NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
«IGOR SIKORSKY POLYTECHNICAL INSTITUTE»

Informatic and Computer Engineering Faculty
Computer Engineering Department

«On the rights of the manuscript» «Defence is allowed»

YIK __004.942

Head of the Computer Science Dep-t

S.G. Stirenko

(sign) (name)

“« o 2018p.

Master's thesis

In speciality 123 Computer Engineering
Specialization: 123. Computer systems and networks
theme: Method of increasing the efficiency

of the finite impulse response digital filters

Fulfilled: student of VI course, group _ 10 64m

(group sign)

Quadir Safwan Husein

(Full Name) (signature)

Hayxosuii kepiBauk Ass.Prof., Dr.Sci, S.Sci. Sergiyenko A.M.

(position, scientific degree, academic rank, surname and initials) (signature)

Reviewer Ass.Prof., Dr.Sci, Docent Romankevich V.O.

(position, scientific degree, academic rank, surname and initials) (signature)

I certify that in this master's thesis there are no
borrowings from the works of other authors
without the corresponding references.

Student

(signature)

Kyiv — 2018

PE®EPAT

Meton niaBuieHHS €(EeKTUBHOCTI HEPEKYPCUBHUX ITUGPOBUX PLIBTPIB.

AKTyaJIbHICTh TeMH. /[[7s IIBHIKICHOTO BHpIIIEHHA 3a1a4 LUdpPOBOi
0o0poOKM curHamiB, 30KpemMa A 0OpoOKH CHUTHadiB (UIBTpaMH 31 CKIHUEHHOIO
iMIynibCcHOIO XapakTepuctukoro (CIX) mmpoko BHKOPUCTOBYIOTHCS MPOrpaMoBaHi
soriuni iHTerpaidbHi cxemu (IJIIC). Peanizarmia CIX-dinsTpiB y IIJIIC ocHoBaHa Ha
IIMPOKOMY BHKOPUCTaHHI amapaTHuX OJoKiB MHOXeHHs. [lpu mpomy pemra
IpPOrpaMOBaHUX PECyYpCiB BHUKOPHUCTOBYETHhCS HepalioHanbHO. OTxe, s
MIJBUIICHHS €()EKTUBHOCTI BUKOpUCTaHHS mporpamoBaHux pecypciB IIJIIC Ta
3MEHIIEHHS 1X €HEePrOCHOKMBaHHS HEOOXiJHE BIPOBAKEHHS OUIBII JOCKOHAIHX
ctpykTyp CIX-binbTpis.

O0’ekTOM J0CJTIIKEHHSI € TPOEKTYBaHHS MPOLECOpPiB g IUPPOBOI
00pOOKH CUTHAITIB.

IIpeamerom aociaimkeHHs € Po3pOOKa BUCOKOMPOAYKTUBHUX KOHBEEPHUX
CIX-dinbrpiB.

Meta po0OTH: CTBOpPEHHS METOAY MNPOEKTYBAHHS BUCOKOMPOIYKTUBHUX
CIX-dinbrpiB, npusHaueHux st kondirypysauus B [TIIC.

HaykoBa HOBH3HA MOJIAATA€ B HACTYITHOMY:

Po3po6ieno meron miaBUIEHHS €(EKTUBHOCTI HEPEKYPCUBHUX HUQPPOBUX
G1IbTpIB, AKUII OCHOBAaHWUN HA TOMY, IIO OJOKM MHOXEHHS Ha KOEQILIEHTH, IO
MarTh HEBEJIMKY aMILTITY/y, 3aMIHSIOTHCS Ha CHeEIlalli3oBaH1 OJIOKM MHOXXEHHSI, 32
pPaxyHOK 4YOro 3MEHINYIOThCS amapaTHl BUTpaTH 30UIBLIYETHCS MPOIYCKHA
CIIPOMOJKHICTB (1TIBTPIB.

IIpakTHyHa WiHHICTH OTPUMAHUX B POOOTI PE3yNbTATIB MOJIATAE B TOMY,
o 1UpoBi GiIbTPH, sIKI PO3POOJICHI 32 HOBUM METOJIOM, TO3BOJISIOTH I1BUIITUTH
e(eKTUBHICTh cucTteM oOpoOku curHaiiB Ha 0a3l IIJIIC 3a paxyHOK 3MEHIICHHS
iXHBOI BapTOCTI 200 301JIBIIIEHHS TPOTYKTUBHOCTI.

Matepianu poOOTH BHUKOPUCTaHI Yy HayKOBO-JIOCHIOHINA poOOTI

«Y 1OCKOHaJIEH1 METOIU Ta 3aCOOM MPOEKTYBaHHS KOH(PIrypoOBaHUX KOMIT IOTEPIB Ha

OCHOBI BIIOOpaX€HHSI TPOCTOPOBOrO Trpady CHUHXPOHHUX TMOTOKIB JaHUX Y
CTpYKTypu Ha ©0a3l nOporpaMoBaHUX JIOTIYHMX I1HTETPaJbHUX cXeM», No
JP.0470005087, mmdp PIOT-30T/2017, sxa npoBoauthess y HTYY “KIII im.
Irops Cikopchbkoro.

Amnpobaniss podoru. OCHOBHI MOJIOKEHHS 1 pe3yibTaTd poOOTH Oynu
npejcTaBiieHl Ta oOropoproBamuch Ha 20-Tii MixkHapoaHid KoH(epeHIi
«CucreMHuit aHai3 Ta 1H(pOopMaliiiH1 TEXHOJOT11» SAIT-2018
21 — 24 Ttpausa 2018 poky, KuiB Ta wmixkuapoaHiii koHdepeniii "besneka,
Biamogocriiikicts, [HTenekt" 10 — 12 tpaBus 2018 poxy, Kuis.

Ctpykrypa Ta ob6csir podoTn. Marictepchbka aucepTallis CKIAAA€eThCs 31
BCTYITY, TPhOX PO3/I1JIiB Ta BUCHOBKIB.

Y e6cmyni monmano 3arajbHy XapaKTE€PUCTUKY pOOOTH, 3pOOJEHO OLIHKY
Cy4acHOTO CTaHy MNpoOJeMHU PO3pOOKH cHCTEM HHUGPPOBOI 0OpOOKH CUTHATIB Ha
[TIJTIC, oOrpyHTOBAHO aKTyalbHICTh HAMPAMKY JOCTIIKEHBb, CPOPMYIHOBAHO METY 1
3aJavl JOCHIKEHb, IIOKa3aHO HAYKOBY HOBH3HY OTPHUMAaHUX pe3yibTaTiB 1
MPaKTUYHY I[IHHICTH POOOTH, HABEIEHO BIJOMOCTI MPO amnpoOaIiio pe3yabTaTiB 1
IXHE BIIPOBAKCHHS.

Y nepwomy po3oini nocnimxeHo oco0auBocTi apxitektypu cydacHux [JIIC,
PO3TISIHYTO airopuTMU 1PpoBoi iasTparlrii Ta ix Bigomi peamizanii B IIJIIC.

Y opyeomy poszdini po3poONeHO MeToA MiABUIICHHS e()EeKTUBHOCTI
HepeKypCcUBHUX ITUPPOBUX DUIBTPIB, sKi peanizyroTbes y [JIIC.

Y mpemvomy poszdini pochmimpkeHo — e(PEKTUBHICTH BUKOPUCTAHHS
3aIPOTIOHOBAHOTO METOy Ta MOPIBHSHHS WOTO 3 ICHYIOUMMH METOJaMU Ha OCHOBI
psany npukiaaiB npoektyBaHHs CIX-(inbTpis.

YV e6ucnoerax npencrasieHi pe3ynbTaTu IPOBEAEHOI pOOOTH.

PoGora mpencrtaBieHa Ha 93 apkymax, MICTUTh MOCHJIAHHS Ha CIIHCOK
BUKOPHUCTAHUX JIITEPATYPHUX JIKEPETT.

Kawouosi caoBa: IUIIC, immynbcHa XapaKTepUCTHKA, HEPEKYPCUBHUMI

GbUIbTp, Tpad) CUHXPOHHUX MOTOKIB JAHUX, KOHBEED.

ABSTRACT

Method of increasing the efficiency of the finite impulse response digital
filters.

Relevance of the topic. Field programmable gate arrays (FPGAs) are
widely used for the high-speed digital signal processing (DSP) in particular for
processing by the finite impulse response (FIR) filters. The FIR filter
implementation in FPGA 1is based on the widespread use of hardware
multiplication blocks. At the same time, the rest of the FPGA programmable
resources are used ineffectively. Therefore, in order to increase the efficiency of
the use of the FPGA programmable resources and to reduce their energy
consumption, it is necessary to introduce more perfect FIR filter structures.

The object of the research is designing of high-performance processors
for the digital signal processing.

The subject of the research is development of the high-performance
pipelined FIR filters.

The objective is the creation of a method for designing the high-
performance FIR filters which are intended for configuring in FPGA.

The scientific novelty is as follows:

The method of increasing the efficiency of the FIR digital filters, which is
based on the fact that the constant coefficient multiplication blocks for the small
coefficients are replaced by the specialized blocks, due to which the hardware costs
decreases, and the throughput of the filters increases.

The practical value of the obtained results is that the digital filters
developed by the new method allows to improve the efficiency of the DSP systems
on the basis of FPGA by reducing their cost or increase the speed.

The materials of the thesis were used in the research work "Advanced

methods and tools of designing the configurable computers on the basis of

mapping the spatial synchronous data flow graphs into the structure for FPGA", Ne
JIP.0470005087, ®IOT-30T / 2017, which is held at NTUU “Igor Sikorsky’s
KPI”.

Approbation of the work. Substantive provisions and results of the work
were presented and discussed at the 20-th International conference “System
Analysis and Infirmational Technologies”, SAIT-2018, May, 21 — 24, 2018, Kyiv,
and at the International Conference on Security, Fault Tolerance, Intelligence
(ICSFTI2018), May 10 — 12, 2018, Kyiv.

The structure and scope of the work. Master's thesis consists of an
introduction, four sections and conclusions.

The introduction provides a general description of the work carried out to
assess the current state of the problem, justified the relevance of research areas,
formulate goals and objectives of research shows the scientific novelty of the
obtained results and the practical value of the work, it provides the information
about the testing results.

In the first section

In the second section a method for increasing the efficiency of non-
recursive digital filters implemented in FPGA is developed.

The first section deals with the features of the modern FPGA architecture,
algorithms of digital filtration and their known implementation in FPGA. Here, the
basic methods of designing the pipelined application-specific processors,
algorithms and structures for calculating the FIR filters are considered.

The second section describes a method for increasing the efficiency of FIR
digital filters implemented in FPGA.

In the third section, the efficiency of using the proposed method is
investigated and it is compared with the existing methods of the FIR filter design.

The conclusions describe the results of the work.

The work submitted 93 sheets, contains a list of references to the used
literature.

Key words: FPGA, FIR filter, pipeline, synchronous dataflow graph.

PE®EPAT

MeTton noBbliieHHst 3)(PEKTUBHOCTH HEPEKYPCUBHBIX IIUPPOBBIX
¢GunbTPOB

AKTyaJbHOCTh TeMbl. [lJ1s1 CKOpPOCTHOro pemieHus 3ajnad LudpoBoi
00pabOTKM CUTHAJIOB, B YACTHOCTH /17151 00pabOTKU CUTHAIOB (PUIBTPAMHU C KOHEY-
HOM MMNyJIbCHOM xapakTepuctukon (KMX) mupoko UCHONB3YIOTCA MPOrpaMMu-
pyembie Jorudeckue uarerpaibHbie cxeMbl (IIJIMC). Peanmuzanus KUX-punstpos
B [IJIMC ocHOBaHa Ha MIMPOKOM HCIOJIH30BAHHMH AaIMAPATHBIX OJIOKOB YMHOXE-
Hus. [Ipy 3TOM OCTabHBIE TPOrPaMMUPYEMBIE PECYPCHI UCIIONIB3YETCSl HEpaLUo-
HanbHO. Clie0BaTeNbHO, MAJI TOBBIIIEHUS J(PGEKTUBHOCTH HCIMOJIb30BAHUS
nporpammupyemMbix pecypcoB IIJIMC u ymeHbIIeHHS HX HSHEPromnoTpeOieHus
Heo0X0uMO BHeApeHHe Oosiee coBepiieHHbIX CTpyKTyp KN X-dunprpos.

OO0bekTOM HMCCICAOBAHUS SIBISIETCS NPOEKTUPOBAHHE BBICOKOIPOM3-
BOJUTEJIBHBIX NPOLIECCCOPOB AJis HU(PPOBOM 0OPAOOTKU CUTHAJIOB.

IIpenmeroM muccienoBaHusi sBIAETCS pa3pabOTKa BbICOKOIPOU3BOIU-
TenbHBIX KOoHBeWepHbIX KUX-punbTpos.

Hennr padoThl: co3gaHMe METOJA IIPOCKTUPOBAHMS BBICOKOIIPOU3BO-
mutenbHbix KUX-puneTpoB, mnpenHasHayeHHBIX s KOH(QUTYPUPOBAaHUS B
TUINC.

Hay4yHnasi HOBH3HA 3aKJII0YACTCS B CIEYIOLIEM:

Paspabotan MeTon moOBBIIIEHUS 3(PQPEKTUBHOCTH HEPEKYPCHUBHBIX
mupPOBbIX (UIBTPOB, KOTOPBIH OCHOBaH Ha TOM, YTO OJIOKM YMHOYKEHHUS Ha
KOA(pGUIIUEHTHI, KOTOpbIE HMEIOT HEOOJBIIYI0 aMIUTUTYQy 3aMEHSIOTCS Ha
CHEIMAIM3UPOBAaHHBIE OJIOKM YMHOXEHHs, 3a CYeT Yero yMEHbIIAITCA

anmnapaTHbI€ 3aTPaThl YBEIUYMBACTCS MPOIYCKHAs CIOCOOHOCTh (PUIIBTPOB.

IlpakTHyeckass UEHHOCTb TIOJYYEHHBIX B paboTe pe3yJbTaToOB
3aKJII0YAETCs B TOM, UTO U(PPOBBIE HUIBTPHI, pa3paboTaHHbIE IO HOBOMY METOY,
MO3BOJISIIOT TOBBICUTh 3()PEKTUBHOCTH CHUCTEM OO0pabOTKM CHUTHAJOB Ha 0Oaze
IJDIMC 3a cyeT yMEHBIIEHUS HUX CTOMMOCTA WM YBEIMYECHUSA
IPOU3BOJUTEIILHOCTH.

Martepuanbl pabOThl UCIIOIB30BaHbl B HAYUYHO-UCCIIEI0BATEILCKON padboTe
«Y COBEpILICHCTBOBAHHBIE METOJBI M CPEACTBA MPOEKTUPOBAHUS KOHPHUTYpUPY-
€MBIX KOMIIBIOTEPOB Ha OCHOBE OTOOpaXeHHs MPOCTPAHCTBEHHOro rpada
CUHXPOHHBIX TIOTOKOB JaHHBIX B CTPYKTYypbl Ha 0a3ze NporpaMMHpPyEMBbIX
JIOTUYECKUX MHTETPATBHBIX cxeM», No J[P.047U005087, mmdp PIOT-30T / 2017,
kotopas npoBoautcs B HTYY "KIIN um. Uropst Cukopckoro™.

Anpodanusi padoTbl. OCHOBHBIE MOJIOKEHUSI U PE3YJIBTaThl padOThI OBLIH
npenacTaBieHsl M obcyxaanuck Ha 20-0if MexayHapoaHoOW KoH(EpeHIHUH
«CucremHbIi ananu3 u nHGopMaluoHHble TexHoaorun» SAIT-2018, 21 — 24 mas
2018, Kuen U MEXIYHapOTHON KOH(epeHInn "be3omacHoCTb,
OtkazoycroitunBocth, MuTEewekT" 10 — 12 mas 2018, Kues.

CTpykrypa M o0bem padoTbl. Marucrepckas JuccepTaiusi COCTOUT W3
BBEJICHHUSI, TPEX IJ1aB U BBIBOJIOB.

Bo 66edenuu nipencrapieHa o0IIas XapakTEPUCTUKA pabOThl, MPOU3BEICHA
OLICHKa COBPEMEHHOTO COCTOSIHHSA NpoOJeMbl pa3pabOTKu cucteM LudpoBoi
o0pabotrku curHamoB Ha IIJIMC, oOocHOBaHa akTyaJlbHOCTh HAaINpaBJICHUS
UCCJIeIOBaHUM, C(HOPMYIUPOBaHbBl €M W 337a4d HUCCJIEIOBAHMUM, TOKA3aHO
HAYYHYIO HOBU3HY MOJYYEHHBIX PE3YJIbTATOB U MPAKTUYECKYIO [IEHHOCTh PaboTHl,
MPUBEIECHBI CBeIEHUs 00 anpoOanuu pe3ybTaToB U UX BHEAPEHUE.

B nepsom pazoene uccienoBaHbl 0COOCHHOCTH apXUTEKTYPbl COBPEMEHHBIX
[IJIUC, paccmoTpeHbl airopuTMbl LU(pPOBON (UIBTpAlMM M HUX H3BECTHBIC

peanm3zanuu B [TJINC.

