(Published in Proc. 3d Int. Conf. Parallel Proaagsind Applied Mathematic
"PPAM'99", Kazimierz Dolny, Poland, Sept. 1999)

A Method for Mapping DSP Algorithms into the Pemntiu
MMX Architecture

A.M.Sergyienko*, D.V.Korchev, J.S.Kanevski**

*Department of Computer Engineering, National TecahUniversity of Ukraine, KPI-
2020, pr. Peremogy, 37, Kiev, 252056, Ukraine. BE:maaer@comsys.ntu-kpi.kiev.ua

**|nstitute of Math. & Computer Science, Technidahiversity of Coszalin, Coszalin,

Poland. E-mail: kanievsk@tu.koszalin.pl

Abstract

In the representation a new method for mapping R&rithms into MMX
architecture is considered. The method is baseti@matrix-graph method for mapping
regular algorithms into SIMD processor arrays. Thasm Pentium MMX architecture is
considered as a four 16-bit processor linear akagording to the method, the reduced
dependence graph is mapped into configuratiorhefstructure which corresponds to the
SIMD structure and to configuration of events. Hipatime slices of the latter are
exchanged by assembly instructions of the MMX indions set. The example of the
algorithm mapping illustrates this method, and psoiis effectiveness.

1. Introduction

The Intel Pentium MMX microprocessor has the ingion set which is expanded for
multimedia applications, called MMX technology.eTMMX technology has the facilities to
achieve DSP application performance approximatejyak to one of the high end signal
microprocessors. Usually customers use DSP MMXaliprfunctions or hand made assembly
codes with MMX instructions. When a specific andngbex DSP algorithm is programmed both

approaches are ineffective ones because of low b@ddancing of the processor and labour



consumable programming process. In such case theatic programming tools are needed. But
the demand on such tools is still not satisfied.

Architecture of the MMX kernel of the Pentium miprocessor can be considered as a
SIMD architecture with the constrained processomiper. A new programming tool can be
designed on the base of the appropriate methodnmfapping DSP algorithms into such
architecture.

A set of methods for mapping DSP algorithms int@ligption specific structure are
known, for example, described in [1], but they dat consider the SIMD architecture. The
methods for mapping regular algorithms into comséa systolic type arrays like described in
[2,3] can be used for such purpose. But the satgufrithms which can be directly mapped into
MMX architecture using these methods is very lighite

In this work the simplified four processor SIMD navaf the MMX kernel is selected and
a new method for mapping DSP algorithms into ipisposed. This method is deriving by
adapting the method for mapping unimodular loopt@sto application specific structures,
described in [4].

2. Structure of the processor array.

For most DSP applications the architecture of tidXVicore can be approximated by the
array of four 16- bit processor units (PUs) whislilustrated by the Fig.1.

Here due to the superscalar nature of the Pentiamepsor, each of PUs is computing
simultaneously one or two instructions, which fallédcom U and V instruction pipelines. The
CPU core implements the control flow of the algantand calculates the address stream to the
cache RAM, which 64 bit quad word is divided torfdis bit words. The inner structure of each
PU is represented by the Fig 2. All of instructi@xsept multiplication are calculated for a single
clock cycle. The multiplication is calculated fdmrée clock cycles. The data interprocessor

exchange is implemented by shift instructions [5].

3. Method for mapping data flow graphs into applaaspecific structure.
The mapping method compendiously described belowel suited for mapping DSP

algorithms into application specific structures amals published in [4,6,7]. In this paper it is



adapted to programming MMX applications. Often D&orithms are described by data flow
graphs (DFG). In DFG operator nodes represent tpasaof addition or multiplication, a chain
of k delay nodes represents delay of a signal variabkaterations, edges represent data flows.
DFG can be derived by respective mapping of redalegabndence grapBar of an unimodular
loop nest [8]. In the graplGar also nodes represent operators but weightedduage represent
dependence of the data which is delayekl itterations.

Both DFG and reduced dependence graaphk can be represented im dimensional space
Z". For most DSP algorithms for one dimensional digmacessing it is enough to operate with
n=4 dimensional space. Each Mfnodes of the graph which denotes the algorithnratipeis
represented by the vector - nade, i=1,...N. The coordinates of the vectidr signify iteration
number, clock number in the iteration, processing (PU) in which the respective operator is
implemented, and its type. EachMfedges of the graph which denotes the data depeadsn
variable moving is represented by the vector - édige K; - Ki.1 , j=1,...M, besides, vectdDy+1
=Kj.

