C.F.: Matrix Computatiodddopkins Univ. Press. 2-d Ed.
(1989), 642p.

5. Maslennikow,O., Shevtshenko,Ju., Sergyienko, @onfigurable Microprocessor
Array for DSP applications. R.Wyrzykowski et al.d&): PPAM 2003, Springer,
LNCS, Vol. 3019, (2004), 36-41.

6. Hintchin A.Y. Chained Fractions.Moshow, Nauka, 3-d Ed., (1978), 112p, (in
Russian).

7. Irvin M.J., Smith D.R. A rational arithmetic p@ssor.: Proc. 5-th Symp. Comput.
Arithmetic, (1981), 241-244.

8. Holmes W.N. Composite Arithmetic: Proposal fareav Standard. Computer: March,
Ne3, (1997), 65-72.