Bo emopom pazoene pazpaboTaH MeTOj MOBBIIMICHUS 3(HPEKTUBHOCTH
HEPEKYPCUBHBIX IIUPPOBBIX (HUIBTPOB, KOTOpbie peanusyrorces B [IJINC.

B mpemvem pazoene wuccnenoBaHa 3G(PEKTUBHOCTH HCIOJIB30BAHUS
NPEVIOKEHHOTO METOAA M CPABHEHHE €ro C CYIIECTBYIOIIMMHU METOJAaMU Ha
OCHOBE psiia mpuMepoB npoekTupoBanust KUX-puiabtpos.

B 6b1600ax nipencTaBiaeHbl pe3yiabTaThl IPOBEACHHOM PaOOTHI.

Pabotra mpencraBiena Ha 93 nmcTax, COAEPXKUT CCBUIKM Ha CIHCOK
VCIIOJIb30BaHHBIX JINTEPATYPHBIX NCTOYHUKOB.

KiawoueBbie ciaoa: IIJIMC, wumnyinbcHas XapaKTEpUCTHKA, a HE

pPEKypCUBHBIN (UIBTP, Tpad CHHXPOHHBIX TIOTOKOB JIAaHHBIX, KOHBEHEp.

CONTENT

INTRODUCTION ..ottt ettt ettt et e e 3
1 FINITE IMPULSE RESPONSE FILTER HARDWARE DESIGN 6
1.1 Basics of the FIR fIlTers........coviiiiiiiiiiiiiieieeeeececetece e 6
1.1.4 Filter algorithm representation...........cc.veeeeeeeieiieeeereiiieeeeerireeeeeeiieeeeeesinneeees 13
1.2 FPGA as the computing environment for FIR filter implementation............... 18
1.3 Multiplier-free FIR filter implementation...........ccceeeeuvieeeiiniiiieeeeniieee e, 24
1.4 Conclusions tO the SECTIOMN........eiiiuiiiiiiiiieiiie ettt e e 31
2 METHOD OF INCREASING THE EFFICIENCY OF THE FIR DIGITAL

FILTERS ...ttt ettt et e st e s e e 32
2.1 FPGA use considerations for the FIRc..cccoooiiiiiiiiiccee 32
2.3 Method of increasing the FIR filter efficiency..........ccoceevveeniieniiiinicnnicnnnens 42
2.5 Preliminary CONCIUSIONScccuviiieiiieeeiieeeeiieeerieeeerreeeeiveeeeereeesnsaeeesnsaaeensseaeens 51
3.1 Description of the FIR filter in VHDL.........cccccccoiiiiiiiiiiiie e, 52
3.2 Modeling the fIlter........cccuiiieiiiieeiie e eee e e e e seaeeeens 58
3.3 Implementation in FPGA ...ttt 60
3.4 Concluding remarkcooeiiiiiiiiiiiniie ettt e 61
CONCLUSIONS ...ttt ettt et e st e st e e bteebeeeaaeens 62
REFERENCES ... oottt ettt et 63
APPENDICESottt ettt st e et eaae e 69
APPENDIX T ..ottt ettt st 69
APPENDIX 2 ..ottt sttt ettt s s 76

ABBREVIATIONS

ASIC Application Specific Integrated Circuit
CCM Constant Coefficient Multiplier
CSD Canonic Signed Digit (presentation)

DSP Digital Signal Processing
DFG Data Flow Graph
FIR Finite Impulse response

FPGA field programmable gate array

GPU Graphic Processing Unit

IC Integrated Circuits

ITIR Infinite Impulse Response

IP core Intellectual Property core

LUT Look-Up Table

MSD Minimum Signed Digit (presentation)
PU Processing Unit

RAM Random Access Memory

ROM Read-Only Memory

RTL Register Transfer Logic

SDF Synchronous Data Flow graph
VHSIC Very High Speed Integrated Circuits
VHDL = VHSIC Hardware Description Language
CpPU Central Processing Unit

VLSI Very Large Scale Integration

INTRODUCTION

Finite impulse response (FIR) filter structure development is expanded
since 60-ies [1,2]. But the most of FIR implementations are the program ones, for
example, in the DSP processors [3]. Field programmable gate arrays (FPGAs) are
widely used for the high-speed digital signal processing (DSP) in particular for
processing by the FIR filters.

The leading FPGA companies provide the FIR IP core generators [4.5].
The generated FIR filter implementation in FPGA is based on the widespread use
of hardware multiplication blocks. At the same time, the rest of the FPGA
programmable resources are used ineffectively. Besides, the regulated parameters
of the generated FIR filter structures, such as bit width, filter length, are limited.
The user has none opportunity to infer the filter structure. Therefore, in order to
increase the efficiency of the use of the FPGA programmable resources and to
reduce their energy consumption, it is necessary to introduce more perfect FIR
filter structures.

The object of the research is the high-performance processors for the
digital signal processing.

The subject of the research is the structure of the high-performance
pipelined FIR filters.

The objective is the creation of a method for designing the high-
performance FIR filters which are intended for configuring in FPGA.

The scientific novelty is as follows:

The method of increasing the efficiency of the FIR digital filters, which is
based on the fact that the constant coefficient multiplication blocks for the small
coefficients are replaced by the specialized blocks, due to which the hardware costs

decreases, and the throughput of the filters increases.

The practical value of the obtained results is that the digital filters
developed by the new method allows to improve the efficiency of the DSP systems
on the basis of FPGA by reducing their cost or increase the speed. The FIR filters
designed using this method, can be introduced in any project where needed,
because they are described in VHDL language. A tool box can be developed,
which is able to generate the filter IP cores and compete with the generators
described in [4.5].

The materials of the thesis were used in the research work "Advanced
methods and tools of designing the configurable computers on the basis of
mapping the spatial synchronous data flow graphs into the structure for FPGA", Ne
JP.0470005087, ®IOT-30T / 2017, which is held at NTUU “Igor Sikorsky’s
KPT”.

Approbation of the work. Substantive provisions and results of the work
were presented and discussed at the 20-th International conference ‘“System
Analysis and Infirmational Technologies”, SAIT-2018, May, 21 — 24, 2018, Kyiv,
and at the International Conference on Security, Fault Tolerance, Intelligence
(ICSFTI2018), May 10 — 12, 2018, Kyiv.

The structure and scope of the work. Master's thesis consists of an
introduction, four sections and conclusions.

The introduction provides a general description of the work carried out to
assess the current state of the problem, justified the relevance of research areas,
formulate goals and objectives of research shows the scientific novelty of the
obtained results and the practical value of the work, it provides the information
about the testing results.

The first section deals with the features of the modern FPGA architecture,
algorithms of digital filtering and their known implementation in FPGA. Here, the
basic methods of designing the pipelined application-specific processors,

algorithms and structures for calculating the FIR filters are considered.

The second section describes the development of a method for increasing
the efficiency of FIR digital filters implemented in FPGA.

In the third section, the efficiency of using the proposed method is
investigated and it is compared with the existing methods of the FIR filter design.

The conclusions describe the results of the work.

Publications of the work.

The main features of these investigations are published in two works. In the
work [6] the author has proposed an approach, which provides the improveing the
FIR filter performance. In the work [2] the author has proposed the way how to
decrease the application specific multiplier hardware cost, and provides the
experimental results.

The work submitted 93 sheets, contains a list of references to the used

literature.

1 FINITE IMPULSE RESPONSE FILTER HARDWARE DESIGN

1.1 Basics of the FIR filters

1.1.1 Basic definitions

The linear systems such as filters are divided into FIR and
Infinite Impulse response (IIR) filters. FIR filters have a number of
following advantages:

— FIR filters are always stable, because they do not have poles and
feedbacks, through which there may be excites;

— it is always guaranteed to construct a linear phase filter;

— rounding errors in FIR filters have much less effect on the result than in
IIR filters;

— FIR filters are effectively implemented in microprocessors that have
multiplication commands with the addition of the accumulator.

Amplitude-Frequency Characteristic (AFC) |H(w)| of the filter specifies a
specific gain at certain frequencies, and the Phase-Frequency Characteristic (PFC)
¢(w) = arg(H(w)) reflects the effect of the delay or phase shift of the signal at

these frequencies. The group delay function is defined as

d
T(0) = — %. (1.1)

The PFC of the linear phase filter is described by the formula:
oW = — awor (®) = T — AW . (1.2)
Therefore, according to (1.2), in a linear phase filter, the group delay of the
signal is constant for all frequencies. Such a filter does not distort the phase of the
signal and, accordingly, does not lose its shape (if its spectrum falls into the

bandwidth), because all its frequency components are delayed by the same delay.

In the form of AFC, the filters are divided into low-pass filter (LPF), high-
pass filters (HPF), bandpass filters (BPF) and rejector filters (RF). Because the
AFC of a filter with the real coefficients is a symmetric function of ®, this AFC is
set in the range 0 < @ < .

The frequency response of the ideal LPF is shown in Fig. 1.1, a. The bands
00<w<m,;and ®> o, are called passband and stopband, respectively, and the
frequency m,,, which separates these bands, is the cutoff frequency. The ideal low-
pass filter in the range 0 < ® < ®,, has a frequency response |H(®)| = 1, and in

the range ® > ®,, the response |H(w)| = 0 (see Fig. 1.1, a).

IH()| 4 H(w)| 4
1 1
0 Wsp T y(o 0 Wsp o - O]
a) b)
|H(o)| 4 |H(w)] 4
1 1
0 ®, O T 0 W, Oy T ®
C) d)

Fig. 1.1. Diagrams of the frequency characteristics of the low-pass (a),
high-pass (b), bandpass (c) and rejector (d) filters.

In the frequency response of the bandpass filter, the frequencies ®,, @, are
called the lower and upper cutoff frequencies. Such a filter passes the frequencies
in the range (,, ®,) and suppresses the frequencies in other ranges (Fig. 1.1, ¢).

The rejecting filter, on the contrary, suppresses the frequencies in the range (,,
,) (Fig. 12, d).

There are phase filter distinguished, which characteristic |H(w)| = 1 for all
frequencies. A special case of a phase filter is the Hilbert filter, which performs the
phase shift of the input signal at an angle n/2.

There are multi-band filters that have multiple passbands and stopbands.
The comb filter is a kind of multi-band filter that has several lanes. These lanes are
equidistant in a period of frequency, and therefore its AFC resembles a comb in
shape.

In fact, it is not possible to achieve the ideal form of the frequency
response, as in Fig. 1.1. In practice, the frequency response is determined by the
initial data of the passbands (0,e,), stopbands (w,n), the transition band (w, w,) of the
pulsations §,in the passband and pulsations §,1in the stopband (Fig. 1.2).

H(o)| 4}

149
1

1—9

0,

Fig. 1.2. AFC diagram of a real low pass filter

These ripple levels are usually given in relative units — in decibels, as the
magnitude error A; in the passband and the minimum level A, of the filter

suppression:

148
4,=20 10g(1+61j , dby;
—V1

A,=201log 8, db. (1.3)

1.1.2 Z-transform and filter characteristics

Z-transfer X(z) of the sequence x(n) is given as:

%

X(2) = _wx(n)z_n, (1.4)

where z is a complex variable. If z is represented in the polar coordinates z = re’®,
and r = 1, then [z| = 1, then the z-transformation looks like a discrete Fourier
transform. Consequently, z-transformation is a generalized spectral representation
of discrete signals, just as the Laplace transform is a spectral representation of
continuous, that is, analog signals. In the z-space we can show the spectral
properties of linear systems that are invariant under the signal shifting.

The z-transform is linear one:

if fin) = ay(n) + Bya(n),

then F(z) = oY (z)+ BY2(2).

The signal shifting in time f(n—m) is mapped to the multiplication in z-
space: z ' F(z). Therefore, the function 7" performs the signal delay to m cycles of
the quantization.

The convolution operation h(n)*hy(n) is mapped to the multiplication:

H\(n)Hy(n) in the z-space.

The impulse response of any linear system is derived as [3]:

h(n) = % . (1.5)

And it is reflected in the z-space as a transfer function:

Y(2) Zfob,z—r

H(z) = “X(z) ~ = 1+glakz_k s (1.6)

where ay, b, are real numbers.
The transfer function of the FIR filter is more simpler that one, which is

given as (1.6):

M r
H(z) = Z 0 o (1.7)
If M is an even number, that is, N = 2M, then (1.7) can be written as
N N N
H(z) = Z b,+Nz‘r_ =2 hz . (1.3)
r=-N r=_N

Let the coefficients h, have a symmetry: i, = h_,.. Then, the frequency

response, according to (1.8), is calculated by the formula
Hw)=e J‘”er e =7 (ho+2£ lhrcos(oar)J : (1.9)

where the factor e’ means only a delay of N cycles and can be eliminated from
the analysis.

If M is an odd number, then in (1.9) there will be no single term hy. If the
coefficients of the impulse response 4, are real numbers, then H(®) is a real
function. The PFC of this filter is equal to

- oN by H(w) =0,

o) = { T—oN by H®) <0. (1.10)

So, under the condition of the symmetry of the impulse response, PFC is
linear, and every 7 radian changes of the angle @(®) the value of the AFC changes
the sign. Even when the impulse response is antisymmetric, ie when hy= 0, h, =
h_,, the PFC is linear. According to (1.2), the group delay of such a FIR filter is
equal to 7d(w) = M/2, that is, it corresponds to the position of the middle member

of the impulse response.

10

Properties of impulse response symmetry are usually used to reduce

computational volumes. According to (1.5), the FIR filter is calculated as

M
y(n) = rZ; Obrx(n—r). (1.11)

When taking into account the symmetry of the coefficients of b,, the

expression (1.11) can be rewritten as

M/2-1
y(n) =2 0 b [x(n—r) +x(n—-M+1+r)]. (1.12)

r:
Comparing (1.11) and (1.12), it is seen that the number of multiplications

in the case of the case is reduced by a half.

1.1.3 FIR filter synthesis

Till now, the FIR filter synthesis means the searching for its coefficients b,
or h;, which are rounded for the filter program implementation in the integer
arithmetics. FIR filters with different characteristics differ in the values and the
number of their coefficients b;. There are several methods of synthesizing a set of
these coefficients. The most versatile and effective is the Parx and McLellan
method, based on the Remez procedure of the polynomial optimasisation.

The initial data for the synthesis of the coefficients b; or A; (1.8) by this
method is their number M, the pass band (0,®,) and stop band (®,,7), for example,
for LPF, the amplitude error in the pass band A;, the minimum level A, of
suppression (1.3), or the degree of importance of the errors d;, 0, minimizing (Fig.
1.2).

According to the method, the AFC (1.9) is represented as a polynomial

H(w) :rﬁ: . a;cos' (). (1.13)

The method consists in selection a series of N + 1 frequencies @y ,
formulating and solving the system of equations (1.13). The results of the solutions

of these equations are the coefficients a;, which give the errors 6, = 0 or d, = 0 at

11

frequencies @y. Then, the frequency response is calculated for other frequencies
between ®; and .. If the error of such a polynomial approximation does not
predominate 4, and A,, then the desired coefficients b; are calculated from the a;. If
the coefficients do not fit, then other frequencies @y are selected and the process of
optimization is repeated from the solution of the system of equations. The
optimization process can be aimed at minimizing the criterion w; max(d;)+w,
max(9,) as well.

The preliminary value of the filter length M can be estimated from the

empirical formula [4]:

_101eGdy)
T 2324A0 T

(1.14)
where A® = |®,—,| is the transitional band width. If, after calculating the
coefficients of the filter, no decent levels 4;, 4,, are reached, the number M is
increased, or the distance between ®, Ta ®, is increased. Since the behavior of the
frequency response in the transition band is not controlled by the method, the
excessive values |w,—®,| can force the unwanted distortion of the frequency
response.

The Parx and McLellan method is implemented in many CAD tools, such
as Scilab or Matlab.

The overwhelming majority of FIR filters are calculated in the computers
in the arithmetic of integers. When programming such a filter, a set of coefficients
is synthesized that satisfy the given requirements and are represented by a floating
point. Then the number of quantization bits of the coefficients n,., input data n, and
results n, are chosen.

Typically, n,,n, 210g,10-D/20,, where D is the dynamic range of the signal,
dB. That is, for every 6 decibels of the dynamic range there is at least one bit of
data. The coefficients are scaled and rounded, so that the integer coefficients are

equal to

12

b’ =12"b;+0.5[. (1.15)
The results of the filter are calculated by formula (1.11) or (1.12) with a
choice of such accumulator bit width, so that there is no overflow. And the product
bit is equal to n, = n. + ny, and the adder's bit width must be not less than
ns = 10g,S + nc+ny,
where S is the theoretically possible maximum result of the formula (1.11). It is

easy to prove that S is equal to the sum of modules of all coefficients of a filter, i.e.

M
ns = log, (;0|bi|j + N+, (1.16)

Since ng can be quite large and the probability of achieving the result (1.11)
of the maximal value is small, in the practice, the n, value is chosen to be
somewhat smaller, and the addition in (1.11) is performed by the algorithm of
accumulation with saturation. Under this algorithm, if there is an overflow of the
sum, then the result is substituted by the maximum number with the bit width #;
with the corresponding sign. The result of the filter y(n) is taken as the most
significant bits of the sum (1.11) with the truncation of the lower digits.

