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Abstract 

In the representation a new method for mapping DSP algorithms into MMX 
architecture is considered. The method is based on the matrix-graph method for mapping 
regular algorithms into SIMD processor arrays. Then the Pentium MMX architecture is 
considered as a four 16-bit processor linear array. According to the method, the reduced 
dependence graph is mapped into configuration of  the structure which corresponds to the 
SIMD structure and to configuration of events. Finally, time slices of the latter are 
exchanged by assembly instructions of the MMX instructions set. The example of the 
algorithm mapping illustrates this method, and proves its effectiveness. 

 
 
1. Introduction 

The Intel Pentium MMX microprocessor has the instruction set which is expanded for 

multimedia applications,  called MMX technology. The MMX technology has the facilities  to 

achieve DSP application performance approximately equal to one of the high end signal 

microprocessors. Usually customers use DSP MMX library functions or hand made assembly 

codes with MMX instructions. When a specific and complex DSP algorithm is programmed both 

approaches are ineffective ones because of low load balancing of the processor and labour 



consumable programming process. In such case the automatic programming tools are needed. But 

the demand on such tools is still not satisfied. 

Architecture of the MMX kernel of the Pentium microprocessor can be considered as a 

SIMD architecture with the constrained processor number. A new programming tool can be 

designed on the base of the appropriate method for mapping DSP algorithms into such 

architecture.  

A set of methods for mapping DSP algorithms into application specific structure are 

known, for example, described in [1], but they do not consider the SIMD architecture. The 

methods for mapping regular algorithms into constrained systolic type arrays like described in 

[2,3] can be used  for such purpose. But the set of algorithms which can be directly mapped into 

MMX architecture using these methods is very limited.  

In this work the simplified four processor SIMD model of the MMX kernel is selected and 

a new method for mapping DSP algorithms into it is proposed. This method is deriving by 

adapting the method for mapping unimodular loop nests into application specific structures, 

described in [4]. 

 

2. Structure of the processor array. 

For most DSP applications the architecture of the MMX core can be approximated by the 

array of four 16- bit processor units (PUs) which is illustrated by the Fig.1. 

Here due to the superscalar nature of the Pentium processor, each of PUs is computing 

simultaneously one or two instructions, which follow from U and V instruction pipelines. The 

CPU core implements the control flow of the algorithm and calculates the address stream to the 

cache RAM, which 64 bit quad word is divided to four 16 bit words. The inner structure of each 

PU is represented by the Fig 2. All of instructions except multiplication are calculated for a single 

clock cycle. The multiplication is calculated for three clock cycles. The data interprocessor 

exchange is implemented by shift instructions [5].  

 

3. Method for mapping data flow graphs into application specific structure. 

The mapping method compendiously described below is well suited for mapping DSP 

algorithms into application specific structures and was published in [4,6,7]. In this paper it is 



adapted to programming MMX applications. Often DSP algorithms are described by data flow 

graphs (DFG). In DFG operator nodes represent operations of addition or multiplication, a chain 

of k delay nodes represents delay of a signal variable to k iterations, edges represent data flows. 

DFG can be derived by respective mapping of reduced dependence graph GAR of an unimodular 

loop nest [8]. In the graph  GAR also nodes represent operators but weighted by k edge  represent 

dependence of the data which is delayed to k iiterations. 

Both DFG and reduced dependence graph GAR can be represented in n- dimensional space 

Zn . For most DSP algorithms for one dimensional signal processing it is enough to operate with 

n=4 dimensional space. Each of N nodes of the graph which denotes the algorithm operator is 

represented by the vector - node Ki , i=1,...,N. The  coordinates of the vector Ki signify  iteration 

number, clock number in the iteration, processing unit (PU) in which the respective operator is 

implemented, and its type. Each of M edges of the graph which denotes the data dependence or 

variable moving is represented by the vector - edge Dj  = Ki - Ki-1 , j=1,...,M, besides, vector DN+1 

= K1 .   