Sets of vector; and D; form respective matricds andD which together with the graph
Gar incidence matrixA form an algorithm configuratio@a = (K,D,A). The configuratiorCy is
equal to the composition of structure configuratty+ (Ks,Ds,A) and configuration of eventr
= (K+,D1,A), namely

K=(ki,k])', D=(Dd.D]);

where vector-nodeKs; /Ks, represent coordinates of PU whergh operator is
implemented, vector-eddes; LDs represent relative coordinates of communicatioe for j-th
variable, vector-nodKry; /Ky represent clock period of this operator implemeotaand vector-
edgeDry; LD+ represent delay of this variable moving. Anotherdgo configuratiorCsrepresents
the graph of the processor structure, and the goraiion Cy represents the operator time
schedule.

The following definitions and statements are troe ¢onfigurationsCa, Cs, Cr . The

configurationCa is correct ifK; ZK;; i,j = 1,...,N,i4, i.e. all of vectors-nodes are placed in the

space separately.



There is a linear dependence between matribes: KA; K = DoAY, whereA, is the
incidence matrix for the maximum spanning tree led graphGag, and D, is the matrix of
vectors-edges of this tree.

Correct configurationCa can be transformed into equivalent configurati by any
injection function. For example, the following tsfarmations give equivalent configurations:
permutations of vectots; , multiplications of the matrii and non-singular matricés

The sum of vectors-edgé&s ,which belong to any loop of the gra@iar must be equal to
zero.

The configuratiorCr is correct ifD;=0, whereDy; is unweighted dependence vector of the
graph Gagr, inequality has lexicographic meaning=1,..M. Besides, the given algorithm is
implemented in pipelined manner correctly iff

OKnOK+(Kr=(i,a)", g0(0,1,...1-1)), (1)

whereKy; is not incident to edgT,-:(p,O)T weighted byp, L is the period of time between

two consecutive the same input operand loadingsisorthe latency of the algorithm
implementation.

Searching for algorithm mapping consists in degvconfigurationsCa, Cs, Cr which are
optimised according to given criterion. Directeglaching for optimised configurations is
implemented taking into account mentioned abovmitiens, dependencies and constraints.

At the first stage of the mapping, the searchingtie space compone@t is implemented.
The forming of the matriXs consists of distributinyly operators of th&-th type amongNl/L[
processing units of thk-th type. As a resultMs groups of equal columns are formed in the
matrix Ks, whereMs is the number of PUs in the resulting structutge §oal of this process is
resource allocation and resource assignment.

At the second stage, the time compone@t of the mapping is searched for. Derived
matrices Ky and Dr must satisfy the condition of algorithm configuoat correctness,
correctness of the configuration of events, coaditithat the sum of vectors-edges,which
belong to any loop of the gragbar must be equal to zero, and condition (1). Besidehe
operator represented W is calculated fod clock cycles, then the norfR(Drj)=iL+q of the

vectorDT,:(i,q)T must be no less thad . The clock period in which the operator represeiyg



Kr=(i,q)" is implemented is equal to= R(Km)= iL+q. As a result, the operator schedule is
derived.

In a large set of different exemplars of mappinguls an optimum mapping is searched.
Some heuristics can be applied to derive a quitiktisa, such as list scheduling, force directed
scheduling, loop folding, or left - edge algorithet¢. [1]. The advantages of this method consist
in the following. Both stages of the mapping dergican be executed in different order or
simultaneously providing best optimisation stratelgy time constrained scheduling and
functional pipelining. The pipelined PUs with thean stage number can be taken into account.

After some adaptation this method is well suitednfi@apping algorithms into MMX architecture.

4. Method for mapping data flow graphs into MMX laitecture.

Due to described above MMX structure model the maxn PU loading is achieved by
the following conditions. Up to four operators ofiet same type must be calculated
simultaneously. That means that its vector nd€ieim the algorithm configuratio®€, must be
different on each other only in the coordinate h®d PU number, i.e. they form a line which is
perpendicular to the time axis. According to MMi&iruction semantic, the data movings must
be preferably between registers or memory cellthefsame PUs. The data movings between
neighbouring PUs are supported by shift instrugiorhe line of four vector- nodé§ of equal
type like addition, multiplication, etc., and veteedgesD; , which are incident to them and
equal to each other, is mapped to a single MMX uasion.