The rounding of the coefficients and the truncation of the result irreversibly
distorts the response of the filter. Therefore, it is necessary to calculate the
frequency response and the PFC, and compare them with the initial characteristics.
If the characteristics of the filter do not satisfy the specified requirements, then it is
necessary to increase the values of n. and n,, or M, and repeat the cycle of the
coefficient synthesis. Sometimes it is possible to improve the frequency response,

thanks to the correction of the lower digits of the coefficients b'..

1.1.4 Filter algorithm representation

By Tuering, the algorithm is the definition of a computational process on a
particular computational model, which is described by means of mathematical
concepts. The kinds of the algorithms differ by the type of computational models

that have a variety of representations. An important requirement for such a model

13

is the convenience of the perception of the algorithm given on this model and the
efficiency of the implementation of this algorithm [8].

Traditionally, the DSP algorithm is defined using a formula such as (1.11).
It is assumed, that there is a source of signal samples x(n), a receiver of the result
signal y(n), and someone or something that calculates the actual formula. It is
necessary to recalculate this formula at each step, which has the number n and to
follow the iterative increase of n. Also, some intermediate results y(n-k), x(n-r)
have to be rewritten. Consequently, the statement of the algorithm by the formula
declares that it is necessary to calculate, but does not show how and in what order
to do so.

The algorithm in the form of a formula is implemented in the MathCAD
system [9]. In this case, it is necessary to limit the number of processed input and
output signal samples in advance, by a specific natural number. Since the formula
only declares the rules of calculation, the efficiency of its implementation in the
computer is low.

DSP algorithms, as a rule, foresee their implementation in the reactive
computing system, that is, in such an computing system, for which the
unacceptable loss of data due to the inability to process in time in the case of the
limited operating speed. The data comes at the input of the DSP device with a
constant period of T, which is inversely proportional to the sampling frequency f;
= 1/Ts. Therefore, if the device does not have time to execute the cycle of the
algorithm for a given sample x(n) during the cycle T, then the following sample
x(n + 1) will not be processed, because it will be lost.

Such algorithms are advisable to represent in the form of the data flow
graph (DFG) model. A graph model is a computational model that processes the
data flows. In this case, the data flow is the name of two categories: both the actual
data set — the signal — and the means of the data transmission between the

elements of the model.

14

The graph of the data flows consists of nodes-actors, which process data by
some elementary operations and data streams-edges in the form of arcs connecting
the neighboring nodes. Each node-actor reads the data from its input streams
according to the certain rules, processes them and places the results in its output
streams. The execution of the algorithm is a series of the firings of the nodes-
actors, for which there are ready data in the input flows. Such operations can be
executed in parallel at all nodes. A data flow graph is interpreted as a parallel
program, in which the subroutines represent the nodes-actors, and the memory
cells or buffer arrays are the data flows.

Often, the DSP algorithm is represented as a signal graph, sometimes is as
a synchronous data flow graph (SDF) (see Fig. 1.3). SDF differs from DFG model,

because all its data flows are synchronous ones.

FIFO length = 2

y(i)

Fig. 1.3. Example of SDF

Two data flows in the graph model are synchronous if there is a mutual
correspondence between all the data in one and the other flow. For example, data
in a synchronous flow can be renumbered, and therefore the flows y(n) and x(n) are

synchronous, since there is a correspondence between the n-th markers in them.

15

Moreover, n is considered as the number of the sampling cycle or clock cycle, or
iteration of the algorithm.

Consequently, in the vast majority of DSP algorithms, the signal flows are
synchronous. Therefore, such algorithms can be represented by SDF. If in a
resultant flow the presence of data is conditionally dependent on the input flow,
then such flows may be non-synchronous. These are, for example, flows in the
compressor of signals, which replaces the chains of the null samples with the
length codes of these chains [10].

The signal graph and the homogeneous SDF are equivalent models. In
Table 1.1 the graphical symbols of the elements of the siginal graph, SDF and their

correspondence to parts of the DSP algorithm are shown [11].

Table 1.1. Designations of the elements of the signal graph and SDF

Algorithm element Signal graph Uniform SDF
Signal x() _x(n) _X(n)

Input and output ports,

. x(n)D— —Dy(n) X
source and destination of 160 O— —0 Q” _@

signals x(n),y(n)
Delay to k cycles)@-» Z_K.M» X(n)lkkl X(n_%
Signal addition, adder node a(n) a(n)
y(n) y(n)
y(n) = a(n)+b(n) b(n) b(n)

Multiplication the signal to
X\n a X\n
a constant y(n) = ax(n), (n) I|> > (@

multiplier node

16

Consider the signal graph of the algorithm, represented by formula (1.12)
when the filter length M is odd. It is illustrated by Fig.1.4. When M is

even, then such a filter has the multiplication number less to one.

x(n) = x(n-1) x(n—M/2) x(n—-M/2-1)
x(n—™M)
Z_l
+
bo V b

Fig. 1.4 Signal graph of the symmetrical FIR filter

Consequently, the signal graph and SDF are the convenient and obvious
form for the DSP algorithm. Next, the algorithms will often be represented using
such graphs. It is also possible to describe the SDF graph by VHDL and then,
automatically synthesize the digital netlist for the FPGA configuration, which will
be discussed further.

So, FIR filters are usually implemented in the programs. There is a wide
theoretical material about the filter coefficient synthesis, representing algorithms
by graphs and their optimization efforts. But there are a few works devoted to the
filter structure synthesis. The expanding the FPGA technology needs to look at the

FIR structure synthesis more closely.

17

1.2 FPGA as the computing environment for FIR filter implementation

1.2.1 FPGA architecture

Below, the properties of the Xilinx FPGAs are considered, because this
company is valued as the larger FPGA supplier. But the proposed reasons are true
for FPGAs of other companies as well.

In Xilinx FPGAs, the basic building blocks are Configurable Logic Blocks
(CLBs). In Spartan-6 devices, the CLBs are made up of two logic slices which are
independently connected to the general routing on the FPGA and to a carry chain
structure [12]. There are two types of logic slices in Spartan-6, SLICEL and
SLICEM. SLICEL can be seen as the basic logic slice type, and contains four 6-
input look-up-tables (LUTs), together with four D-type flip-flops (DFFs) and
multiplexers for routing purposes. The LUTs can implement any 6-input logic
function. SLICEM slices contain shift register functionality and provide the option
of using the LUTs as distributed user RAM, as well as the basic resources
described for SLICEL slices. When used as distributed RAM, LUTs are configured
as memories for user data storage.

Other resources on the FPGA include Digital Clock Managers (DCM),
Phase-Locked Loops (PLL), Block RAMs, DSP blocks, /0 blocks (IOBs) and
buffers for connecting package pins. The FPGA resources are connected together
by a configurable routing matrix. A common way of describing FPGAs is as
configurable logic “islands” connected together by a “sea” of configurable routing
paths.

When synthesising an FPGA design, the circuit function defined by the
designer is mapped to these resources by synthesis tools. This mapping makes up
the configuration of the device, and is stored in the SRAM-based configuration

memory.

18

The configuration memory defines the function and operation of all the
described resources as well as the routing and connections on the FPGA, and can
be seen as an underlying device definition layer.

SRAM-based FPGAs are programmed using a binary bit-stream, usually
stored offchip. For space applications, this off-chip configuration storage is usually
in the form of EEPROM or Flash. Since the SRAM-based configuration memory is
volatile, the bit stream has to be reprogrammed onto the FPGA on startup and
power-cycling. The programming logic i1s responsible for writing the
configuration memory via one of the configuration interfaces.

Xilinx Spartan-6 FPGAs contain dedicated DSP circuitry, in the form of
DSP48A slices. Fig. 2.1 shows a simplified view of a DSP48A slice, featuring a
18x18 multiplier, internal pipelining registers and an arithmetic unit. DSP blocks
are hard ASIC blocks embedded in the FPGAs array of programmable logic, and
are much more area efficient compared to soft logic implementations of the same
functionality [13]. As such, DSP blocks are not defined by an underlying
configuration layer. The DSP48A is well suited for common DSP operations such

as multiply-accumulate.

(=

I+
-

O>» WO
b1 01 B1 R]

Fig.1.5. Simplified view of a DSP48A slice

19

The configuration vectors can be synthesised as constants or as signals
originating from other parts of the system. DSP slices are arranged on the FPGA so
that they can be cascaded through the use of fixed carry and shift lines to create
wider operators than what would fit into a single DSP slice.

Block RAM, or BRAM, in Spartan-6 are made up of 36 kB SRAM
memory blocks. These blocks can be cascaded and divided into a number of
different configurations. For example, a single 36kB block can be used as a 36kx1
RAM, or as two functionally separate 18kx1 RAMs. It is also possible to create
wider or larger RAM blocks by cascading BRAMs together.

So, when choosing an FIR filter algorithm, one should keep in mind the
features of an FPGA structure that has CLB resources, multipliers, adders,
multiplication blocks, but does not have divisions. For its rapid execution, the FIR
filter should be implemented as a parallel structure that allows the pipelinined

operations, because this mode is effectively supported in FPGA.

1.2.2 Implementation of FIR filters in FPGA

The FPGA architecture is adapted to the FIR filter algorithms to provide
the excellent throughput values. For this purpose, the adder cascade network is
used. Fig. 1.6 illustrates such a network for implementing the 8-staged filter [14].

The respective SDF of the k-staged adder cascade network is shown in Fig.
1.7. Here x;, y; are the input and output data, the circle, triangle and bar represent
addition, multiplication to the coefficient and delay to a single clock cycle,
respectively. This graph is mapped to the respective structure by the one to one
mapping providing the high pipelined computations with the maximized clock

frequency

20

Slice 8
h7in-7}) =

—

Slice 7
héin-6} o

© o

—

Mo Wire Shilt

=l
s ol 8
V_F'_I

Mo Wire Shifi

ra

Slice 6 48
h5(N-5)
1
e
TB =
Mo Wire Shifi
Slice 5 48
UEILIE TN o S—
18
18
Mo Wire Shifi
Slice 4 48
h3N-3) o
18
18 bkl
Mo Wire Shifi
Slice 3 48
R2{M-2) C—t—
18
18
Mo Wire Shifi
Slice 2
h1{n-1} (e —
18
i
18

Slice 1

RON) o ——
LT = S

18

Mo Wire Shifi

’.{
48

48

/ Zero

Sign Extended from 36 Bils to 48 Bits

Y(n-10)

The post adders are
comained whally in
dedicated silicaon for
Mighest petormance
and lowest powaear,

Fig. 1.6. Adder cascade network for the FIR filter implementation

X; .. Xi2k-1

Fig.1.7. FIR filter signal flow graph as a systolic structure

It is interesting to know, that the adder cascade network has the well-
known systolic structure [15].

Using the cascade paths in the the adder cascade network to implement the
FIR filter significantly improves the power consumption and speed. But the
maximum number of cascades in a path is limited by the total number of DSP48
slices in one column in the chip. The height of the DSP column can differ between
the Virtex-4 and Virtex-8, and Spartan-6 devices and should be considered while
both designing the system and porting designs between the devices. This heigh is
varied in range from 4 to 240, but the total DSP slice count is limited by CAD
tools and there are no more 60 DSP slices per column without adding the special
interconnections [16].

Spanning columns is possible by taking P bus output from the top of one
DSP column and adding fabric pipeline registers to route this bus to the C port of
the bottom DSP48E slice of the adjacent DSP column. Alignment of input
operands is also necessary to span multiple DSP columns.

Additionally, for the FIR filter implementation, Xilinx recommends that:

— Small multiplies (e.g., 9x9 multiply) and small bit width adders and

counters should be implemented using the fabric LUTs and carry chain. If the

22

design has a large number of small add operations, the designer should take
advantage of the SIMD mode and implement the operation in the DSP48 slice.

— Always sign extend the input operands when implementing smaller bit
width functions. For lower fabric power, push operands into MSBs and ground
(GND) LSBs.

— While cascading different DSP48E slices, the pipe stages of the
different signal paths should be matched.

— SRL16s in the CLB and block RAM should be used to store filter
coefficients or act as a register file or memory elements in conjunction with the
DSP48E slice. The bit pitch of the input bits (4 bits per interconnect) is designed to
pitch match the CLLB and block RAM.

— A pipeline register should be used at the output of an SRL16 before
connecting it to the input of the DSP48E slice. This ensures the best performance
of input operands feeding the DSP48E slice.

As a result, the FIR filters in FPGA can be realized as the high-speed
pipelined networks with the clock frequency up to several hundreds of megahertz.
But, for example, the FIR filter which is generated by the Xilinx Coregen tool for
the Spartan-6 devices have the length, which is limited by the numbers from 8 to
48 [13]. And the more this number the more expensive the chip is. Besides, when
FPGA 1is used only for the filtering, then the configured hardware like look-up
tables (LUTs), registers is underloaded and is used inellectively.

So, it is preferably to searching for the filter structure solutions, which can

do without the DSP48 units.

23

1.3 Multiplier-free FIR filter implementation

1.3.1 Review of the multiplier minimizations

As it was shown above, the FIR filters have the large number of
multiplication operations. Therefore, the complexity of the filter is mainly due to
thelarge number of multiplications required [17].

A variety of approaches have been proposed to speed-up the multiplication
operation in a filter structure [18-20]. These either completely eliminate the
existing multiplier unit or reduce the complexity of the multiplication operation.
Two frequently used approaches are: ROM based implementations [21] and
distributed arithmetic (DA) based implementations [22-25].

In [26] an approach is proposed, when the multiplcand is divided into
slices, each of them is multiplied by a coefficient in a set of LUTs, where the
multiple coefficients are stored.

The authors in [27] present a new kind of FPGA implementation algorithm
for DA FIR filter which is based on Remainder theorem. This minimizes the
required logic resources. Another approach uses the divided-LUT method to
reduce the required memory units [28].

Bit-serial arithmetic has been extensively used in filtering applications.
These have the advantage that communication demands are independent of the
word length. As a result the low-capacity FPGAs can efficiently implement the
FIR filters [29]. Special purpose bit-serial implementations include power-of-two
sum or difference approaches. This allows multiplication to be replaced with faster
shift and addition operations [30-32].

Linear systolic filter structures like that illustrated by Fig. 1.7, are also
categorized as bit-serial architectures [33]. The authors in [34] and [35] take a
systolic approach for designing high-throughput filter structures by using
multipliers based on direct ROM and DA approaches. Similarly, the work reported

24

in [36] uses systolic structures but focuses on replacing the original adder unit by
using a parallel prefix adder (PPA) with minimum-depth algorithm.

The canonic signed digit (CSD) representation has been used to reduce the
complexity of multiplication operation thereby resulting in efficient filter structures
[37]. Constant coefficient multipliers have been reported in [38—40].

Poly-phase decomposition is a technique that has been used to design high-
speed and low-power parallel FIR filters [41-43]. A modification of poly-phase
decomposition is the fast FIR algorithm (FFA). Filters based on FFA are area-
efficient utilizing fewer multiplier units [43-45].

All the above-mentioned approaches use the technology-independent
optimizations to enhance the performance of the filtering structure. They can be

adapted to the FPGA architecture as well.

1.3.2 Constant multiplication in FPGA

FPGAs of the first generation have not hardware multipliers. Therefore, the
FIR filters in them are implemented using the constant coefficient multipliers
(CCM). Below is a review of the known methods of CCM design which provide
different levels of optimizations.

A generic multiplication of two unsigned binary B-bit integer numbers

x=(xp_y...x1x0) and y =(yp_; ...y1Y0), With x;, y;€{0,1} can be written as

B-1

B_l . .
X y=x { Z2’yl—] = >2'x vy, (1.17)
i=1

i=1

where 2'x y; ist the partial product.

In a generic multiplier, the partial products x y; can be obtained by a
bitwise AND-operation. The final product is then obtained by adding the bit-
shifted partial products. Now, if y is a constant bit vector, all bits y;, which are

zero, lead to zero partial products and the corresponding adders can be removed.

25

Thus, the number of required adders for the constant multiplication using this
representation is equal to the number of non-zero elements in the binary
representation of y minus one [45].

To illustrate this, consider a multiplier with y = 93. Its binary representation
y = 1011101, has five ones and requires four adders in the corresponding add-and-
shift-realization 93x = (2° +2* +2° +2% +1)x as illustrated in Fig. 1.8,a. Note that bit
shifts to the left are indicated by left arrows in Fig. 1.8.

The total number of operations can be further reduced by allowing subtract
operations in the add-and-shift network. As the subtract operation is nearly
equivalent in hardware cost, both are referred to as adders in the following. The
adder reduction can be realized by converting the constant to the signed digit (SD)
number system [47—48], in which each digit is represented by one of the values of
{-1,0, 1}.

In the example, the coeffient can be represented by
93 =10100101sp,

where digit 1 corresponds to —1, 1. e.,
93 =27-2°-2%+2".
Now, the corresponding circuit uses one adder less compared to the binary
representation as illustrated in Fig 1.8,b.
The signed digit number system is not unique as there may exist several
alternative representations for the same number. For example, 93 could also be

represented by

93 = 11010001 I gp,
which has the same number of non-zero digits as the binary representation. A
unique representation with minimal number of non-zero digits is given by the

canonic signed digit (CSD) representation. A binary number can be converted to

the CSD with the algorithm, described in [48,49]. The algorithm is based on the

26

searching for the bit sequence in the form “O11...117 and replace it with the

sequence “10.. .01” of the same length.