Sets of vectors Ki and Dj form respective matrices K and D which together with the graph 

GAR incidence matrix A form an algorithm configuration CA = (K,D,A). The configuration CA is 

equal to the composition of structure configuration CS = (KS,DS,A) and configuration of events CT 

= (KT,DT,A) , namely  
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where vector-node KSi ∈KS, represent coordinates of PU where i-th operator is 

implemented, vector-edge DSj ∈DS represent relative coordinates of communication line for j-th 

variable, vector-node KTi ∈KT  represent clock period of this operator implementation and  vector-

edge DTj ∈DT represent delay of this variable moving. Another words, configuration CS represents 

the graph of the processor structure, and the configuration CT represents the operator time 

schedule. 

The following definitions and statements are true for configurations CA, CS, CT . The 

configuration CA is correct if Ki ≠ Kj ; i,j = 1,...,N, i≠j, i.e. all of vectors-nodes are placed in the 

space separately. 



There is a linear dependence between matrices: D = KA; K = DoAo
-1,  where Ao is the 

incidence matrix for the maximum spanning tree of the graph GAR, and Do is the matrix of 

vectors-edges of this tree. 

Correct configuration CA can be transformed into equivalent configuration CA’  by any 

injection function. For example, the following transformations give equivalent configurations: 

permutations of vectors Ki , multiplications of the matrix K  and non-singular matrices P. 

The sum of vectors-edges Dj ,which belong to any loop of the graph GAR must be equal to 

zero. 

 The configuration CT is correct if Dtj≥0, where Dtj is unweighted dependence vector of the 

graph GAR, inequality has lexicographic meaning, j =1,...M. Besides, the given algorithm is 

implemented in pipelined manner correctly iff 

∀KTl∈KT(KTl=(i,q)T, q∈(0,1,...,L-1)),                           (1) 

where KTi is not incident to edge DTj=(p,0)T weighted by p, L is the period of time between 

two consecutive the same input operand loadings or is the latency of the algorithm 

implementation. 

Searching for  algorithm mapping consists in deriving configurations CA, CS, CT which are 

optimised according to given criterion.  Directed searching for optimised configurations is 

implemented  taking into account mentioned above definitions, dependencies and constraints. 

At the first stage of the mapping, the searching for the space component CS  is implemented. 

The forming of the matrix KS consists of distributing Mk  operators of the k-th type among ]Mk/L[ 

processing units of the k-th type. As a result, MS groups of equal columns are formed in the 

matrix   KS , where MS  is the number of PUs in the resulting structure. The goal of this process is 

resource allocation and resource assignment. 

At the second stage, the time component  CT of the mapping is searched for. Derived 

matrices   KT and DT  must satisfy the condition of algorithm configuration correctness, 

correctness of the configuration of events, condition, that the sum of vectors-edges Dj ,which 

belong to any loop of the graph GAR must be equal to zero, and condition (1). Besides, if the 

operator represented by KTl is calculated for d clock cycles, then the norm R(DTj)=iL+q of the 

vector DTj=(i,q)T must be no less than  d . The clock period in which the operator represented by 



KTl=(i,q)T is implemented is equal to t = R(KTl)= iL+q. As a result, the operator schedule is 

derived.  

In a large set of different exemplars of mapping results an optimum mapping is searched. 

Some heuristics can be applied to derive a quick solution, such as list scheduling, force directed 

scheduling, loop folding, or left - edge algorithm, etc. [1].  The advantages of this method consist 

in the following. Both stages of the mapping deriving can be executed in different order or 

simultaneously providing best optimisation strategy by time constrained scheduling and 

functional pipelining. The pipelined PUs with the given stage number can be taken into account. 

After some adaptation this method is well suited for mapping algorithms into MMX architecture.   

