
(Published in Proc. 3d Int. Conf. Parallel Processing and Applied Mathematic

"PPAM'99", Kazimierz Dolny, Poland, Sept. 1999)

A Method for Mapping DSP Algorithms into the Pentium

MMX Architecture

A.M.Sergyienko*, D.V.Korchev, J.S.Kanevski**

*Department of Computer Engineering, National Technical University of Ukraine, KPI-

2020, pr. Peremogy, 37, Kiev, 252056, Ukraine. E-mail: aser@comsys.ntu-kpi.kiev.ua

**Institute of Math. & Computer Science, Technical University of Coszalin, Coszalin,

Poland. E-mail: kanievsk@tu.koszalin.pl

Abstract

In the representation a new method for mapping DSP algorithms into MMX
architecture is considered. The method is based on the matrix-graph method for mapping
regular algorithms into SIMD processor arrays. Then the Pentium MMX architecture is
considered as a four 16-bit processor linear array. According to the method, the reduced
dependence graph is mapped into configuration of the structure which corresponds to the
SIMD structure and to configuration of events. Finally, time slices of the latter are
exchanged by assembly instructions of the MMX instructions set. The example of the
algorithm mapping illustrates this method, and proves its effectiveness.

1. Introduction

The Intel Pentium MMX microprocessor has the instruction set which is expanded for

multimedia applications, called MMX technology. The MMX technology has the facilities to

achieve DSP application performance approximately equal to one of the high end signal

microprocessors. Usually customers use DSP MMX library functions or hand made assembly

codes with MMX instructions. When a specific and complex DSP algorithm is programmed both

approaches are ineffective ones because of low load balancing of the processor and labour

consumable programming process. In such case the automatic programming tools are needed. But

the demand on such tools is still not satisfied.

Architecture of the MMX kernel of the Pentium microprocessor can be considered as a

SIMD architecture with the constrained processor number. A new programming tool can be

designed on the base of the appropriate method for mapping DSP algorithms into such

architecture.

A set of methods for mapping DSP algorithms into application specific structure are

known, for example, described in [1], but they do not consider the SIMD architecture. The

methods for mapping regular algorithms into constrained systolic type arrays like described in

[2,3] can be used for such purpose. But the set of algorithms which can be directly mapped into

MMX architecture using these methods is very limited.

In this work the simplified four processor SIMD model of the MMX kernel is selected and

a new method for mapping DSP algorithms into it is proposed. This method is deriving by

adapting the method for mapping unimodular loop nests into application specific structures,

described in [4].

2. Structure of the processor array.

For most DSP applications the architecture of the MMX core can be approximated by the

array of four 16- bit processor units (PUs) which is illustrated by the Fig.1.

Here due to the superscalar nature of the Pentium processor, each of PUs is computing

simultaneously one or two instructions, which follow from U and V instruction pipelines. The

CPU core implements the control flow of the algorithm and calculates the address stream to the

cache RAM, which 64 bit quad word is divided to four 16 bit words. The inner structure of each

PU is represented by the Fig 2. All of instructions except multiplication are calculated for a single

clock cycle. The multiplication is calculated for three clock cycles. The data interprocessor

exchange is implemented by shift instructions [5].

3. Method for mapping data flow graphs into application specific structure.

The mapping method compendiously described below is well suited for mapping DSP

algorithms into application specific structures and was published in [4,6,7]. In this paper it is

adapted to programming MMX applications. Often DSP algorithms are described by data flow

graphs (DFG). In DFG operator nodes represent operations of addition or multiplication, a chain

of k delay nodes represents delay of a signal variable to k iterations, edges represent data flows.

DFG can be derived by respective mapping of reduced dependence graph GAR of an unimodular

loop nest [8]. In the graph GAR also nodes represent operators but weighted by k edge represent

dependence of the data which is delayed to k iiterations.

Both DFG and reduced dependence graph GAR can be represented in n- dimensional space

Zn . For most DSP algorithms for one dimensional signal processing it is enough to operate with

n=4 dimensional space. Each of N nodes of the graph which denotes the algorithm operator is

represented by the vector - node Ki , i=1,...,N. The coordinates of the vector Ki signify iteration

number, clock number in the iteration, processing unit (PU) in which the respective operator is

implemented, and its type. Each of M edges of the graph which denotes the data dependence or

variable moving is represented by the vector - edge Dj = Ki - Ki-1 , j=1,...,M, besides, vector DN+1

= K1 .