The CSD representation is unique and guarantees a minimal number of
non-zeros. However, there may still be several SD representations with a minimal
number of non-zeros. The representations with a minimal number of non-zeros are
called minimum signed digit (MSD). The SD representation after the first iteration
for 93 is an example of an MSD number which is not a CSD number.

Starting from the CSD representation, valid MSD representations can be

constructed by replacing the bit patterns “101” with “011” or “101” with “011”.
Doing this for all combinations results in a set of MSD numbers. For the example

of the integer 93, four dil lerent MSD representations can be constructed:

93 = 10100101 csp= 0110010155 =10100011pisp= 0110001 I yysp.
Although the arithmetic complexity of the constant multiplier can be
reduced by using an MSD representation of the constant, it is not guaranteed to be

minimal. Consider again the example number 93 which can be factored into

93 =3-31.

With 3 = 11ysp and 31 = IOOOOTMSD, the cascade of these two constant multipliers
reduces the required adders to only two as shown in Fig.1.8,c.
This concept is known as sub-expression sharing and the corresponding

optimization method is called common subexpression elimination (CSE) [50,51].

27

(96z) [(—3z)
5
—>?<7 +?_f
93z 93z
a) b) c)

Fig, 1.8. Different networks of CCM to a constant 93

It is worth to mention, that the modern FPGAs have the 6-input LUTs with
the additional outputs, which provide the 3-input adders-subtractors
implementation. This fact shows that the FPGA architecture is adapted to the
hardware implementation of the CCM, based on CSD, MSD, or CSE constant
representation.

The CCM blocks have the following limitations. Firstly, CCM can compete
with the DSP48 units, when the adder number 1in it is less than 20 adders. This fact
i1s proven in the next section. Taking into account that the MSD representation
needs less than n/2 inputs of the result adder, we can consider, that the CCM is
effective to use, when the bit width n < 42. This is enough for the most of FIR
filter projects.

Secondly, the many input adder has the large critical path, which for some
number of inputs is greater than the DSP48 block delay, which substantially infers
to the filter throughput. But this factor depends on the CSD decomposition in each

particular situation, and therefore, it needs investigations. The critical path is

28

substantially decreased by the pipelining the CCM. But the critical path limit
depends on the placing and routing this CCM in FPGA and in the worst case can in
many times supercede the delay of DSP48. Anyway, when the constant bit width is
rather small, say n < 12, then it is preferably to design the CCM.

1.3.3 Multiple constant multiplication in FIR filters
The FIR filter structure, which is represented by the signal graph in Fig.
1.4, or SDF in Fig.1.7, is named as the filter in direct form. The FIR filter in the

transposed form is considered as well [1]. Its signal graph is shown in Fig. 1.9.

MCM block

OO A OO,

oy
i

Fig.1.9. Transposed form of the FIR filter

In the transposed form, a single input has to be first multiplied by several
constants which is called a multiple constant multiplier block or MCM block
(dashed box in Fig.1.9). The remaining filter consists of adders and registers. An
N-tap FIR filter requires the multiplication with N constants.

In the MCM block, the intermediate adder results can be shared between
different cofficients such that the overall complexity is reduced. Take,
formexample, the multiplication with the constants 19 and 43. Their CSD based
multipliers as introduced above are shown in Fig. 1.10,a. One MSD representation

of the example constants is 19 = 10011ysp and 43 = 10101 1sp.

29

In both representations, the bit pattern 11ysp is found, which can be shared
to reduce one adder. The resulting adder circuit is shown in Fig. 1.10,b. However,
as demonstrated in Fig. 1.10,c, another adder configuration can be found, which
does the same multiplications with one adder less. It can not be obtained by the
CSE approach as no bit pattern of the factor 5 = 101ysp can be found in both MSD
representations of the constants.

So, the MCM block introduction and its optimization provides the
minimum hardware volume for the FIR filter hardware implementation. But the

FPGA architecture does not support the inverse FIR filter implementation.

x
T
2 2 |
P D I J[f
(5) (3z) | P
-2 2 N 2 (bx
D= »D= > D=
(11z) (3x) (5x) .’:m;_z
-2 14 3
>N« » (D« » (D=]
v R) i
19z A3 19z 43z 19z 43z

Fig. 1.10 The MCM block implementation: before (a) and after (b),(c) optimization

Firstly, the cascade architecture illustrated by Fig. 1.6, is intentionally
adapted to the direct form of the filter, secondly, even if the MCM

The constant coefficient multipliers can provide the multiplier-free FIR
filter structures, especially, when the coefficients have the bitwidths which is less
than 12.

In the next section, the theoretical basics of the new method of the FIR

filter design is developed, which satisfy the mentioned above features.

30

1.4 Conclusions to the section

The FIR filter IP cores, proposed by the FPGA vendors, have the
limitations of the filter order and utilize the configurable hardware, and therefore,
they need modernizations.

Multiplier-free FIR filter structures, based on the constant coefficient
multipliers, have the minimum hardware costs in the gate number, but do not
utilize the multiplier blocks embedded in FPGA.

There is a hypothesis that the combination of the systolic FIR filter
structures based on the multiplier blocks with ones based on CCMs can provide
both high speed and minimized hardware volume in FPGAs.

The synchronous dataflow graphs are the convenient tool for the

representation the FIR filter algorithm and mapping it into the pipelined structure.

31

2 METHOD OF INCREASING THE EFFICIENCY OF THE FIR DIGITAL
FILTERS

2.1 FPGA use considerations for the FIR filter design

In the previous section, it was found out, that the direct form of the FIR
filter structure is the best one to be implemented in FPGA, the FIR filter IP cores,
which are proposed by the FPGA vendors, are based on the DSP block resources,
have the limitations of the filter length, and do not utilize the rest of resources like
LUTs, multiplexers, registers, the CCM can provide the multiplier-free FIR filter
structures, when the coefficients have the small bitwidths. But it was also clarified,
that these factors of the FIR filter structure selection depend on many things.

Therefore, this question needs the further investigations.

2.1.1 FPGA project optimization critera

The FPGA resources, which are mentioned in the subsection 1.2, are
valuable. Different projects for FPGA, which perform the same task, can be
distinguished in different folume of these resources. Moreover, these projects can
be of different throughput. To select properly the best project, the effective
effectiveness criteria must be selected. Below, some considerations to these criteria
selection are considered.

2.1.2 Hardware volume criterium

In advance, we consider, that the processing unit bit width is equal to n, and
its hardware is proportional to n in some limitations, and by other equal conditions.

The adder is the main operational unit in FPGA project. Usually, one bit of
the adder is implemented in a single LUT, not taking into account the proper carry
propagation network. Besides, each LUT output can be stored to the respective

register (trigger), as in is shown in Fig. 2.1,a. Thus, the n-bit adder, and the n-bit

32

register have the same complexity, or cost. Then, such register, and adder have the
relative cost, which is equal to a 1.
Also it is important to consider that LUT has the mode SRL16, in which it

operates as a shift register with the programmable length of 1 to 16 bits (Fig.2.1,b).

COU'T'/]\
CLB t——;-: YB
o4 TT Y
gg LUTL <Y > vQ SRL16

S X AO0...A3

2 gl S\
cY T — MUX /
F3 LUT] > XQ

F2
F1
Q Vv
BX b)
CIN

a)

Fig. 2.1. Structure of the Xilinx FPGA elements: CLBS (a), SRL16 (b)

In the FPGA chip one DSP48 unit takes 60-300 CLB slices, averagely, 160
CLB slices. For reference, the hardwired 18x18 bit multiplier is implemented as an
equivalent circuit of 208 CLB slices. Consider a DSP processor configured in
FPGA with the hardware resources being used effectively. Then all multiplier
resources should be loaded by the useful computations, and other computations are
distributed among all adders and multiplexers implemented in FPGA. By this
condition, one multiplier takes 160 CLB slices. These CLBs are enough to
implement up to 20 adders and 20 registers of the same bit width. Thus, the
complexity of the multiplier unit is estimated as the complexity of 20 adders.

Similarly, the complexity of the Distributed RAM can be estimated.

33

Table 2.1 shows the complexity of the different elements of the same bit
width configured in FPGA, which is expressed in the complexity of a single

register.

Table 2.1.

Complexity of elements, configured in FPGA

Type Complexity
Register 1
Adder 1
Adder-subtractor 1
2-input multiplexor 1
3,4 -input multiplexor 2
5,6-input multiplexor 3
7,8-input multiplexor 4
Registered delay to 2-16 registers (FIFO) 1-2
Multiplier unit 20
16 word RAM 1
1024 word RAM 20

Its analysis shows, that multiplying units should be minimized primarly.
Since in the actual application specific processors the 2-5 input multiplexers
frequently are used, then the complexity of the multiplexer, which takes to a single
input, is equal approximately to 0.27. This means that it is necessary to mimimize
not only the number of registers and adders, but also number of multiplexot inputs.
According to the arguments above, the following complexity criterion of

the FPGA project is proposed:
Os=ng+ns+20ny,+ 0.27n,, (2.1)
Where ny is the register number, including the FIFO number, which are

mapped into SRL16 primitive, excluding the registers in the DSP48 modules;

34

n4 1s the adder number, due to the CLB construction, up to three input adder
is implemented in a single CLB column, therefore, ns considers 2- or 3-input
adders;

ny,1s the multiply unit number;

n, 1s the number of the multiplexor inputs [38].

2.1.3 Performance criterion

The signal delay in the multiplier blocks is approximately equal to 4.5 ns
for Spartan-6 FPGA. In the two-staged pipelined multiplier the minimum
multiplication period is equal to 2-2.5 ns. The adder delay is derived from the
carry signal propagation and therefore, it is proportional to the bit width. Since the
adder is formed as a line of the locally coupled DLB slices, then its delay is stable,
and for 16-bit adder is equal to 1.4-2.5 ns.

It has to taken into considerations, that the proportion of the delay in the
logic elements is 35-85% of the clock period depending on the degree of the
placing and routing optimization, and on the complexity of the structure.

In the practice, the multiplier delay is about twice te adder delay, taking
into account the interconnection delays.

The multiplexer network has far less latency then the adder has. It is not
depended on the word length, and is nearly independed on the input number., but
depends on the quality of the wiring of the lines, which connect it to the
neighboring elements. As a result, the connection of the additional multiplexor to
the adder adds a delay of 0.4-1.6 ns depending on the multiplexor number (1 or 2)
and routing quality.

Thus, the proposed performance criterion is:

Or=n'a+cmn’y+crxn’y, (2.2)
where ¢y, crx are the ratios of the multiplier and multiplexor delay to the

adder delay, cyy = 2.2, c7x = 0.5;

35

n’41s the adder number;

n’y1s the number multipliers;

n’.1s the number of multiplexers,

staying in the critical path, which connects the output of one register and
the input of another one. Here, a single unit delay is estimated as the delay of the
adder with the average delays in the communication lines.

Really, Qr 1s equal to the minimum clock period, derived for the current
placed and routed project, when the results are outputted in each clock cycle. It is
hold on when the processing unit is implemented as a whole combinational
network, which performs the elementary function, or if it is wholly pipelined
network.

The real processing unit projects can calculate the algorithm for L > 1 clock
cycles not in the pipelined mode. Thus, the expression (2.2) must be multiplied by
the value of L:

=L (n's+cyn’y+cxn’y). (2.3)

The integral criterium has to take into account both hardware volume and
performance criteria. Then, it can be selected as:

Q=0s5-0r (2.4)

This criterium shows, how many adders are needed to calculate, say, one
million of results per second. The better solution has the smaller value of Q,
because it has smaller hardware volume and/or higher clock frequency, which is

proportional to the processor performance.

36

2.2 Synchronous dataflow graph for the FIR filter description

2.2.1 Synchronous dataflow graph mapping to the structure

The FIR filter processing module belongs to the datapaths. The modern
high-performance computers operate with high clock frequencies, thanks to the
pipelined mode of data processing and transmission. There are various methods for
the design and optimization of the pipelined datapaths. These methods are based
on the structural synthesis of the datapath, describing it at the register transfer level
and further conversion to the gate level. The basis of many methods is a
representation of the algorithm as a synchronous dataflow graph (SDF) and its
transformation [52]. Some definitions about SDF was given in the subsection
1.1.4.

SDF is isomorphic to the graph of the computer structure, which performs a
predetermined algorithm. The nodes of such a graph correspond to the computing
resources like adders, multipliers, processing units (PUs). The edges correspond to
the communication lines, and the labels on them are mapped to the registers.
Consequently, SDF is a directed graph G = (V, E), representing the computer

structure, where v € V represent some logic network with delay of d time units.

The edge e € E corresponds to a link and is loaded by w[e] labels, which is equal
to the depth of the FIFO buffer.

The minimum duration of the clock cycle 7¢ is equal to the maximum
delay of the signal from one register output to the input of another register, i.e., to
the critical path through the adjacent nodes with delays d, for which w[e] = 0. It
should be noted, that with such a one-to-one mapping of SDF, the duration of the
algorithm cycle T, coincides with the duration of a clock period, i.e., T4 = T, that

in the other algorithm mapping is not respected.

37

2.2.2. SDF optimizations

By the pipelined structure synthesis, a set of optimizations is used. Such
SDF optimization techniques as retiming, folding, unfolding and pipelining, are
widely used in microelectronics, and design of digital signal processing (DSP)
devices [53].

The retiming is such a exchange of the labels in SDF edges, which does not
affect the algorithm results. Usually it is realized as a sequence of elementary
retimings, each of them consists of a transferring a group of labels (i.e., registers)
from the input edges of some node v to its outputs.

In most cases, it is allowed to increase the latent delay of the algorithm and
to insert the additional registers on the inputs or outputs of SDF. After retiming
such modified SDF, the pipelined network with low value of T is achieved. This
technique is called as SDF pipelining.

A cut-set retiming is an effective metod, which implements the pipelining,
and therefore, is widely used for the pipelined datapath design. The cut-set in an
SFG is a minimal set of edges, which partitions the SFG into two parts. The
procedure is based upon two simple rules [46].

Rule 1: Delay scaling. All delays D presented on the edges of an original
SFG may be scaled, i.e., D’ — aD, by a single positive integer a, which is also
known as the pipelining period of the SFG. Correspondingly, the input and output

rates also have to be scaled by a factor of a (with respect to the new time unit D).

Time scaling does not alter the overall timing of the SFG.

Rule 2: Delay transfer. Given any cut-set of the SFG, which partitions the
graph into two components, we can group the edges of the cut-set into inbound and
outbound, depending upon the direction assigned to the edges. The delay transfer

rule states that a number of delay registers, say k, may be transferred from

38

outbound to inbound edges, or vice versa, without affecting the global system
timing.

These rules provide a method of systematically adding, removing and
distributing delays in a SFG and therefore adding, removing and distributing
registers throughout a circuit, without changing the function. The cut-set retiming
procedure is then employed, to cause sufficient delays to appear on the appropriate
SFG edges, so that a number of delays can be removed from the graph edges and
incorporated into the processing blocks, in order to model pipelining within the
processors; if the delays are left on the edges, then this represents pipelining
between the processors.

SDF has the properties that it can be described by VHDL, and then, be
translated into the FPGA bit stream [54].

2.2.3 Transfer SDF to the VHDL description

The VHDL language defines the algorithms presented by the graph model
of SDF. In this case, the absence of blocking of the algorithm is checked at the
compilation time and during execution of the algorithm in the VHDL simulator.
SDF is a kind of DFG model, which is subject to certain restrictions. These
limitations are reflected in the description of the algorithm in VHDL language.

The main limitation is that the node of the graph must produce a result at
each time it is firing. That is, the result of y(n) has the same number or number
with constant changes as the input x (n). Then these signals — the input data and the
result — will be synchronous. For this, the delay element should be simulated by the
processor running on the clock signal, which is the only one for the whole model.
In order to satisfy for the delays in closed loops to have a certain initial value, the

process operators must have successive operators of initial setup of delayed

39

signals. These conditions are taken into account when forming the correspondence

between the elements of SDF and the operators of the VHDL program (Table 2.2).

Taomurg 2.2.
Representation of the SDF elements by the VHDL operators and clauses

Algorithm element VHDL-code
Signal u(n) signal u: real;
Input and output ports, port(clk, rst: in std_logic;
source and destination of X: in real;
x(n),y(n) y:out real);
process(clk,rst) begin
if rst ='1' then
) v<=0.0;
Delay u(IB to 1 cycle: elsif clk="1" and clk’event then
v(n) =u(n—1) o
v<=U;
end if;

end process;

Signal addition

yln) = a(n) +b(n) yezarhi

generic(a:real:=0,9876);
Multiply the signal to a --or

constant a:real:=0,9876;
constant y(n) = ax(n)

y<=a*x;

The description of the algorithm in the VHDL language of on the basis of
SDF is carried out in the following way. Input and output signals are placed in the
IN-OUT ports. Also, the CLK clock signal the total RESET signal are added to the
input ports. All data flows coming from the nodes of SDF and delay elements are
assigned the corresponding signals of a certain type that appear in the declarative
part of the program. The elements of SDF or the signal graph are mapped to the
respective VHDL operators according to Table 2.2.