 

4. Method for mapping data flow graphs into MMX architecture. 

Due to described above MMX structure model the maximum PU loading is achieved by 

the following conditions. Up to four operators of the same type must be calculated 

simultaneously. That means that its vector nodes Ki in the algorithm configuration CA must be 

different on each other only in the coordinate of the PU number, i.e. they form a line which is 

perpendicular to the time axis.  According to MMX instruction semantic, the data movings must 

be preferably between registers or memory cells of the same PUs.  The data movings between 

neighbouring PUs are supported by shift instructions. The line of four vector- nodes Ki  of equal 

type like addition, multiplication, etc., and vectors-edges Dj , which are incident to them and 

equal to each other, is mapped to a single MMX instruction.  

Also the following must be taken into consideration. Up to two MMX instructions can be 

calculated simultaneously due to the superscalar nature of the processor. One source operand of 

the instruction is allocated in the same register as the destination operand is. The irregular data 

movings must be implemented by usual move type instructions or by the sequence of instructions 

of packed AND, OR, shift, addition and multiplication using proper masks and constants.   

According to strict sequential consistency of computing, the latent delay between storing the 

operand into memory and using it in another calculations can be equal to several clock cycles, and 

the real delay can be unpredictable due to cache coherency implementation. Therefore, it is 

preferable to store such operands in MMX registers.   



The method for mapping data flow graphs into MMX architecture consists in the 

following. The latent period L =3,4 ... is selected. Two stages of the method for mapping data 

flow graphs into application specific structure are implemented. By this the SIMD structure 

illustrated by the fig.1,2 is selected as the target  one. 

 On the third stage the derived algorithm configuration is optimized to fit both SIMD 

structure and MMX instruction set. For this purpose up to four multiplication or addition nodes Ki 

are gathered to form a line which is perpendicular to time axes. Then the nodes in these  lines are 

permutated to satisfy the condition that  vectors-edges Dj , which are incident to them must be 

equal to each other.   When such condition is not satisfied, then functional equivalent transforms 

are implemented which consist in addition of operators like  AND, OR, shift, addition and 

multiplication using proper masks and constants.  Also the delay- type vectors-nodes are 

introduced into vectors-edges Dj which are not incident to multiplication nodes, until  R(DTj)=1. 

The delay- type vectors-nodes are mapped into quarter parts of MMX registers.  These transforms 

can disagree with the conditions which were satisfied in the first two stages of the synthesis. Then 

the process is repeated from the first stage, and the latent period L can be exchanged . This 

process is repeated until all of nodes and edges can be covered by graphs (stencils), which 

represent MMX instructions. 

On the last stage the derived algorithm configuration CA is taken into consideration. The 

nodes Ki  =(k,l,j, i,q) of k -th type, which are calculated in  i- th iteration and q-th clock cycle of 

this iteration, and in j th PU, form a set of up to four nodes, when k =const , q= const, j 

∈(0,1,2,3). Then this set of nodes is represented by a proper MMX instruction, which source and 

target operands are derived by the coordinate l of nodes which are adjacent to these ones. The 

derived instructions form the assembly program loop body, in which the instructions stay in the 

order according to the rising of the clock cycle q of the respective node set. According to the 

program pipelining technique,  operators of address calculating and iteration counting as well as  

prologue and epilogue operator groups are added to the resulting program. 

 

 

 

 



5. Example of the algorithm programming. 

Consider an example of the calculation of the function yi=arctg(xi) for the array of 

arguments xi. This function is calculated by the following polynomial approximation 

arctg(x)=0.999x-0.289x3+0.079 x5, and is often used in DSP applications. This example is 

selected because of its relative complexity to show the advantages of proposed method comparing 

to the hand made programs. 

The polynome is factorised as the following:   yi = c1 xi + c2(xi
2
 xi) + c3(xi

2(xi
2 xi)).  Consider 

the resulting algorithm configuration has the latent period L =5 clock cycles. Then six 

multiplications of the algorithm can be implemented on the couple of PUs of the SIMD structure. 