Also the following must be taken into consideratithp to two MMX instructions can be
calculated simultaneously due to the superscalkareaf the processor. One source operand of
the instruction is allocated in the same regisgeth&@ destination operand is. The irregular data
movings must be implemented by usual move type&uogons or by the sequence of instructions
of packed AND, OR, shift, addition and multiplicati using proper masks and constants.
According to strict sequential consistency of cotimmy the latent delay between storing the
operand into memory and using it in another catauia can be equal to several clock cycles, and
the real delay can be unpredictable due to cacherency implementation. Therefore, it is

preferable to store such operands in MMX registers.



The method for mapping data flow graphs into MMXchatecture consists in the
following. The latent period. =3,4 ... is selected. Two stages of the methodrfapping data
flow graphs into application specific structure amgplemented. By this the SIMD structure
illustrated by the fig.1,2 is selected as the targee.

On the third stage the derived algorithm configorais optimized to fit both SIMD
structure and MMX instruction set. For this purpageto four multiplication or addition nod&s
are gathered to form a line which is perpendictddime axes. Then the nodes in these lines are
permutated to satisfy the condition that vectalgesD; , which are incident to them must be
equal to each otherWhen such condition is not satisfied, then funwicequivalent transforms
are implemented which consist in addition of opamatlike AND, OR, shift, addition and
multiplication using proper masks and constantslsoAthe delay- type vectors-nodes are
introduced into vectors-edgé&s which are not incident to multiplication nodestilnR(D+;)=1.
The delay- type vectors-nodes are mapped into gupatrts of MMX registersThese transforms
can disagree with the conditions which were satisin the first two stages of the synthesis. Then
the process is repeated from the first stage, haddtent period. can be exchangedThis
process is repeated until all of nodes and edgasbeacovered by graphs (stencils), which
represent MMX instructions.

On the last stage the derived algorithm configara@, is taken into consideration. The
nodesK; =(k,l,j, i,q) of k -th type which are calculated iri- th iteration andy-th clock cycle of
this iteration, and i th PU, form a set of up to four nodes, whersconst , q= const, |
1(0,1,2,3) Then this set of nodes is represented by a pfdp&X instruction, which source and
target operands are derived by the coordihatEnodes which are adjacent to these ones. The
derived instructions form the assembly program lbogy, in which the instructions stay in the
order according to the rising of the clock cyg®f the respective node set. According to the
program pipelining technique, operators of addoedsulating and iteration counting as well as

prologue and epilogue operator groups are adddeetoesulting program.



5. Example of the algorithm programming.

Consider an example of the calculation of the fmct;=arctg(x) for the array of
arguments x,. This function is calculated by the following pobmial approximation
arctg(x)=0.999x-0.289%0.079 x°, and is often used in DSP applications. This exanip
selected because of its relative complexity to sttewadvantages of proposed method comparing
to the hand made programs.

The polynome is factorised as the following; = c; X + Cx(X° X)) + Ca(x*(x°x)). Consider
the resulting algorithm configuration has the latgreriod L =5 clock cycles. Then six
multiplications of the algorithm can be implementedthe couple of PUs of the SIMD structure.
This means, that four PUs of the SIMD structure caoulate two algorithms in parallel.

Then first and second stages of the synthesisnapéemented. The resulting algorithm
configurationC, is illustrated by the fig.3. Here coordinaies), j represent iteration number,
clock cycle in the iteration, and PU number, refipely. Circles represent registers, circles with
plus sign and with cross sign represent additich mnltiplication operators, respectively. Two
algorithms are implemented in parallel on the PU& @nd 2, 3 , respectively. Then the input
dates are loaded in the packed format as the failpw(0,x ,0, X ), the coefficients are stored in
register mme6 : d, Cy, C1, C2), and in register mm7 : (@3, 0, c3), the results are stored as the
following : (0,;,0, Vi ).

At the third stage the derived algorithm configima is optimised to fit both SIMD
structure and MMX instruction set. The resultingtimgsed algorithm configuratiorCy is
illustrated by the fig.4. Here circles with vi sigenotes the OR operations.

At the fourth stage of the program synthesis setgpdo two nodes of the equal type are
searched which are calculated in theth clock cycle. Then these sets of nodes are septed
by a proper MMX instruction, which are collectedtanthe following table. The derived

instructions form the assembly program loop bodyictv consists of about twenty instructions.



Table. MMX instructions derived by the algorithnapping.