40

If it is necessary to implement a multi-stroke delay to n times, then a
regular type and a signal of this type are declared, for example:

type Delay_T is array (0 to n-1) of real;

signal ud: Delay_T;

and in the process operator the FIFO memory is programmed for n words:

process(clk,rst) begin

if rst ="1" then
ud<= (others=>0.0);
elsif clk="1" and clk’event then
ud<=ud(1 to n-1)&u;
end if;

end process;

Delayed at m < n cycles, the signal is taken into calculations as ud(m-1).

Setting the filter coefficients, like the generic constants, allows us to use
this model as a universal filter that is customizable when inserting a component of
the filter.

Functions which are performed in the SDF nodes may be arbitrary
functions represented by parallel operators. Such functions are always found in the
hardware as some logical combinational networks. The process operator must also
be reflected in the logical combinational network. For this purpose, the successive
conditional operators must be calculated at each start of the process. Such
conditional operators have alternating branches that cover all combinations of
input condition signals.

For example, the next operator on the left does not appear in the user
schema. It describes a certain memory scheme that stores the previous result with
the combination a ='0"' and b = 'l". The correct operator entry will, for example, be

the case in which the else alternative overlaps the rest of the combinations.

41

process(x,v,a,b) begin process(x,v,a,b) begin

if a ='0"and b="0" then if a ='0"and b="0" then
y<= X+ U; y<=X + U;
elsif a ='1’ then elsif a ='1’ then
y<=X-u; y<=X-u;
end if; else
end process; y<=X;
end if;

end process;

2.3 Method of increasing the FIR filter efficiency

2.3.1 Background of the method

As it is shown in the previous section, there are many methods for
implementing the FIR filters that do not have multiplication blocks. Most of them
use constant coefficient multiplication (CCM) schemes that have a minimized
hardware amount. They have been widely used in FPGA for decades. At the same
time, such filters do not use the hardware multiplication blocks that are part of the
DSP48 blocks.

It 1s found out also, that the CCM blocks are effective one if the coefficient
bit width is n <12. Consider the usual impulse response of some FIR filter in Fig.
2.2. The filter coefficients are represented by the 16-bit twoth complement data.
Among 35 coefficients, up to 30 coefficients can be shortened to 12 digits.
Therefore, 5 multiply units can be implemented in DSP48 blocks, and the rest 30

units can be implemented in CCMs.

42

30000 -

25000

20000

15000 il

10000 il O h(i)

5000 il

M T T T T
ﬂf D> AP v

N/

Small coefficients

0Nl
0 I TTE= Inl Iulul LI
ol * & O
-5000

-10000 -

Fig. 2.2. Impulse response of the typical low pass filter, and the selected

coefficients, multiplication to which can be implemented in CCM

Therefore, a new approach to the development of a FIR filter can be
proposed, which uses both hardware multiplication blocks and CCMs. It provides
both an increase of the filter order and a minimized hardware cost, and also

supports high filter throughput.

43

2.3.2 Filter structure optimization

The FIR filter, which is designed for implementation in the Xilinx FPGA,
has a well-known systolic structure [15], illustrated by Fig.1.6 and Fig. 1.7 The
SDF graph of the systolic structure of the k-th order filter is shown in Fig. 2.3,a,

and its symbolic image is shown in Fig. 2.3.b.

X; e Xi-2k-1
X; Xi2k—1

H(k)
0 yi—k

po=0 —, _{_> __|—> —|—>Pk=)’i—k B —

b)

Fig. 2.3 SDFof the systolic structure (a), and its symbolic image (b)

Here, x;, y; are the input and output data, circles, triangles and thick
segments represent addition, multiplication by a coefficient, and delay for one
cycle, respectively. This graph is mapped in the corresponding parallel pipelined
structure with a maximum clock rate by means of a one-to-one mapping.

The coefficient set of the n-th order FIR filter form its impulse
characteristic h(n), which is similar to one, which is illustrated by Fig.1.6. It is
proposed to realize a FIR filter of three blocks, which calculates the convolution
with the left 4(n;), middle A, (n,), and right h; (n,) subset of the coefficients,
where, n = n; + n,, + n,. An appropriate upgraded SDF is shown in Fig. 2.4.

In most cases, the bit width of /,(n;), and /h;(n,) are much less than the bit

width of coefficients h,(n,,) (see Fig. 1.6). Therefore, it is desirable to implement

44

part of the filter marked in Fig. 1.8 as H, (n,,) using the DSP48 blocks and the rest
of the filter using the CCM blocks.

Xi Xi2k-1
—> —> — —>

0 Hl(n[) H2(nm) H3(ni‘) Vick
—»> —> —> —>

Fig. 2.4. Modernized SDF of the FIR filter

The third block of the filter, which is the last in the graph in Fig. 2.4,
should have an increased bit width of the intermediate results in order to maintain a
low level of the truncation errors. This can significantly reduce the efficiency of
the filter, since the multi-bit adder based on the LUTSs is much slower than the
corresponding adder in the DSP48 block.

In order to minimize the hardware volume and critical path delay due to the
increased adder bit width, the improved SDF is proposed. It is shown in Fig. 2.5.
The corresponding improved FIR filter contains two parts of H(n;) and H3(n,) with
the same bit width, which is much smaller than the bit width of operands in the

DSP48 block.

2.3.3 CCM block implementation
As it 1s shown in the previous paragraph, the submodules H,(n;) and Hz(n,)
are preferably be implemented on the base of CCM. In the subsection 1.3 the

methods of the CCM design are reviewed.

45

0 Hy(n) Hy(n.) H;(n,) Vi1

el

Ll |
n. | R |

Fig. 2.5. Improved SDF of the FIR filter

And it was shown that the n-bit coefficient multiplication can be
implemented in approximately n/3-input adder tree. In some situations of the MSD
coefficient presentation, the numder of the shifted terms can be less than n/3.

In the previous chapter, it was found out that the modern FPGA
architecture provides the three-input adder-subtractor, which is formed as a single

stage of the 6-input LUTs. Such an adder can perform the CCM block for the

MSD-represented coefficient with three non-zero bits, like: 100101. Therefore,
such CCM can perform a basic block for the FIR filter part, which as the 6-bit
coefficients.

In the subsection 2.1 it was shown, that the delay of the DSP48 block is
approximately in two times higher than the delay of two adder stages. Therefore, it
is reasonable to implement the CCM block in two stages formed by the three-input
adders-subtractors. Therefore, the SDF of the CCM module for some “unconve-

nient” MSD-coefficient of the maximum bitwidth 205 =256 - 64 + 16 -4 + 1 =

=101010101 looks like one in Fig. 2.6.

46

Fig. 2.6. Constant coefficient multiplier SDF for the coefficient 205

SDF in Fig. 2.6. 1s described in VHDL as follows:

Process(CLK, RESET) begin
If CLK = ‘1’ and CLK’event then
If RESET = ‘1’ then
y(i-1)<=(others => ‘0’);
else
y(i-1)<= SXT(x(1),y(i-1)’left) — SHL(x(i),”010”) +
(SHL(x(1),”1000”) + SHL(x(1),”110”) — SHL(x(1),”1007));
End if;
End if;

End process;
Here, x(i),y(i-1) are components of the respective signal arrays, function

SXT expands the bit width of input bit vector to the bit width of the result, function

SHL shifts left the operand to the given bit number.

47

As a result, it i1s guaranteed to build the CCM block for the 9-bit
coefficients, which speed is comparatively equal to the speed of the DSP48 block.

The CCM can be pipelined. The pipelining example is shown in Fig. 2.6.
by the dotted lines. Then the limit of the network delay can be removed. But the
CCM pipelining infers the pipelining of the whole filter structure. And as a result,
the latent delay of the FIR filter may increase.

However, the FPGA architecture provides practically any level of the
network pipelining.

The effective approach is to represent the coefficient set 4(n) in the MDS-
form. Then, the coefficients are selected, in which presentation are no more 5 non-
zero bits. These coefficients are implemented in the respective CCM blocks of the

submodules H,(n;) and Hs(n,) (see Fig. 2.5).

2.3.4. Scaling the data in filters

The example of the CCM block design in the previous paragraph shows
that the integer arithmetic is usually used in the digital network design. This
arithmetic is considered as the general data representation in the computer design.
So, the bit vectors and data of the type STD_LOGIC_VECTOR are considered as
integer values.

However, in DSP applications, the real data, or data in the floating point
representation is widely used. In the DSP microprocessors, the main data
representation is integer data. But which are scaled.

The fact is that the fixed point data representation is considered in the DSP
algorithms, especially, in the FIR filters. Therefore, both the data and coefficients
are the fixed point data, in which the point stays between sign bit and the most
significant bit, which weight is 2"

Taking into account the scaled fixed point data representation, SDF in

Fig.2.6 is redrawn as one in Fig.2.7.

48

Fig. 2.7. Constant coefficient multiplier SDF for the coefficient 205/128

In FIG. 2.7, the scaled coefficient is decomposed as

101010101 ysp/128 = 101/8 + 10101/(16*8).
Therefore, SDF performs the calculations

y=x —x/4+ (x—x/4 + x/16)/16.
Then, SDF in Fig. 2.7. is described in VHDL as follows:

Process(CLK, RESET) begin
If CLK = ‘1" and CLK’event then
If RESET = ‘1’ then
y(i-1)<=(others => ‘0’);
else
y(i-1)<= SXT(x(1),y(i-1)’left) - SHR(x(1),”010”) +
SHR(x(1) — SHR(x(i),”010”) + SHR(x(1),”100")),”1007);
End if;
End if;

End process;

49

Such CCM performance considers the truncation of both the intermediate
and final results. This provides the substantial adder length shortening and
respective hardware minimization. But for the preserving of the minimized error
level, from 2 to 3 additional least significant bits have to be added to the data

representation.

2.3.5 Method for the effective FIR filter design

The initial data for the method are the filter order n, impulse response h(n),
input and output data bit widths. The result of the method is the VHDL description
of the FIR filter, which is described in the synthesis style, and therefore, can be
configured in FPGA.

At the first step, the impulse response h(n) is analyzed. All the coefficients
are represented in the twos complement codes. Among them, the coefficients,
which have no more than 12 significant bits, are recoded into MSD representation.
Then, all the coefficients in h(n) are divided in three sets: h,(n;), h, (n,) and
hs;(n,), which are formed from the left (n;), middle (n,,), and right (n,) coefficients
of the impulse response. And the sets h(n;), and hs(n,) are formed by the
coefficients, in which MSD presentation no more 5 ones are present.

At the second step, the constant coefficient multipliers are formed, which
are implemented according to SDF shown in Fig 2.7.

At the third step, the filter structure is formed, which is shown in Fig. 2.5.
Here, the blocks H;(n;), and H;(n,) are implemented using the coefficient sets
hi(n;), and hy(n,,), respectively, using the CCMs, formed in the previous step. The
H, (n,,) blocks are implemented as usual, using the multiplier blocks like DSP48.
The example of the respective structure of this block is shown in Fig. 1.6.

At the fourth step, the filter structure is described in VHDL. By this
process, in each blocks H(n;), H, (n,,), and H3(n,) the elementary stage is selected,

which contains a single multiplier, a single adder, and respective pipeline registers.

50

This stage i1s described in VHDL as a single process operator, and is tunable
according the respective coefficient-multiplicand. Then, the block model is formed
by repeating the process operator using the GENERATE operator. The designed
FIR filter model is tested by the FIR filter test bench, which is described in the

next section.

2.5 Preliminary conclusions

In this section, the method for the effective FIR filter design is designed.
The method is based on implementing the filter structure of three parts, two of
them are implemented on the base of the constant coefficient multipliers to the
small coefficients of the filter impulse response. Due to this, the filter hardware
volume is less, maximum filter length is higher, than by the usual FIR filter
implementation, providing the effective resourse utilization of FPGA.

In the next section, the method effectiveness is proven.

51

3 IMPLEMENTATION OF THE FIR FILTERS IN FPGA

3.1 Description of the FIR filter in VHDL

3.1.1. Description of the filter stage

Due to the method, proposed in the previous section, the filter structure is
described in VHDL in the following order. The stages of the blocks H,(n;), Hs(n,),
which contains a single multiplier, a single adder, and respective pipeline registers.
are described in VHDL as a single process operator, and is tunable according the
respective coefficient-multiplicand.

By this process, the multiplication to the coefficient is implemented due to
the approach described in the subsection 2.3. Besides, taking into account that two
stages of adders in the modern FPGA have 5 inputs for the terms, and that each
stage has to add the result from the previous stage, then the number of the non-zero

terms in the MSD coefficient presentation is selected as 4.

The stage SDF looks like one in Fig. 3.1.

Xi I I Xit1
ky

_% k4

oy

r\f"
p N I_, y
NI
Fig3.1. SDF of a single stage of the FIR filter

The VHDL-description of the SDF graph in Fig.3.1 looks like the

following.

52

process(CLK,RST)
variable t:STD_LOGIC_VECTOR(nb-1 downto 0);
begin

if CLK ="1" and CLK'event then
if RST="1" then
AD<= (others=>'0");
BD<= (others=>'0");
BD2<= (others=>'0");
BD3<= (others=>'0");
pr<= (others=>'0");
P<= (others=>'0");
else
BD<=B;
BD2<=BD;
if k3>0 and k4>0 then
case s2 1s
when 0 => t := PIN + SHR(B,CV(k1,5))+ SHR(B,CV(k2,5));
when 1 => t := PIN + SHR(B,CV(k1,5)) - SHR(B,CV(k2,5));
when 2 => t := PIN - SHR(B,CV(k1,5))+ SHR(B,CV(k2,5));
when others => t := PIN - SHR(Bd,CV(k1,5))
- SHR(B,CV(k2,5));
end case;
elsif k3>0 and k4=0 then
case s2 is
when 0|1 => t := PIN + SHR(B,CV(k1,5));
when others => t := PIN - SHR(B,CV(k1,5));

end case;

53

elsif k3=0 then
end if;
if k1>0 and k2>0 then
case sl is
when 0 => p <=t + SHR(B,CV(k3,5)) + SHR(B,CV(k4.,5));
when 1 => p <=t + SHR(B,CV(k3,5)) - SHR(B,CV(k4,5));
when 2 => p <=t - SHR(B,CV(k3,5)) + SHR(B,CV(k4,5));
when others => p <=t - SHR(B,CV(k3,5)) - SHR(B,CV(k4,5));
end case;
elsif k1>0 and k2=0 then
case sl is
when 0|1 => p <=t + SHR(B,CV(k3,5));
when others => p <=t - SHR(B,CV(k3,5));
end case;
elsif k1=0 then
p <=t
end if;
end if;
end if;
end process;

Here, the variables ki, k,, k3, k4 are the generic variables, which code the
number of shifts right of the data when it is multiplied by a constant (see Fig. 2.7).
And when k; = 0, then the respective term is absent, i.e., it is multiplied by a zero.
The generic variables sy, s, code the signs of the terms in the sum of the shifted
multiplicands. So, the stage calculates the following formula, if the real non-zero
terms are 4:

y= (p+ Esx 2" + E(s)x 2%) + E(s)x 2° + E(s)x 2,

where E(s,) is the sign function, which is equal to £1 depending on the code s..

54

Then, the block model is formed by repeating the process operator using
the GENERATE operator:
library IEEE;
use [IEEE.STD_LOGIC_1164.all, IEEE.STD_LOGIC_arith.all,
use IEEE.STD_LOGIC_signed.all;
entity STS1 is
generic(nb: natural:=16;
k1: natural:=1;
k2: natural:=3;
k3: natural:=5;
k4: natural:=7;
sl: integer:=0; -- ++

s2: integer:=3 -- - -

);
port(

CLK : in STD_LOGIC;
RST :in STD_LOGIC;
B :in STD_LOGIC_VECTOR(15 downto 0); -- input signal
PIN : in STD_LOGIC_VECTOR(nb-1 downto 0); --input SOP
P :out STD_LOGIC_VECTOR(nb-1 downto 0); --output SOP
BO: out STD_LOGIC_VECTOR(15 downto 0)-- delayed signal
);

end STS1;

Here, the nb is the generic constant which is equal to the intermediate data
bit width.

The stage with the combinatorial multiplier are described as usual.