Sets of vectors Ki and Dj form respective matrices K and D which together with the graph

GAR incidence matrix A form an algorithm configuration CA = (K,D,A). The configuration CA is

equal to the composition of structure configuration CS = (KS,DS,A) and configuration of events CT

= (KT,DT,A) , namely

()K K KS
T

T
T T

= , , ()D D DS
T

T
T T

= , ;

where vector-node KSi ∈KS, represent coordinates of PU where i-th operator is

implemented, vector-edge DSj ∈DS represent relative coordinates of communication line for j-th

variable, vector-node KTi ∈KT represent clock period of this operator implementation and vector-

edge DTj ∈DT represent delay of this variable moving. Another words, configuration CS represents

the graph of the processor structure, and the configuration CT represents the operator time

schedule.

The following definitions and statements are true for configurations CA, CS, CT . The

configuration CA is correct if Ki ≠ Kj ; i,j = 1,...,N, i≠j, i.e. all of vectors-nodes are placed in the

space separately.

There is a linear dependence between matrices: D = KA; K = DoAo
-1, where Ao is the

incidence matrix for the maximum spanning tree of the graph GAR, and Do is the matrix of

vectors-edges of this tree.

Correct configuration CA can be transformed into equivalent configuration CA’ by any

injection function. For example, the following transformations give equivalent configurations:

permutations of vectors Ki , multiplications of the matrix K and non-singular matrices P.

The sum of vectors-edges Dj ,which belong to any loop of the graph GAR must be equal to

zero.

 The configuration CT is correct if Dtj≥0, where Dtj is unweighted dependence vector of the

graph GAR, inequality has lexicographic meaning, j =1,...M. Besides, the given algorithm is

implemented in pipelined manner correctly iff

∀KTl∈KT(KTl=(i,q)T, q∈(0,1,...,L-1)), (1)

where KTi is not incident to edge DTj=(p,0)T weighted by p, L is the period of time between

two consecutive the same input operand loadings or is the latency of the algorithm

implementation.

Searching for algorithm mapping consists in deriving configurations CA, CS, CT which are

optimised according to given criterion. Directed searching for optimised configurations is

implemented taking into account mentioned above definitions, dependencies and constraints.

At the first stage of the mapping, the searching for the space component CS is implemented.

The forming of the matrix KS consists of distributing Mk operators of the k-th type among]Mk/L[

processing units of the k-th type. As a result, MS groups of equal columns are formed in the

matrix KS , where MS is the number of PUs in the resulting structure. The goal of this process is

resource allocation and resource assignment.

At the second stage, the time component CT of the mapping is searched for. Derived

matrices KT and DT must satisfy the condition of algorithm configuration correctness,

correctness of the configuration of events, condition, that the sum of vectors-edges Dj ,which

belong to any loop of the graph GAR must be equal to zero, and condition (1). Besides, if the

operator represented by KTl is calculated for d clock cycles, then the norm R(DTj)=iL+q of the

vector DTj=(i,q)T must be no less than d . The clock period in which the operator represented by

KTl=(i,q)T is implemented is equal to t = R(KTl)= iL+q. As a result, the operator schedule is

derived.

In a large set of different exemplars of mapping results an optimum mapping is searched.

Some heuristics can be applied to derive a quick solution, such as list scheduling, force directed

scheduling, loop folding, or left - edge algorithm, etc. [1]. The advantages of this method consist

in the following. Both stages of the mapping deriving can be executed in different order or

simultaneously providing best optimisation strategy by time constrained scheduling and

functional pipelining. The pipelined PUs with the given stage number can be taken into account.

After some adaptation this method is well suited for mapping algorithms into MMX architecture.

4. Method for mapping data flow graphs into MMX architecture.

Due to described above MMX structure model the maximum PU loading is achieved by

the following conditions. Up to four operators of the same type must be calculated

simultaneously. That means that its vector nodes Ki in the algorithm configuration CA must be

different on each other only in the coordinate of the PU number, i.e. they form a line which is

perpendicular to the time axis. According to MMX instruction semantic, the data movings must

be preferably between registers or memory cells of the same PUs. The data movings between

neighbouring PUs are supported by shift instructions. The line of four vector- nodes Ki of equal

type like addition, multiplication, etc., and vectors-edges Dj , which are incident to them and

equal to each other, is mapped to a single MMX instruction.

Also the following must be taken into consideration. Up to two MMX instructions can be

calculated simultaneously due to the superscalar nature of the processor. One source operand of

the instruction is allocated in the same register as the destination operand is. The irregular data

movings must be implemented by usual move type instructions or by the sequence of instructions

of packed AND, OR, shift, addition and multiplication using proper masks and constants.