This means, that four PUs of the SIMD structure can calculate two algorithms in parallel.  

Then first and second stages of the synthesis are implemented. The resulting algorithm 

configuration CA is illustrated by the fig.3. Here coordinates i, q, j represent iteration number, 

clock cycle in the iteration, and PU number, respectively. Circles represent registers, circles with 

plus sign and with cross sign represent addition and multiplication operators, respectively. Two 

algorithms are implemented in parallel on the PUs 0, 1 and 2, 3 , respectively.  Then the input 

dates are loaded in the packed format as the following : (0, xi
’,0, xi ), the coefficients are stored in 

register mm6 : (c1, c2, c1, c2), and in register mm7 : (0, c3, 0, c3),  the results are stored as the 

following : (0, yi
’,0, yi ). 

 At the third stage the derived algorithm configuration is optimised to fit both SIMD 

structure and MMX instruction set. The resulting optimised algorithm configuration CA is 

illustrated by the fig.4. Here circles with vi sign denotes the OR operations. 

At the fourth stage of the program synthesis sets of up to two nodes of the equal type are 

searched which are calculated  in the  q -th clock cycle. Then these sets of nodes are represented 

by a proper MMX instruction, which are collected into the following table. The derived 

instructions form the assembly program loop body, which consists of about twenty instructions.  

 

 

 

 

 



Table.  MMX instructions derived by the algorithm mapping. 

Clock 

cycle q 

 MMX instruction   

0 pmulhw MM1,MM0 movq MM4,MM1 movq MM3,MM7 paddw MM5,MM4 

1 movq MM0,xi movq MM3,MM0 pslld MM4,16 pmulhw MM3,MM1 

2 pmulhw MM0,xi movq MM2,MM4 movq MM4,MM2 movq yi,MM5 

3 por MM2,MM1 pmulhw MM1,MM3 psrld MM4,16 movq MM5,MM4 

4 movq MM1,MM0 pmulhw MM2,MM6 paddw MM5,MM3  

 

The performance of derived program was proven by the VTune programming tool. Due to 

the superscalar nature of the processor and the fact that U-pipe and V-pipe of it is fully loaded, 

the latent period of derived program implementation is equal to 10 instruction cycles, and the one 

result calculating lasts 36 cycles, when all of dates are in the cache RAM.  Only three of 19 MMX 

instructions make access to the RAM which proves the high grade of data reuse. Also taking into 

account two algorithms implemented in parallel, each result yi is calculated approximately only 

for 5 clock cycles.  

 

5.Conclusion . 

Implementation DSP algorithms in MMX architecture has a set of advantages, like the 

possibility to achieve performance approximately equal to one of the high end signal 

microprocessors, and combining DSP and other applications. But the demand on automatic 

programming tools is still not satisfied. In this work the simplified four processor SIMD model of 

the MMX kernel is selected and a new method for mapping DSP algorithms into it is proposed. 

This method is derived by adapting the method for mapping unimodular loop nests into 

application specific structures, described in [4]. 

The method consists of four stages. At the first stage, the searching for the space 

component of the algorithm mapping into application specific structure is implemented. At the 

second stage, the time component of the mapping is searched for and algorithm configuration is  

derived. At the third stage is optimised to fit both SIMD structure and MMX instruction set. And 



at the fourth stage sets of nodes of the algorithm configuration  are represented by MMX 

instructions, which form the assembly program loop body. 

The method helps to derive programs which fully implement the parallelism of the MMX 

kernel of the Pentium microprocessor and can be used for the development new complex DSP 

applications and library functions. It also can be adapted to another microprocessor families 

which implement the expanded instruction set for multimedia applications. An automatic 

programming tool which implements this method is now under development. 
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Fig.1. SIMD structure model of the MMX processor core 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j= 

0 

1 

0 

1 

0 

1 

0 

Fig.3. Initial algorithm configuration  
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Fig.4. Resulting algorithm configuration  
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