55

The whole FIR filter is described using the GENERATE operator. For
example, the H; filter section (see Fig. 2.5) for some low pass filter is shown

below.

type Tc is array (1 to nl) of integer;

constant klal:Tc:=(6,4,4,4,2,2,7,1);

constant k2al:Tc:= (9, 6,7,7,5,11,0,5);

constant k3al:Tc:=(10,9,9,9,10,0,0,7);

constant k4al:Tc:=(0,11,11,11,0,0,0,0);

constant slal:Tc:=(0,0,1,2,2,2,0,1);

constant s2al:Tc:= (0,3,0,1,0,0,0,0);

type Tsignl6 is array (O to nst) of STD_LOGIC_VECTOR(15 downto 0);

type Tsign40 is array (0 to nst) of STD_LOGIC_VECTOR(39 downto 0);
type Tsignnbl is array (0 to nl) of STD_LOGIC_VECTOR(nb1-1 downto 0);
type Tsignnb2 is array (O to nst) of STD_LOGIC_VECTOR(nb2-1 downto 0);

signal bd: Tsignl6;

signal pd: Tsign40;

signal pd1:Tsignnbl;

signal pd2:Tsignnb?2;

signal pdd1:STD_LOGIC_VECTOR(nb1-1 downto 0);

signal pdd2:STD_LOGIC_VECTOR(39 downto 0);

signal DO1:STD_LOGIC_VECTOR(16 downto 0);

constant zz:STD_LOGIC_VECTOR(39 downto 0):=(others=>'0");

type Tsignl6 is array (0 to nst) of STD_LOGIC_VECTOR(15 downto 0);

type Tsign40 is array (0 to nst) of STD_LOGIC_VECTOR(39 downto 0);
type Tsignnbl is array (0 to nl) of STD_LOGIC_VECTOR(nb1-1 downto 0);
type Tsignnb2 is array (0 to nst) of STD_LOGIC_VECTOR(nb2-1 downto 0);

signal bd: Tsign16;

56

signal pd1:Tsignnbl;
begin
pd1(0)<=(others=>'0");
bd(0)<= DI,
stageSM1:for1in O to nl-1 generate
Ul: STS2 generic map(nb=>nbl,
k1 =>klal(i+1),
k2=>k2al(i+1),
k3=>k3al(i+1),
k4=>k4al(i+1),
sl=>slal(i+1),
s2=>s2al(i+1)
)
port map(CLK, RST,
B =>bd(i),
PIN => pd1(i),
P =>pdl(i+1),
BO =>bd(i+1)
);

end generate;

The full version of the FIR filter description is represented in Appendix 1.

57

3.2 Modeling the filter

To test the filter, some special signals are inputted in it and the filter
reaction is investigated. The sine waves are usually selected as such input signals
because they do not exchange their form but only their magnitude. This is
explained by the fact that the sine wave is the eigenfunction for the linear filters.
To say more precisely, the genuine eigenfunction is the analytical (complex)
signal, which is represented by the couple of cosine (inphase) and sine (quadrature)
signals.

A set of reactions to the analytical signal with different frequencies is
named as the frequency characteristic of the given filter. The magnitude-frequency
characteristic and phase-frequency characteristic are usually distinguished for the
filter. It 1s recommended to test the DSP filters by deriving these characteristics.

For this purposes the filter testbench component is proposed for the use in
the digital filter design and investigations of them. The connection of the filter
component to the tested filter instantiations is shown in Fig.3.2.

It uses two identical copies of the system H(z), to which the analytic signal
is applied, which consists of sine and cosine parts. Accordingly, the system outputs
the components of the analytical signal of the system response. Unlike analog
systems, the designer can always get two identical digital systems for such an

experiment.

cos(@n)] Re(H@)=x

—> Ty | [HO)

> Y| |arg(H(w)
sin(on)) _Im(H(®))=y arCtg(Xj I
—_—> —3>

Fig. 3.2. Measurement of frequency characteristics of the real filter H(z)

58

Due to these relations, the testbench for the filter testing is proposed in

[55]. The filter module, which is designed due to a new method is inserted into the

testbench, as shown in Fig. 3.3. With the help of this testbench, the diagrams of the

AFC and PFC are plotted, as shown in Fig. 3.4.

U1
clk
CLKp———
rst
RSTP— imx
CLK_GEN
Celk
Orst

U2 U4
rey
+{CLK »|RERSP ENA[*
Freq
+RST +{CLK FREQ[*
Logmagn
X +{RST LOGMAGN [+
start Magn
== o " |START MAGNP
fir_filter Phase
PHASE [+
U3 _
imy REO [
+{CLK {IMRSP
IMO [+
+RST
X FilterTB_r
fi r_ﬁ Iter rex

Fig.3.3. Testbench for the FIR filters

So, the testbench in Fig.3.3 is the effective tool for the FIR filter testing and

parameter measurement. It can show both the truncation effect for the coefficient

and intermediate results and the effectiveness of the CCM use.

59

MAGN

LOGMAGN b

PHASE

R
-

Fig.3.4. Measured characteristics of the designed example of the FIR filter:
AFC (a), logarithmic AFC (b), and PFC (c)

3.3 Implementation in FPGA

The low pass FIR filter of the 32-d order were designed according to a new
method. The filter structures in Fig 1.6, 2.4, 2.5 were described by the VHDL
language, as it is shown above. Then, the filter projects were synthesized for the
Xilinx Spartan-6 FPGA. The results of the synthesis for filters are shown in the
Table 3.1. To estimate the whole hardware volume Q, it was considered, that an
18-bit multiplier in the FPGA requires 200 equivalent LUTs for its

implementation.

D

0

Table 3.1.

Characteristics of the FIR filters with different structures

FIR structure Hardware volume Maximum 1O
LUTs | Registers | DSP48 | Q Jfc, MHz

Systolic ,Fig.1.6 |0 0 33 33 390 11,8

Modernized, 772 | 1538 17 20,9 146 7,0

Fig.2.4

Improved, Fig.2.5 | 914 | 1639 17 21,6 267 12,4

The Table 3.1 analysis shows that the filter structure based on DSP48
blocks (Fig.1.6), provides the maximum sampling clock frequency f. at the cost of
the hardware volume. The modernized structure gives the smallest value of f¢, but
with the minimum hardware volume. The improved structure provides much less

hardware volume and better ratio throughput to hardware volume f-/Q.

3.4 Concluding remark

In this section, two FIR filters are designed. One of them has the
modernized structure, and the others is designed exactly according to the proposed
method. The filters are tested and configured in FPGA.

The results of the condiguration show that the modernized structure gives
the small value of the clock frequency, but has the minimum hardware volume?
And the improved structure provides much less hardware volume and better ratio
throughput to hardware volume comparing to the best solution of the Xilinx

company.

61

CONCLUSIONS

This thesis has presented a detailed description and analysis of the high-
speed digital FIR filter design for the FPGA implementation. On the base of the
thesis materials the following conclusions are made.

1) The FIR filter IP cores, proposed by the FPGA vendors, have the
limitations of the filter order and utilize the configurable hardware, and therefore,
they need modernizations.

2) A method for the effective FIR filter design is developed. The method is
based on implementing the filter structure of three parts, two of them are
implemented on the base of the constant coefficient multipliers to the small
coefficients of the filter impulse response. Due to this, the filter hardware volume
i1s less, maximum filter length 1is higher, than by the usual FIR filter
implementation, providing the effective resourse utilization of FPGA.

3) The FIR filters which are designed according to the new method provide
much less hardware volume (in 1.5 times) and better ratio throughput to hardware

volume (to 5%) comparing to the best solution of the Xilinx company.

62

REFERENCES

Pabunep JI., Toynn b. Teopus u mnpumenenuwe 1udpoBoii 00pabOTKU
curnaioB. M.: Mup. 1978. — 848 c.

XemmMmumnr P. B. Hudpossie punstper. M.: Cos. Pagno. 1980. — 224 c.

Alter D. M. Efficient Implementation of Real-Valued FIR Filters on the
TMS320C55x DSP. Application Report SPRA655/ TI com. April 2000. — 27
P. [Electronic resource] Available at:
http://web.iitd.ac.in/~saitkm/docs/EEL319/Practical/fir.pdf.

FIR II IP Core User Guide // Altera Inc. — 62 P. [Electronic resource]
Available at:
https://www.altera.com/en_US/pdfs/literature/ug/ug_fir_compiler_ii.pdf.

FIR Compiler v7.2 LogiCORE IP Product Guide Vivado Design Suite. PG149/
Xilinx inc.// November 18, 2015. —131 P. [Electronic resource] Available at:
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler
IVT_2/pgl49-fir-compiler.pdf

Quadir S.H. Minimized FIR Filter Design Implemented in FPGA / Vinogradov
Ju.N., Sergiyenko A.M., // System analysis and information technology: 20-th
International conference SAIT 2018, Kyiv, Ukraine, May 21 — 24, 2018.
Proceedings. — ESC “IASA” NTUU “Igor Sikorsky Kyiv Polytechnic
Institute”, 2018. — P. 165-166.

Kanip C. X. ¢ginpTpu 31 CKIHUYEHHOIO XapaKTEPUCTUKOI 3 MiHIMI30BaHHUMH
anapataumu Butpatamu / A. Ceprienko, A. Ceprienxko // [Ipami mixHapoaHOT
koHpepeniii "be3neka, BiamoBocTilikicTh, [HTenext", 10-11 tpaBus 2018. —
C.70 —73.

Constantinides G. Synthesis and Optimization of DSP Algorithms / ,P.Y.K.
Cheung,W. Luk / Kluver. 2004. — 165 p.

Sabin W.E. Discrete-Signal Analysis and Design. John Wiley. 2008. —174 P.

63

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Khan S. A. Digital design of signal processing systems: a practical approach. —
John Wiley & Sons. —2011. =586 p.

Ceprieako A. M. IludpoBa 006pobka curHamiB. KoM roTepHHii MpaKTHKYM
MoBoo VHDL / FO. M. Bunorpanos, T. M. Jlecuk / K.: HTYY«KIII», 2012. —
104 c. [Enextponnuii pecypc | Pexum mocrymy: http://kanyevsky.kpi.ua/wp-
content/uploads/2017/11/DSP_LabS.pdf

Series FPGAs CLB User Guide. UG474 (v1.7). November 17, 2014. — 74 P.
[Electronic resource]. Available at www.xilinx.com

Spartan-6 FPGA DSP48A1 User Guide. UG389 (v1.2). May 29, 2014. — 46 P.

[Electronic resource]. Available at www.xilinx.com

Virtex-5 XtremeDSP Design Considerations User Guide. UGI193 (v2.7)

December 11, 2007. — 114 p. [Electronic resource]. Available at

www.xilinx.com

Kung S. Y. VLSI and modern signal processing /H. J. Whitehouse / Prentice-
Hall. 1985. 481 P.
7 Series DSP48E1 Slice User Guide UG479 (v1.10). March 27, 2018. —58 p.

[Electronic resource]. Available at www.xilinx.com

Yuan, X. Improved Design of Multiplier in the Digital Filter / T. Ying, G.
Chunpeng // International Conference on Computer and Communication
Technologies in Agriculture Engineering. 2010.

Abedelgwad A. High speed and area efficient multiply Accumulate (MAC)
Unit for Digital Signal Processing Applications // IEEE International
Symposium on Circuits and Systems, ISCAS, 2007.

Fayed A. A merged Multiplier Accumulator for High Speed Signal Processing
Applications // IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP). 2002.

64

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Kolling P. FPGA Implementation of High Performance FIR filter / K. Abbot/
Proceedings IEEE International Symposium on Circuits and Systems, ISCAS.
1997.

Meher P.K. Low-Latency Hardware-Efficient Memory-Based Design for
Large Order FIR Digital Filters, 6th International Conference on Information,
Communication and Signal Processing. 2007. — P. 10-13.

Goslin G.R. A Guide to using FPGAs for application-specific DSP
performance, in Xilinx application note. 1998.

Meher P.K. FPGA Realization of FIR Filters by Efficient and Flexible
Systolization using Distributed Arithmetic / S. Chanderasekaran, A. Amira //.
IEEE Transactions on Signal Processing, vol. 56, 2008. No. 7.

Wei G. The Implementation of FIR Low-Pass Filter Based on FPGA and DA /
W.F. Ying // 4th International Conference on Intelligent Control and
Information Processing, Beijing, China. 2013.

Zhao L. Design of digital FIR band pass filter using distributed algorithm
based on FPGA /, W.H. Bi, F. Liu // Electron. Meas. Technol. V. 30, No. 7,
2010. — P. 101-104.

Sergyienko, A. FIR filter soft core generator / O. Vasylienko, V.,
Maslennikow// IV Konferencja Krajowa ,,Reprogramowalne uklady cyfrowe”,
RUC’2001. Szczecin, Poland. 2001. — P. 167-172.

Shi P. Design of linear phase FIR filters with high probability of achieving
minimum number of adders / Y.J. Yu //. IEEE Circ. Syst. Soc. V.58, No.l,
2011.— P. 126-136.

Mu N. Study on the FPGA Implementation Algorithm of Effective FIR Filter
Based on Remainder Theorem / G. Liu // 2nd International Conference on
Consumer Electronics, Communication and Networks, 2012. — P. 21-23.
Zhon Y. Distributed Arithmetic for FIR Implementation on FPGA / P. Shi //

International Conference on Multimedia Technology, Hangzhou, China. 2011.

65

30.

31.

32.

33.

34.

35.

36.

37.

38.

J.E. Carletta, M.D. Rayman, Practical Considerations in the Synthesis of High
Performance Digital

Filters for Implementation on FPGAs. Springer, FPL 2002, LNCS 2438, 2002.
— P. 886-896.

Chou J. FPGA Implementation of Digital Filters / S. Mohanakrishnan, J.B.
Evans // in Proceedings 4™ International Conference on Signal Processing
Applications and Technology. 1993.

Woods R. FPGA Synthesis on the XC6200 using IRIS and Trianus/Hades / .,
S. Ludwig, J. Heron, D. Trainor, S. Gehring // Proceedings 5th IEEE
Symposium on FPGA based Custom Computing Machines, 1997. — P. 155—
164.

Parhi K.K. Chapter 13, Bit-Level Arithmetic Architectures. VLSI Digital
Signal Processing Systems Design and Implementation. Wiley, 1999.

Meher P.K. Low-Latency Hardware-Efficient Memory-Based Design for
Large Order FIR Digital Filters // 6th International Conference on Information,
Communication and Signal Processing, 2007. — P. 10-13.

Meher P.K. FPGA Realization of FIR Filters by Efficient and Flexible
Systolization using Distributed Arithmetic / ., S. Chanderasekaran, A. Amira //
IEEE Transactions on Signal Processing, vol. 56, 2008. No. 7.

Uma R. Systolic FIR Filter Design with Various Parallel Prefix Adders in
FPGA: Performance Analysis / J. Ponnian // International Symposium on
Electronic System Design, Kolkatta, 2012. —P. 19-22.

Yuan X. Improved Design of Multiplier in the Digital Filter / T. Ying, G.
Chunpeng // International Conference on Computer and Communication
Technologies in Agriculture Engineering. 2010.

Chapman K. Constant Coefficient Multipliers for the XC4000E // Xilinx
Technical Report. 1996.

66

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Wirthlin M.J. Constant coefficient multiplication using look-up tables / J.
VLSI Signal Process. V.36, 2004. — P. 7-15.

Wirthlin ML.J. Efficient Constant Coefficient Multiplication Using Advanced
FPGA Architectures / B. McMurtrey // International Conference on Field
Programmable Logic and Applications (FPL). 2001.

Cheng C. Hardware efficient fast parallel FIR filter structures based on iterated
short convolution / K.K. Parhi // IEEE Trans. Circ. Syst. I Reg. Pap. V. 51,
2004. No. 8. — P. 1492-1500.

Pavlovic V.D. 1D and 2D Economical FIR filters generated by Chebyshev
polynomials of the first kind / N. Doncov, D. Ciric // Int. J. Electronic. 2013.
Tsao Y.C. Area efficient parallel FIR digital filter structures for symmetric
convolutions based on fast FIR algorithm / K. Choi // IEEE Trans. VLSI Syst.
V. 20.2010. No.2. — P. 366-371. Y.C.

Tsao Y.C. Hardware-Efficient VLSI Implementation for 3-Parallel Linear-
Phase FIR Digital Filters of Odd Length /K. Choi // IEEE International
Symposium on Circuits and Systems, Seoul. 2012.

Kumm M. Multiple Constant Multiplication Optimizations for Field
Programmable Gate Arrays. Springer, 2016. — 206 p.

Woods R. FPGA-based Implementation of Signal Processing Systems / J.
McAllister, G. Lightbody, Y.Yi/ John Wiley & Sons, Ltd. 2008. — 364 P.
Avizienis A. Signed-Digit Number Representations for Fast Parallel
Arithmetic // IEEE Transactions on Electronic Computers, vol. EC-10, 1961.
No. 3. — P. 389-400.

[locnenoB [I.A. Apudmerndyeckue OCHOBBI BBIYMCIUTEIbHBIX MAalllUH
nuckpetHoro aeiictus. — 1970. — 308 c.

Hwang K. Computer Arithmetic: Principles, Architecture, and Design. New

York: Wiley-Interscience, 1979.

67

50.

51.

52.

53.

54.

55.

Potkonjak M. Multiple Constant Multiplications: Ellcient and Versatile
Framework and Algorithms for Exploring Common Subexpression
Elimination / M. B. Srivastava, and A. P. Chandrakasan // IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, Vol. 15, 1996.
No. 2. — P. 151-165.
Hartley R. Subexpression Sharing in Filters Using Canonic Signed Digit
Multipliers // IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, Vol. 43, 1996. No. 10. — P. 677-688t.

Edwards S. Design of Embedded Systems: Formal Models, Validation, and
Synthesis / L. Lavagno, E.A. Lee, A. Sangiovanny-Vincentelli // Proc. IEEE,
vol.85, pp.366—390, March 1997.

Khan S. A, Digital Design of Signal Processing Systems. John Wiley & Sons.
2011.

Cepruenko A.M. OtoOpaxkeHre NEPUOAUYECKHX QITOPUTMOB B
porpaMMHUpyeMbIe JIOTHYECKHEe UHTerpanbHbie cxembl / B.I1. Cumonenko //
OnektponHoe moaenupoBanue. T. 29. No.2. 2007. — C.49-61.