According to strict sequential consistency of computing, the latent delay between storing the

operand into memory and using it in another calculations can be equal to several clock cycles, and

the real delay can be unpredictable due to cache coherency implementation. Therefore, it is

preferable to store such operands in MMX registers.

The method for mapping data flow graphs into MMX architecture consists in the

following. The latent period L =3,4 ... is selected. Two stages of the method for mapping data

flow graphs into application specific structure are implemented. By this the SIMD structure

illustrated by the fig.1,2 is selected as the target one.

 On the third stage the derived algorithm configuration is optimized to fit both SIMD

structure and MMX instruction set. For this purpose up to four multiplication or addition nodes Ki

are gathered to form a line which is perpendicular to time axes. Then the nodes in these lines are

permutated to satisfy the condition that vectors-edges Dj , which are incident to them must be

equal to each other. When such condition is not satisfied, then functional equivalent transforms

are implemented which consist in addition of operators like AND, OR, shift, addition and

multiplication using proper masks and constants. Also the delay- type vectors-nodes are

introduced into vectors-edges Dj which are not incident to multiplication nodes, until R(DTj)=1.

The delay- type vectors-nodes are mapped into quarter parts of MMX registers. These transforms

can disagree with the conditions which were satisfied in the first two stages of the synthesis. Then

the process is repeated from the first stage, and the latent period L can be exchanged . This

process is repeated until all of nodes and edges can be covered by graphs (stencils), which

represent MMX instructions.

On the last stage the derived algorithm configuration CA is taken into consideration. The

nodes Ki =(k,l,j, i,q) of k -th type, which are calculated in i- th iteration and q-th clock cycle of

this iteration, and in j th PU, form a set of up to four nodes, when k =const , q= const, j

∈(0,1,2,3). Then this set of nodes is represented by a proper MMX instruction, which source and

target operands are derived by the coordinate l of nodes which are adjacent to these ones. The

derived instructions form the assembly program loop body, in which the instructions stay in the

order according to the rising of the clock cycle q of the respective node set. According to the

program pipelining technique, operators of address calculating and iteration counting as well as

prologue and epilogue operator groups are added to the resulting program.

5. Example of the algorithm programming.

Consider an example of the calculation of the function yi=arctg(xi) for the array of

arguments xi. This function is calculated by the following polynomial approximation

arctg(x)=0.999x-0.289x3+0.079 x5, and is often used in DSP applications. This example is

selected because of its relative complexity to show the advantages of proposed method comparing

to the hand made programs.

The polynome is factorised as the following: yi = c1 xi + c2(xi
2
 xi) + c3(xi

2(xi
2 xi)). Consider

the resulting algorithm configuration has the latent period L =5 clock cycles. Then six

multiplications of the algorithm can be implemented on the couple of PUs of the SIMD structure.

This means, that four PUs of the SIMD structure can calculate two algorithms in parallel.

Then first and second stages of the synthesis are implemented. The resulting algorithm

configuration CA is illustrated by the fig.3. Here coordinates i, q, j represent iteration number,

clock cycle in the iteration, and PU number, respectively. Circles represent registers, circles with

plus sign and with cross sign represent addition and multiplication operators, respectively. Two

algorithms are implemented in parallel on the PUs 0, 1 and 2, 3 , respectively. Then the input

dates are loaded in the packed format as the following : (0, xi
’,0, xi), the coefficients are stored in

register mm6 : (c1, c2, c1, c2), and in register mm7 : (0, c3, 0, c3), the results are stored as the

following : (0, yi
’,0, yi).

 At the third stage the derived algorithm configuration is optimised to fit both SIMD

structure and MMX instruction set. The resulting optimised algorithm configuration CA is

illustrated by the fig.4. Here circles with vi sign denotes the OR operations.

At the fourth stage of the program synthesis sets of up to two nodes of the equal type are

searched which are calculated in the q -th clock cycle. Then these sets of nodes are represented

by a proper MMX instruction, which are collected into the following table. The derived

instructions form the assembly program loop body, which consists of about twenty instructions.

Table. MMX instructions derived by the algorithm mapping.