Clock MMX instruction
cycleq
0 pmul hw MML, MMD novq MM, VML nmovq MVB, MW/ paddw Mvb, M\V4

1 novgq MWD, Xi novq MMB, MMD psild M, 16 prul hw MMV3, MML
2 prul hw MMD, xi  novgq MW, M4 movg M4, MR novq Yyi, MVb

3 por MR, MVIL prul hw MML, MVB psrid MW, 16 novq MVb, M4

4 novq MML, MMD prul hw M2, MVb paddw Mvb, MVB

The performance of derived program was proven byhune programming tool. Due to
the superscalar nature of the processor and thehaicU-pipe and V-pipe of it is fully loaded,
the latent period of derived program implementatgaqual to 10 instruction cycles, and the one
result calculating lasts 36 cycles, when all okedaire in the cache RAM. Only three of 19 MMX
instructions make access to the RAM which proveshilgh grade of data reuse. Also taking into
account two algorithms implemented in parallel,heegsulty; is calculated approximately only

for 5 clock cycles.

5.Conclusion .

Implementation DSP algorithms in MMX architecturasha set of advantages, like the
possibility to achieve performance approximatelyuaqgto one of the high end signal
microprocessors, and combining DSP and other agits. But the demand on automatic
programming tools is still not satisfied. In thisak the simplified four processor SIMD model of
the MMX kernel is selected and a new method for pivegp DSP algorithms into it is proposed.
This method is derived by adapting the method fapping unimodular loop nests into
application specific structures, described in [4].

The method consists of four stages. At the firstgst the searching for the space
component of the algorithm mapping into applicatspecific structure is implemented. At the
second stage, the time component of the mappisgasched for and algorithm configuration is
derived. At the third stage is optimised to fitlb@IMD structure and MMX instruction set. And




at the fourth stage sets of nodes of the algoritanfiguration are represented by MMX

instructions, which form the assembly program lbogly.

The method helps to derive programs which fully lienpent the parallelism of the MMX

kernel of the Pentium microprocessor and can bd tmethe development new complex DSP

applications and library functions. It also can dsapted to another microprocessor families

which implement the expanded instruction set forltimedia applications. An automatic

programming tool which implements this method isznmder development.

[1].

[2].

3].

[4].

[5].

References.
The synthesis approach to digital system dedigl.: P.Michel, U.Lauther, P. Duzy, Kluwer
Academic Pub. 1992.
Kung S.Y. VLSI processor arrays. Prentice Halglewood Cliffs, 1988.
Wyrzykowsky R., Kanevski J.S., Maslenikov Ogr§yienko A. Mapping recursive
algorithms into processor arrays.\ Proc. Int. Vgbdp "Parallel Numerics' 94", M.Vajtersic,
P.Zinterhof, eds., Smolenice (Slovakia), 1994, f9-191.
A. Sergyienko, A. Guzinski, Ju. Kanevski, A thed for mapping unimodular loops into
application specific parallel architectures, In ®rd-nd Int. Conf. on Parallel Procesing and
Applied mathematics. PPAM’97. Zacopane, Poland}.Sep, 1997, p. 362-371.
Intel Architecture MMX Instruction Set. http:eveloper. intel.com/ drg/mmx/ manuals/

prm/ .

[6]. J. S. Kanevski, A. M. Sergyenko, H. Piech, Athod for the structural synthesis of pipelined

[7].

[8].

array processors, Ifroc. 1-st Int. Conf. on Parallel Processing ancpliégd Math. -
PPAM’94. Czestochowa (Poland), 1994, pp.100-109.

Yu. S. Kanevskiy, L. M. Loginova, A. M. Sergiko, Structured Design of Recursive Digital
Filters, Enginering Simulation, 1996, V.13, pp. 380.

VLSI and Modern Signal Processing, Ed. by 80hg, H.Whitehouse, T.Kailath, Prentice
Hall, 1985.



U pipe

[T PU3 le»] PU2 le» PUL e  PUO

CPU
core

R B S N

i

Cache RAM

Fig.1. SIMD structure model of the MMX processoreco

from Cach L

MPU

A

MM-regis-
ters

to PUI-1

»
»

to PUi+1
/ Shifter /
«—>

f
| A A A A
write buffer: | [ ¢ [ ¢ [ i |
v ooy vy
to Cach

Fig.2. Structure of the PU.



Fig.3. Initial algorithm configuration



v-vQv

MPU{

C o
mm6{
C3 O
mm{

Fig.4. Resulting algorithm configuration