Sergyienko A. Testbench for the filter testing. [Electronic resource]
Available at: http://kanyevsky.kpi.ua/en/useful-ip-cores/testbench-for-the-
filter-testing/

68

APPENDICES

APPENDIX 1
VHDL programs of the FIR filter

-- Title : FIR1
-- Design : FIR1

-- File

: STS1.vhd

-- Generated : Tue Feb 20 10:18:11 2018
-- From : interface description file

- By

: Itf2vhdl ver. 1.20

-- Description : FIR stage, multiplication by shift&add

t = PIN + b~ (-k1)+ b (-k2)
p =t + b~(-k3) + b~ (-k4)
1-staged stage

-- Spartan6
-- 48 LUT 12 CLBs 61 TG 5.479ns

library IEEE;
use IEEE.STD_LOGIC_1164.all, IEEE.STD_LOGIC_arith.all,IEEE.STD_LOGIC_signed.all;
entity STS1 is

generic(nb: natural:=16;

k1: natural:=1;

k2: natural:=3;

k3: natural:=5;

k4: natural:=7;

sl: integer:=0; -+ +

s2: integer:=3 ---

)i

port(
CLK : in STD_LOGIC;
RST : in STD_LOGIC;
B :in STD_LOGIC_VECTOR(15 downto 0);
PIN : in STD_LOGIC_VECTOR(nb-1 downto 0);
P :out STD_LOGIC_VECTOR(nb-1 downto 0);
BO : out STD_LOGIC_VECTOR(15 downto 0)
)
end STS1;

architecture synt of STS1 is

signal AD,BD,BD2,BD3:STD_LOGIC_VECTOR(15 downto 0);

signal pr:STD_LOGIC_VECTOR(nb-1 downto 0);

alias CV is IEEE.std_logic_arith.CONV_STD_LOGIC_VECTOR [INTEGER, INTEGER return
STD_LOGIC_VECTOR];

69

begin

process(CLK,RST)
variable t:STD_LOGIC_VECTOR(nb-1 downto 0);

begin

if CLK = '1' and CLK'event then
if RST="1" then

end if;

else

end if;

AD<= (others=>'0";
BD<= (others=>'0");
BD2<= (others=>'0");
BD3<= (others=>'0";
pr<= (others=>'0");
--t<= (others=>'0");
P<= (others=>'0";

BD<=B;
BD2<=BD;
if k3>0 and k4>0 then
case s2 is
when 0 => t:= PIN + SHR(B,CV(k1,5))+ SHR(B,CV(k2,5));
when 1 => t := PIN + SHR(B,CV(k1,5)) - SHR(B,CV(k2,5));
when 2 => t := PIN - SHR(B,CV(k1,5))+ SHR(B,CV(k2,5));
when others=>t:=PIN-SHR(Bd,CV(k1,5))-SHR(B,CV(k2,5));
end case;
elsif k3>0 and k4=0 then
case s2 is
when 0|1 => t := PIN + SHR(B,CV(k1,5));
when others => t := PIN - SHR(B,CV(k1,5));
end case;
elsif k3=0 then
-t <= PIN;
end if;

if k1>0 and k2>0 then
case sl is
when 0 => p <=t + SHR(B,CV(k3,5)) + SHR(B,CV(k4,5));
when 1 => p <=t + SHR(B,CV(k3,5)) - SHR(B,CV(k4,5));
when 2 => p <=t - SHR(B,CV(k3,5)) + SHR(B,CV(k4,5));
when others=>p<=t- SHR(B,CV(k3,5)) - SHR(B,CV(k4,5));
end case;
elsif k1>0 and k2=0 then
case sl is
when 0|1 => p <=t + SHR(B,CV(k3,5));
when others => p <=t - SHR(B,CV(k3,5));
end case;
elsif k1=0 then
p<=¢
end if;

70

end process;
BO <= BD2;
end synt;

-- Title : FIR1
-- Design : FIR1

-- File : FIR2.vhd

-- Generated : Tue Feb 20 10:18:11 2018
-- From : interface description file

-- By : Itf2Vhdl ver. 1.20

-- Description : FIR contains 2 multiplier-free parts before DSP48s

--in Spartan6 sIx75 only 48 stages fit
-- sIx45 only 32

-- 848 stagesSum + Del

-- 914LUT 313 CLBs 1639 Tg + 17 DSP48 3.739 ns nb1=16

-- 947LUT 368 CLBs 1472 Tg + 17 DSP48 3.727 ns nb1=12

-- 955LUT 302 CLBs 1668 Tg + 17 DSP48 3.66 ns retiming

-- 837LUT 280 CLBs 1545 Tg + 17 DSP48 3.782 ns all+++0

-- 743LUT 273 CLBs 1526 Tg + 17 DSP48 3.884ns all++00

-- 724LUT 270 CLBs 1547 Tg + 17 DSP48 3.32ns all+0+0

-- 785LUT 265 CLBs 1549 Tg + 17 DSP48 3.145ns all+0+0 retiming

library IEEE;
use IEEE.STD_LOGIC_1164.all, IEEE.STD_LOGIC_arith.all,IEEE.STD_LOGIC_signed.all;
entity FIR3 is
port(

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

DI : in STD_LOGIC_VECTOR(15 downto 0);

DO : out STD_LOGIC_VECTOR(15 downto 0)

)i
end FIR3;

architecture synt of FIR3 is
component STX is
generic(coef: integer:= 30000);
port(
CLK : in STD_LOGIC;
RST : in STD_LOGIC;

71

B :in STD_LOGIC_VECTOR(15 downto 0);
PIN : in STD_LOGIC_VECTOR(39 downto 0);
P :out STD_LOGIC_VECTOR(39 downto 0);
BO : out STD_LOGIC_VECTOR(15 downto 0)
)i

end component ;

component STS2 is
generic(nb: natural:=16;

k1: natural:=1;

k2: natural:=3;

k3: natural:=5;

k4: natural:=7;

sl: integer:=0; -+ +
s2: integer:=3 -- - -

)

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

B :in STD_LOGIC_VECTOR(15 downto 0);
PIN : in STD_LOGIC_VECTOR(nb-1 downto 0);
P :out STD_LOGIC_VECTOR(nb-1 downto 0);
BO : out STD_LOGIC_VECTOR(15 downto 0)
)i

end component ;

port(

component DELAYL is

generic(nd: natural:=13*2;
nb:natural:=16);

port(
CLK : in STD_LOGIC;
DI : in STD_LOGIC_VECTOR(nb-1 downto 0);
DO : out STD_LOGIC_VECTOR(nb-1 downto 0)
)i

end component ;

constant nst: natural:= 33;--+16-1;
constant n1: natural:=8;

constant nbl: natural:= 16;
constant nb2: natural:= 16;

type Tcoef is array (1 to nst-nl) of integer; -- -n1

--0,000000000100110, 10011011, 1110101, -1101101, -110111110,-111111111
--10000,1110110000,1011001101,1001001110, -11000000000,

--10.13.14, 8.10.-13.-15, 8.-11.13.15, -8.11.13.-15, -6.9.14, -6.15,

--11, 5.-9.11,

constant cf: Tcoef:=(

--16#26#, 16#9B#, 16#75#, 16#FF93#, 16#FE42+#, 16#FEQ1#, 16#10#, 16#3B0#,
16#59A#, 16#24E#, 16#FAQ0#, 16#F2BB#, 16#F5944#, 16#7E8#, 16#258D#,
16#41544#, 16#4CAF#,

72

16#4154#, 16#258D#, 16#7E8#, 16#F594+#, 16#F2BB#, 16#FAQ0#, 16#24E#,

16#59A#,

32264,

16#3B0#, 16#10#, 16#FEQ1#, 16#FE42#, 16#FFI3#, 16#75#, 16#9B#, 16#26#--,
)

--LPF 100011, 1111100,101101100,100010100,101001010,1011100111,101110

-- 35,-124,-364,-276,330,743,46,-1211,-1045,1152,2615,152,-4392,-3992,5809,19768,
--26418,
--19768,5809,-3992,-4392,152,2615,1152,-1045,-1211,46,743,330,-276,-364,-124,35

--HB LPF 35 1110110, 101101,101111010,1011000000,10011000011
-- 76,0,-180,0,378,0,-704,0,1219,0,-2038,0,3447,0,-6497,0,20705,
--32767,

--20705,0,-6497,0,3447,0,-2038,0,1219,0,-704,0,378,0,-180,0,76

--HPF 10011, 1001110,111010, 110110,11011111,11111111,1000,111011000,
--constant cf2:Tcoef:=(
---19,-78,-58,54,223,255,-8,-472,-717,-295,768,1699,1334,-1012,-4807,-8362,
--22953,

---8362,-4807,-1012,1334,1699,768,-295,-717,-472,-8,255,223,54 ,-58,-78,-19
=)

--Hilbert 1001100, 10110100, 101111010,10011000010,11111110110

-- -76, 0,-180,0,-378,0,-704,0 ,-1218,0,-2038,0,-3447,0,-6497,0,-20705,0,

-- 20705,0,6497,0,3447,0,2038,0,1218,0,704,0,378,0,180,0,76

--diff 101010,1110000,11000001,100111111, 111110001,1011100100,10000101000
--42,-112,193,-319,497,-740,1064,-1488,2041,-2764,3719,-5023,6906,-9904,15643, -

--0,32264,-15643,9904,-6906,5023,-3719,2764,-2041,1488,-1064,740,-497,319, -

193,112,-42

type Tcis array (1 to nl) of integer;
constant klal:Tc:= (6, 4,4,4,2, 2,7,1);
constant k2al:Tc:= (9, 6,7,7,5,11,0,5);
constant k3al:Tc:= (10,9,9,9,10,0,0,7);
constant k4al:Tc:= (0,11,11,11,0,0,0,0);
constant s1al:Tc:= (0,0,1,2,2,2,0,1);
constant s2al:Tc:= (0,3,0,1,0,0,0,0);

constant kla2:Tc:= (6, 4,4,4,2, 2,7,1);
constant k2a2:Tc:= (9, 6,7,7,5,11,0,5);
constant k3a2:Tc:= (10,9,9,9,10,0,0,7);
constant k4a2:Tc:= (0,11,11,11,0,0,0,0);
constant s1a2:Tc:= (0,0,1,2,2,2,0,1);
constant s2a2:Tc:= (0,3,0,1,0,0,0,0);

73

begin

type Tsign16 is array (0 to nst) of STD_LOGIC_VECTOR(15 downto 0);
type Tsign40 is array (0 to nst) of STD_LOGIC_VECTOR(39 downto 0);
type Tsignnbl is array (0 to n1) of STD_LOGIC_VECTOR(nb1-1 downto 0);
type Tsignnb2 is array (0 to nst) of STD_LOGIC_VECTOR(nb2-1 downto 0);

signal bd: Tsign16;

signal pd: Tsign40;

signal pd1:Tsignnb1i;

signal pd2:Tsignnb2;

signal pdd1:STD_LOGIC_VECTOR(nb1-1 downto 0);

signal pdd2:STD_LOGIC_VECTOR(39 downto 0);

signal DOi:STD_LOGIC_VECTOR(16 downto 0);

constant zz:STD_LOGIC_VECTOR(39 downto 0):=(others=>'0");

pd1(0)<=(others=>'0");
bd(0)<= DI;

stageSM1:for i in 0 to n1-1 generate

Ul: STS2 generic map(nb=>nbl,
k1l =>klal(i+1),
k2=>k2al(i+1),
k3=>k3al(i+1),
k4=>k4al(i+1),
sl=>slal(i+1),
s2=>s2al(i+1)
)

port map(CLK, RST,
B =>bd(i),
PIN => pdi(i),
P => pdi(i+1),
BO => bd(i+1)
)i

end generate;

DELN:DELAYL generic map(nst-n1-n1,nb1)
port map(CLK,

DI=>pd1(nl),

DO=>pdd1);

pd(nl)<=(others=>'0";
stagesDSP: for i in 0 to nst-1-n1-n1 generate --
Ui: STX generic map(cf(i+1))
port map(CLK,RST,
B => bd(i+nl),
PIN => pd(i+n1),
P => pd(i+1+nl),
BO => bd(i+1+n1l));

74

end generate;

DELN2:DELAYL generic map(n1,40)
port map(CLK,

DI=>pd(nst-n1),

DO=>pdd2

)i

pd2(nst-n1)<=SXT(pdd1,nb2);

stageSM2:for i in 0 to n1-1 generate

Ul: STS2 generic map(nb=>nb2,
k1l =>kla2(n1-i),
k2=>k2a2(n1-i),
k3=>k3a2(n1-i),
k4=>k4a2(n1-i),
sl=>sla2(nl-i),
s2=>s2a2(n1-i)
)

port map(CLK, RST,
B =>bd(i+nst-n1),
PIN => pd2(i+nst-n1),
P => pd2(i+1+nst-nl),
BO => bd(i+1+nst-n1)
)i

end generate;

process(CLK,RST) begin
if CLK'event and CLK="1" then
if RST="1" then
DOi<=(others=>'0";
else
DOi<= pd2(nst)(nb2-1 downto 3) + pdd2(39 downto 23);
end if;
end if;
end process;

DO<= DOIi(16 downto 1);

end synt;

75

APPENDIX 2
Copies of publications

Mixknapoana koHdepeHiris "besneka, BinmoocTiiikicTs, [aTenexkt" (ICSFTI2018)10 — 12

tpaBHs 2018 poky, Kuis.

VK 004.383

Amnarouiii Ceprienko, Kagip Capsan Xyceiin, Anacracia Ceprieako
OUIBTPU 31 CKIHHEHHOIO XAPAKTEPUCTUKOLIO 3 MIHIMI3OBAHUMMN
AITAPATHUMU BUTPATAMU

Anatoliy Sergiyenko, Quadir Safwan Husein, Anastasia Serhienko

MINIMIZED HARDWARE FIR FILTER DESIGN

PosrnsimaeTscst po3poOka mapanenbHUX HEPEKYpPCUBHUX QIIBTPIB, SKI pealli3yloThCs B
MPOrpaMOBaHUX JIOTIYHUX IHTETpaIbHUX cxemax. HoBuil MeTon momsirae B TOMy, IO OJIOKA
MHOKEHHS Ha KOe(IIli€HTH, SKi MarOTh HEBEIUKY aMIUTITYAY, 3aMIHSIOThCS Ha OJIOKW MOCTIMHOT
nam’sTi, sIKi 30epiraloTh KpaTHi 3HAYEeHHS IMX Koe(ilieHTIB. 3a paXyHOK I[bOT'O 3MEHIIYIOThCS
amapaTH1 BUTpaTH Ha peajizailito GuIbTpa Ta 301IbIIYETHCS HOTO MPOMYCKHA CIIPOMOYKHICTb.

Kuarouosi caosa: [TIIC, HepexkypcuBHHMIA (HiIbTP, KOHBEED, .

Puc.: 3. Ta6n.:1. bioun.: 4.

The development of the parallel finite impulse response filters for the FPGA implementation
is considered. A new method consists in substituting the multipliers to the small coefficients to
the constant coefficient multipliers, which store the multiplied values of these coefficients. Due
to this, the filter hardware volume is minimized and its throughput is increased.

Key words: FPGA, FIR filter, pipeline.

Fig.: 3. Tabl.:1. Bibl.: 4.

Beryn. IlporpamoBani noriuni inTerpaibhi cxemu (IVIIC) mmpoko BUKOPUCTOBYIOTHCS IS
BHCOKOIIBUJIKICHOT 00poOKH 1udpoBux curHaiiB. Apxitekrypa [IJIIC amantoBana no peamizartii
(GinbTpiB 31 CKIHUEHHOIO IMIYNbCcHOIO XapakTepucTtukoro (CIX). st mporo, Hanpukiaaa, TIJIIC
dipmu Xilinx Mictare 0ok DSP48, kokeH 3 SKHX TpHU3HAYCHUH U1 PO3pPaxyHKY OJTHOTO
cryneass CIX-¢inbTpa B KOHBEEPHOMY DPEXHMi. AJie MOPAIOK Takoro (uibTpa OOMEKeHHH
o6'emom TIJIIC Ta kimpkicTio O5okiB DSP48 B omHOMY cTOBMIN €leMEHTIB Mikpocxemu. Sk
pesynbTar, nopsanok CIX-¢inbrpa, skuii renepyerbesi yrwiitoro Xilinx Coregen mist TIJIIC
Spartan-6, oOmexeHna miarazonoM Big 8 mo 48 [1]. Kpim Toro, sikmo ITJIIC BUKOpUCTOBYETHCS
mume Uit GinpTparnii, To B Hid Hee(EKTHMBHOTO BHKOPHCTOBYETHCS pPEIITa MPOrPaMOBAHUX
pecypciB, Takux K KOH(IrypoBaHi JioriuHi 0J10kH Ta ix joriyni Tabmui (JIT).

Icaye 6araro metoniB peam3zaiii CIX-dinbTpiB, Kl HE MalOTh OJOKIB MHOKEHHS. BinbIIicTh
13 HUX BUKOPHUCTOBYIOTh CXeMHM MHOXEHHsS Ha KoHcTaHTy (CMK), ski MaioTh MiHIMi30BaHMN
00’eM amapaTHoro 3a0e3mnedeHHs. BoHu mmpoko BuxopuctoByioThes y I[IJIIC mpotsrom
necatuiite. [Ipu oMy Taki GiTbTpu 30BCIM HE 3aCTOCOBYIOTH araparHi OJOKM MHOXKEHHS, SKi
BXOJAT y ckiaz 6mokis DSP48 [2,3,4].