Clock

cycle q

 MMX instruction

0 pmulhw MM1,MM0 movq MM4,MM1 movq MM3,MM7 paddw MM5,MM4

1 movq MM0,xi movq MM3,MM0 pslld MM4,16 pmulhw MM3,MM1

2 pmulhw MM0,xi movq MM2,MM4 movq MM4,MM2 movq yi,MM5

3 por MM2,MM1 pmulhw MM1,MM3 psrld MM4,16 movq MM5,MM4

4 movq MM1,MM0 pmulhw MM2,MM6 paddw MM5,MM3

The performance of derived program was proven by the VTune programming tool. Due to

the superscalar nature of the processor and the fact that U-pipe and V-pipe of it is fully loaded,

the latent period of derived program implementation is equal to 10 instruction cycles, and the one

result calculating lasts 36 cycles, when all of dates are in the cache RAM. Only three of 19 MMX

instructions make access to the RAM which proves the high grade of data reuse. Also taking into

account two algorithms implemented in parallel, each result yi is calculated approximately only

for 5 clock cycles.

5.Conclusion .

Implementation DSP algorithms in MMX architecture has a set of advantages, like the

possibility to achieve performance approximately equal to one of the high end signal

microprocessors, and combining DSP and other applications. But the demand on automatic

programming tools is still not satisfied. In this work the simplified four processor SIMD model of

the MMX kernel is selected and a new method for mapping DSP algorithms into it is proposed.

This method is derived by adapting the method for mapping unimodular loop nests into

application specific structures, described in [4].

The method consists of four stages. At the first stage, the searching for the space

component of the algorithm mapping into application specific structure is implemented. At the

second stage, the time component of the mapping is searched for and algorithm configuration is

derived. At the third stage is optimised to fit both SIMD structure and MMX instruction set. And

at the fourth stage sets of nodes of the algorithm configuration are represented by MMX

instructions, which form the assembly program loop body.

The method helps to derive programs which fully implement the parallelism of the MMX

kernel of the Pentium microprocessor and can be used for the development new complex DSP

applications and library functions. It also can be adapted to another microprocessor families

which implement the expanded instruction set for multimedia applications. An automatic

programming tool which implements this method is now under development.

References.

[1]. The synthesis approach to digital system design. Ed.: P.Michel, U.Lauther, P. Duzy, Kluwer

Academic Pub. 1992.

[2]. Kung S.Y. VLSI processor arrays. Prentice Hall, Englewood Cliffs, 1988.

[3]. Wyrzykowsky R., Kanevski J.S., Maslenikov O, Sergyienko A. Mapping recursive

algorithms into processor arrays.\ Proc. Int. Workshop "Parallel Numerics' 94", M.Vajtersic,

P.Zinterhof, eds., Smolenice (Slovakia), 1994, pp 169-191.

[4]. A. Sergyienko, A. Guzinski, Ju. Kanevski, A method for mapping unimodular loops into

application specific parallel architectures, In Proc. 2-nd Int. Conf. on Parallel Procesing and

Applied mathematics. PPAM’97. Zacopane, Poland, Sept. 2-5, 1997, p. 362-371.

[5]. Intel Architecture MMX Instruction Set. http:// developer. intel.com/ drg/mmx/ manuals/

prm/ .

[6]. J. S. Kanevski, A. M. Sergyenko, H. Piech, A method for the structural synthesis of pipelined

array processors, In Proc. 1-st Int. Conf. on Parallel Processing and Applied Math. -

PPAM’94. Czestochowa (Poland), 1994, pp.100-109.

[7]. Yu. S. Kanevskiy, L. M. Loginova, A. M. Sergienko, Structured Design of Recursive Digital

Filters, Enginering Simulation, 1996, V.13, pp. 381-390.

[8]. VLSI and Modern Signal Processing, Ed. by S.Y.Kung, H.Whitehouse, T.Kailath, Prentice

Hall, 1985.

MM-regis-
ters

MPU

from Cache

to PUi+1 to PUi-1

Shifter

SM1 SM2

to Cache

write buffers

Fig.2. Structure of the PU.

Cache RAM

U pipe

V pipe

PU3 PU2 PU1 PU0

CPU
core

Fig.1. SIMD structure model of the MMX processor core

j=

0

1

0

1

0

1

0

Fig.3. Initial algorithm configuration

 0 1 2 3

 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1

q

xi

C1

C2

Cache

mm6{

mm7{

MPU{

C3

xi

yi

i

SM{

Fig.4. Resulting algorithm configuration

 0 1 2 3

 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3

q

xi

0

0

C1

C2

mm0{

mm1{

mm2{

mm3{

Cache

mm4{

mm5{

mm6{

mm7{

MPU{

C3

xi

yi

i