76

VY po0oTi 3anmponoHoBaHO HOBUM miaxia A0 po3poOku CIX-dinbTpy, SAKHil BUKOPHUCTOBYE SIK
anapatHi 010ku MHOXeHHs, Tak i1 CMK. Bin 3a0e3neuye sik 301bIIEHHS TOPSIKY QiIbTpa, TakK i
MIHIMI30BaHi armapaTHi BUTPATH, a TAKOXK MATPUMYE BUCOKY MPOIMYCKHY 3/1aTHICTh (PUIBTpA.

Crpykrypa CIX-¢piabrpa. CIX-dinstp, skud npusnavenuit ans peanizauii y [UIC dipmu
Xilinx FPGA, mae Bimomy cucromuny cTpyktypy [1]. I'pad CHHXpOHHUX IOTOKIB JaHUX
(I'CITH) cuctomiunoi CTpyKTYpHu (igbTpa k-ro MOPSIKY MOKa3zaHa Ha puc.l, a HOro ymoBHE
300pakeHHss — Ha puc.l, 0. TyT x; y; € BXITHUMHU Ta BUXIJHUMHU TaHUMH, KOJIA, TPUKYTHUKH Ta
TOBCTI BIAPI3KHM MPEJCTABISIOTh COOOI0 JOAABAHHS, MHOKEHHsS Ha KOEQIIEHT 1 3aTpUMKY Ha
ONMH TakT, BigmoBigHo. Lleit rpad BimoOpakaeThCcs y BIAMOBIIHY MapajiebHy KOHBEEPHY
CTPYKTYPY 3 MAaKCHMAaJbHOIO TAaKTOBOIO YaCTOTOIO 32 JIOTIOMOIOIO BiJOOpa’keHHS OIWH [0
OJTHOTO.

Xi - Xi-2k-1
X Xi2k-1

H(k
RIECH

ro —PH>P— 4> Pk T —

Puc.1. I'CIT[CI/ICTg)J'Ii‘IHOFO CIX-dinpTpa (a) Ta ioro ymoBHG300paxeHHs (0)
a

Habip xoedimientie CIX-dinbTpa n-ro mopsaaky Gopmye HOro iMIylIbCHY XapaKTEPUCTUKY
H(n). Ilpononyetscst peanizyBatu CIX-¢pinbTp 3 TpboX OJOKIB, SIKI OOYHCIIOIOTH 3TOPTKY 3
niBoto H,(n;), cepenuero Hy(n,) Ta npaBoto Hiz(n,) MiIMHOXHUHAMHU KOCQIIEHTIB, 1 = 1y + Ny +
n,. BigmoBimuuit wmonepuizoBanuii ['CIIJ| mnokazano Ha puc.2. Y OiIbIIOCTI BUMAAKIB
po3psaHicTh kKoedimieHTiB Hi(n;) ta Hi(n,) Habarato MeHie, HiX KoediieHTiB Hy(n,,). Tomy
OaxkaHO peanizyBaTu 4acTUHY (iabTpa, Mo3HauYeHy Ha puc.2 sk Ha(n,,), BAKOPHUCTOBYIOUH OJOKU
DSP48, a pemty dinbTpa —3 Bukopuctanasm CMK.

Tpertiit 610k ¢inbTpa, SIKUI CTOITH OCTaHHIM Y rpadi Ha pHC.2, TOBUHEH MaTH MiJBUILEHY
PO3PATHICTH MPOMDKHUX PE3YNIbTATIB, 00 30eperTd HU3bKHUI PiBEHb MOMMJIOK BiJ iX YCIKaHHSI.
Ile Moxe CyTT€BO 3HU3UTH €(EKTUBHICTH (IIbTPA, OCKUIBKM OaraToOpo3psAHUN CymMarop Ha
ocHoBi JIT € 3HauHO MOBUTBHIIINM, HIXK BiAMOBIAHUHN cymatop y O6mori DSP48.

Xi Xi2k-1
—-»> > > >

0 Hy(m) Hy(ny) H;(n,) Vick
—» — —> —>

Puc. 2. MonepnizoBannii ['CI1J] dinprpa

[[Io6 3BectTm mo MiHIMyMy TIied ¢akTop, 3ampomnoHoBaHo yaockoHanmenuit ['CIIJ, sxwit
MOKa3aHo Ha puc.3. BiamoBiguuil ynockoHaneHuit GpinbTp MicTuTh 181 yactuuu H,(n;) ta Hs(n,)
3 OJIHAKOBOIO PO3PSIHICTIO, sIka HabaraTo MEHINa, HiK PO3PAIHICTh omepaHiB 0yioky DSP48.
Pesynbrar ¢inbrpamii GopMyeThCsi B OKpeMOMY CyMaTopi 31 30UIBIICHOIO PO3PAIHICTIO. SIK
pesyabTat, po3pobnenuit CIX-dinmbTp MicTUTH numie n, OnokiB DSP48, sxux moxe OyTtu
Habarato MeHIle, HiX MOPsI0K (QiIbTpa 7.

77

—» BN >
o |Hi(m) Hy(n.) Hi(n,) Vick-1

0 |
T

Puc. 3. Y nockonanenuii I'CIT[pinsTpa

Excnepumentaibui pesyabtatu. J[nga omiaku edexkruBHOCcTi HIX-dimpTpiB 3
3aMpPOINOHOBAHOI0 CTPYKTYpPOIO, Oylno BHUIPOOYBaHO Tpu peaiizauii (inbTpiB HUXKHIX YacTOT
nopsiaky n = 35, koedirieHTH, BXiIHI Ta BUXIIHI JIaH1 SKUX MAIOTh PO3psaHicTh 16. [Ipu mpomy
CMK Oynmu mnoOyaoBaHi 3 BHKOPHCTAHHSIM MPEJCTABICHHA KOC(IIIEHTIB y KaHOHIYHIN
NBIMKOBINM cucTtemi uuciaeHHs [4], mpuyomy aepeBo cymaropiB CMK mae He Ounbmie m'satu
BXIIHUX CKJIaJOBHX. 3a UMM YMOBaMH, HEpIIMHA Ta TpeTii Onoku ¢inbTpiB (auB. puc. 2, 3)
MaloTh SIK MiHIMI30BaHi amapaTHi BUTPATH, TaK 1 BUCOKY MPOMYCKHY 3AaTHICTb.

I'CITJ, mpencrasneni Ha puc. 1-3 O6ynu onucani moBoto VHDL. IlotiMm mpoektu ¢inbTpiB
Ooymu cunrte3oBaHi s I[TJIIC Xilinx Spartan-6. Pesynbratn cuHTE3y M neIkux (UIBTPIB
HU3BKMX YacTOT mokazaHi B Tabmumi 1. I1lo0 BH3HAYUTH IHTErpajibHYy XapaKTEPUCTHKY
amapaTHuUX BHUTpaT (), BBaXajocs, o s peamsanii 18-po3psgHoro OJI0KYy MHOXKEHHS, IO
BXOJUTH y ckian oioky DSP48, morpiono 200 JIT.

Tabmums 1.
[Tpapamerpu CIX-dinbTpiB
Crpykrypa ¢inberpa AnapatHi BUTpaTH Makcumanena | fo/Q
JIT tpurepis | DSP48 Q | yacrora f¢, MI'y
Cucronivna, puc.l 0 0 33 33 390 11.8
MonepnizoBaHa, puc.2 | 772 1538 17 20,9 146 7.0
Y nockoHazneHa, puc.3 914 1639 17 21,6 267 124

Amnaiiz Tabnuui mokasye, mo cTpykrypa ¢iapTpa Ha 6a3i numie 61okiB DSP48 3abesmeuye
MaKCUMaJIbHy TaKTOBY YacTOTy HIMCKPETH3allii fc 3a paxyHOK 301JIbIICHHX EKBIBAJICHTHHX
amapaTHUX BUTpaT (. MojepHi30BaHa CTPYKTypa Ma€ MEHIY BEJIWYHHY fc, ajie 3abe3mneuye
MiHIMQJIBHUI 00cAT amapaTHOTO 3a0e3nedeHHs. | yockoHameHa CTpyKTypa Ma€e MEHII arapaTHi
BUTPATH HIXK CUCTOJIIYHA, a 11 BIAHOLIEHHS MPOITYCKHOI 3/JaTHOCTI 10 anapaTypHUX BUTPAT f/Q
JIOCSTa€ MAKCHMYMY.

BucHOBKH. 3arponoOHOBAaHO MOJEPHI3aIlil0 Ta YIOCKOHAJICHHS CHUCTONIYHOI CTPYKTYpH
nrdpoBoro (inbTpa 31 CKIHUEHHOIO IMITYJILCHOIO XapaKTEPUCTHKOIO, sika peainizoaHa y [TJIIC.
MonepHizalis IoJsrae B TOMY, 110 B CTPYKTYpPi BUKOPHCTOBYIOTHCS SIK YHIBEpCaIbHI anmapaTHi
0JIOKM MHOXXCHHS, TaK 1 OJIOKM MOH)KCHHS Ha KOE(]IIIE€HT, SKi peari30BaHl HA OCHOBI CyMaToOpiB.
HoBa crpykrypa ¢inbpiB 3abe3neuye sSK ONTUMAIbHE BiJHOIICHHS MPOIYCKHOI 3JaTHOCTI N0
armapaTHUX BHUTpPAT, TaK 1 30LIBIIECHHS MaKCUMAJIbHOTO TIOPANKY peanti3oBaHuX (DUIBTPIB.
Opnepxani QineTpu omucani MoBoro VHDL i1 MaroTe mpubau3HO y[BiUlI MEHINE YMCIO OJIOKIB
MHOKEHHS, HIK QUIBTPH, K1 3reHepoBaHi mporpammoro Xilinx Coregen.

78

CnucoK BUKOPUCTAHMX JIKepeJT

. Spartan-6 FPGA DSP48A1 Slice User Guide. UG389 (v1.2) / Xilinx Inc. /
May 29, 2014. —46 p.

. Meyer-Baese. U. Digital Signal Processing with Field Programmable Gate
Arrays. Springer, 4-th Ed. 2014. — 930 p.

. Sergyienko A. FIR filter soft core generator / A. Sergyienko, V. Vasylienko,
O. Maslennikow // Prace IV Konferencji Krajowej ,,Reprogramowalne uklady
cyfrowe”, RUC’2001. —Szczecin, Poland. 2001. —P. 167-172.

. Kumm M. Multiple Constant Multiplication Optimizations for Field

Programmable Gate Arrays. Springer, 2016. — 206 p.

79

Vinogradov Ju. N.! Sergiyenko A. M.! Quadir S§. H.!
TComputer Engineering Department of NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Minimized FIR Filter Design Implemented in FPGA

Introduction. The field programmable gate array (FPGA) is widely used for the high-speed digital
signal processing. FPGA architecture is adapted for the effective finite impulse response (FIR)
filter implementation. For this purpose the Xilinx FPGAs contain the DSP48 blocks, each of them
is intended for a single filter stage calculation in the pipelined mode. But the filter length is limited
by the FPGA volume and by the number of the DSP48 blocks in a single column of the chip. So,
the length of the FIR filter which is generated by the Xilinx Coregen tool for the Spartan-6 devices
is limited by the numbers from 8 to 48 [1]. And the more this number the more expensive the chip
is. Besides, when FPGA is used only for the filtering, then the configured hardware like look-up
tables (LUTs), registers is underloaded and is used ineffectively.

There are many methods of the multiplier-less FIR filter implementation. The most of them use
the constant coefficient multipliers (CCMs), which have the minimized hardware volume. They
are widely used in FPGAs for decades. But no one of them uses the hardware multipliers like
the DSP48 block [2-4]. In the presentation, a new method of the FIR filter design is proposed
which utilizes both hardware multipliers and CCMs. Tt provides both the increased filter length
and minimized hardware providing the high throughput.

Filter structure. The FIR filter, which is intended for the Xilinx FPGA implementation, has the
well-known systolic structure [1]. The synchronous dataflow graph (SDTF) of the k-staged systolic
structure is illustrated by Fig. 1,a, and its symbol is shown in Fig. 1.b. Here z;, y; are the input
and output data, the circle, triangle, and bar represent addition, multiplication to the coefficient
and delay to a single clock cycle, respectively. This graph is mapped to the respective structure
by the one-to-one mapping providing the high pipelined computations with the maximized clock
frequency. So, such SDF represents the filter structure as well.

The FIR filter coeflicient set is
named as an impulse response H(n). X; Xi-2k-1 X, Yokt
It is proposed to implement the FIR — >
filter from three units, which calculate H(k)
the convolution to the left Hi(ny), —] >
middle Ha(n,,), and right Hs(n,) Po _'<_B_I_>(—B_ P
subsets of the coefficients, n = n; g B)
+ N + n,. The respective SDF is Figure 1. SDF of the systolic FIR filter (a), and its symbol
shown in Fig.2. (h)

In the most of cases, the bit width
of the coefficients H,(n;), and Hz(n,) is much less, than the bit width of the coefficients Ha(ny,).
Therefore, it is favorably to implement the filter part, marked in Fig. 2 as Hs(n,,), using the DSP48
blocks, and others parts using CCMs.In the last situation, the filter stage can be implemented as
the small tree of adders with the small bit width. Such a tree can have both high throughput and
small hardware volume.

Due to this filter schema, the third filter unit must

Yik

have the increased adder bit width to preserve the low xi’ L, N E‘—Zk—]
level of the truncation errors. This can decrease the filter i | |)
performance dramatically, because the long adder, based 0_’ 1(m) N e A _byu
on LUTs, is much slower than the respective adder in 2]

the DSP48 block. To minimize this disadvantage, the Figure 2. Modified SDF

improved SDF is proposed, which is illustrated by Fig.3.

The proposed filter contains two parts Hq(n;), and H3(n,.) with the equal bit width, which is much
less than the bit width of the DSP48 unit. The filter result is formed in the separate adder with
the increased bit width. As a result, the designed FIR filter contains n,, DSP48 blocks, which can

be much less than the filter length n.

Experimental results. The design of FIR filters of
the order of n = 35 for the input, output data, and
coefficient bit width 16 was considered. The CCMs

v

H, Ha(n, Hi(n, -

were built using the canonical signed digit coefficient 0_’ i) 0, one) | (o) P

representation [2-4], and the adder tree. The FIR i R
filter design experience shows that about a half of n—l_ o ey
e -

the 16-bit filter coefficients can be represented in the
canonical signed digit form using only four nonzero Figure 3. Improved SDF

digits. For example, the filter stage, which performs

the multiplication of z to 0.000000101101110, and addition of the sum of products p; from the
previous filter stage, looks like the following:

Piv1 = pi + 2= 0p_9-8z _9-1llp _o9-l,

The modern FPGAs, which have the six input LUTs, support the design of the high-speed three
input adders. So, such CCM with the addition of the sum of products is implemented in the two
staged pipelined network of LUTs providing the maximum clock frequency. Under these conditions,
the first and third filter units (see Fig. 2, 3) have both minimized hardware volume and high
throughput.

The DFGs in Fig 1-3 were described by the VHDL language. Then, the filter projects were
synthesized for the Xilinx Spartan-6 FPGA. The results of the synthesis for some low pass filter of
the 33-rd order are shown in Table 1. To estimate the whole hardware volume (), it was considered,
that an 18-bit multiplier in the FPGA requires 200 equivalent LUTs for its implementation.

The Table 1 analysis shows that
the filter structure based on DSP48 Table 1. Parameters of the FIR filters implemented in

blocks, provides the maximum sam- Xilinx Spartan-6 FPGA

pling clock frequency fc at the cost Structure |LUTs | Registers |DSP48| @ |fc, MHz | fc /Q
of the hardware volume. The sec-

ond combined structure gives lower |Systolic 0 0 33 | 33 390 | 11.8
value fer, but it provides much less Modified 772 1538 17 1209 146 7.0
hardware volume and the better ra- |Improved 914 1639 17 |21.6| 267 12.4
tio of throughput to hardware volume

fe/Q-

Conclusion. A method of the systolic type FIR filter design for FPGA is proposed, which utilizes
both built-in multipliers and application specific constant coefficient multipliers. The method provides
both the increased filter length and minimized hardware volume providing the high throughput.
The derived filter structure has approximately in two times fewer hardware multipliers than the
usual filter generated by the tool like Xilinx Coregen.The resulting filter is represented by the VHDL
program and therefore, it can be effectively implemented in FPGA of any type and manufacturer.

References. 1. "Spartan-6 FPGA DSP48A1 Slice User Guide". UG389, v1.2, Xilinx Inc. May 29,
2014. 46 p. 2. U. Meyer-Baese, "Digital Signal Processing with Field Programmable Gate Arrays".
Springer, 4-th Ed. 2014, 930 p. 3. A. Sergvienko, V. Vasylienko, O. Maslennikow, "FIR filter
soft core generator Prace IV Konferencji Krajowej ,Reprogramowalne uklady eyfrowe”, RUC2001.
Szcezecin, Poland. 2001. pp. 167-172. 4. M. Kumm, "Multiple Constant Multiplication Optimizations
for Field Programmable Gate Arrays". Springer, 2016. 206 p.

