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ABSTRACT 

 

Method of increasing the efficiency of devices for the calculation of 

elementary functions 

Relevance of the topic. The field programmable gate array (FPGA) is a 

modern element basis that is effectively utilized for the high performance 

implementation of application-specific algorithms with the fixed-point numbers. 

Very often, such algorithms encounter the calculation of elementary functions. 

But the suppliers of the FPGA CAD tools do not provide the developers with 

ready-made high-performance intellectual property cores for calculating the 

elementary functions, and the providers of such modules distribute them at a high 

price (about a thousand dollars). In addition, there are no modules among them 

that can calculate several different functions. Consequently, there are shortages in 

the design of devices for the calculation of elementary functions in FPGA and 

they need to be improved. 

The purpose of the work: the creation of a method for designing the 

application specific modules for the elementary function calculation. 

The object of the research is the computational processes in high-

performance application-specific processors. 

The subject of the research is design of pipelined processors for the 

elementary function calculations. 

The objective is the creation of a method for designing the high-

performance application-specfic processors for the calculation of elementary 

functions in FPGA. 

 The scientific novelty is as follows: 

1. An algorithm and a structure of the square root calculator are improved, 

so this function is calculated three times faster with low hardware costs. 
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2. A method for increasing the efficiency of devices for calculating the 

elementary functions is developed, which is based on the combination of several 

algorithms for calculating such functions, which makes it possible to build high-

performance multifunction devices. 

The practical value of the results obtained in the work is that the modules 

for calculating the elementary functions, which are developed by the proposed 

method, are ready for use in modern projects of high-performance systems on 

FPGAs, which are used for digital signal processing, machine learning, image 

recognition, and others like that. 

The materials of the thesis were used in the research work "Advanced 

methods and tools of designing the configurable computers on the basis of 

mapping the spatial synchronous data flow graphs into the structure for FPGA", 

.  �+ .047U005087, /��0 -300 / 2017, which is held at NTUU “Igor Sikorsky’s 

KPI”.  

Approbation of the work. Substantive provisions and results of the work 

were presented and discussed at a 20-th International Conference «System 

Analysis and Information Technology» SAIT 2018 May 21 – 24, 2018, Kyiv, and 

International Conference on Security, Fault Tolerance, Intelligence 

(ICSFTI2018), May 10 – 12, 2018, Kyiv. 

The structure and scope of work. Master's thesis consists of an 

introduction, three sections and conclusions. 

The introduction gives a general description of the work, assesses the 

current state of the problem, substantiates the relevance of the research direction, 

formulates the purpose and objectives of the research, shows the scientific novelty 

of the obtained results and the practical value of the work, provides information 

on the approbation of the results and their implementation. 



7 
 

In the first section, the features of the architecture of modern FPGA have 

been investigated, algorithms for calculation of elementary functions and their 

known realizations in parallel computing systems and FPGAs are analyzed. 

In the second section, an algorithm and a square root function calculator 

are improved, and a method for increasing the efficiency of devices to perform the 

elementary functions is developed. 

In the third section, the efficiency of using the proposed square root 

calculation algorithm and the method of increasing the efficiency of devices for 

performing the elementary functions are investigated. 

The conclusions show the results of the work. 

The work is presented in 68 pages, contains a reference to the list of used 

literature and addendums. 

Key words: FPGA, square root, elementary function, pipeline, SDF 

graph. 
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INTRODUCTION 

 

Nowadays, when gadgets and computers are present in everyday aspect of 

our life, more advanced algorithms for shorter computational timing are 

tremendously important. Algebraic functions, for instance square root, logarithm, 

as well as trigonometric functions embrace the main source of algorithm 

implementation in domains like digital signal processing (DSP), wireless 

communication, graphic processing units (GPU), image processing, 

communication systems and medical robotics. 

The performance of only software implementations of these algorithms is 

not satisfactory all the time, thus in order to improve the functionality, a 

translation of the software into hardware is desired. 

The square root x and other elementary functions ares important in the 

scientific calculations, digital signal and image processing [1]. The artificial 

neural nets need these functions as well [2]. At present, the field programmable 

gate arrays (FPGAs) are expanded for solving the problems, where the elementary 

function calculations are of demand. There are different IP cores of the 

elementary function calculation, which are proposed by the FPGA manufacturers 

and third-party companies [3]. But these IP cores were designed decades ago and 

they usually don't take into account the features of the new FPGA generations. 

Therefore, they need improvements.  

This thesis proposes the method of the design of the application specific 

hardware design, which is intended for the high speed elementary function 

calculations. The use of FPGAs to implement these functions allows us to 

increase the speed, reduce the power consumption. Moreover, the modernizing 

the elementary function blocks can be implemented in the device in use by the 

way of the reconfiguration of FPGA.  
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The object of the research is the high-performance application-specific 

processors. 

The subject of the research is the structure of pipelined processors for 

the elementary function calculations. 

The objective is the creation of a method for designing the high-

performance application-specfic processors for the calculation of elementary 

functions in FPGA. 

To achieve the objective, the following tasks are solved in the thesis: 

1. The methods of the mathematical modeling of the wave propagation in 

solids, and their comuter implementation are analysed. 

2. The method of the waveguide modeling is analysed and its application 

to the modeling the solids is investigated. 

3. The method of hardware simulation of the propagation of ultrasonic 

waves in a solid based on the waveguide models is developed. 

4. The method of hardware simulation the propagation of ultrasonic waves 

is adapted for its implementation in modern FPGAs. 

5. The proposed method effectiveness is proven by modeling of the wave 

propagations in the solid rod. 

The research methods used in the work are based on the theory of 

graphs, algorithm theory, modeling theory, combinatorial optimization methods, 

as well as theorems, assertions and implications that are proved in the dissertation. 

The main provisions and theoretical evaluations are confirmed by the results of 

simulation on a computer, as well as by tests of a number of experimental samples 

of specialized calculators. 

Experimental verification of scientific positions, proposals and results was 

carried out by designing computing tools by the developed method using their 

description in standard VHDL language with their further simulation in the 

simulator, compiling in the circuit and configuring the Xilinx FPGA. 
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The scientific novelty is as follows: 

1. An algorithm and a structure of the square root calculator are improved, 

so this function is calculated three times faster with low hardware costs. 

2. A method for increasing the efficiency of devices for calculating the 

elementary functions is developed, which is based on the combination of several 

algorithms for calculating such functions, which makes it possible to build high-

performance multifunction devices. 

The practical value of the results obtained in the work is that the modules 

for calculating the elementary functions, which are developed by the proposed 

method, are ready for use in modern projects of high-performance systems on 

FPGAs, which are used for digital signal processing, machine learning, image 

recognition, and others like that. 

The materials of the thesis were used in the research work "Advanced 

methods and tools of designing the configurable computers on the basis of 

mapping the spatial synchronous data flow graphs into the structure for FPGA", 

.  �+ .047U005087, /��0 -300 / 2017, which is held at NTUU “Igor Sikorsky’s 

KPI”.  

Approbation of the work. Substantive provisions and results of the work 

were presented and discussed at a 20-th International Conference «System 

Analysis and Information Technology» SAIT 2018 May 21 – 24, 2018, Kyiv, and 

International Conference on Security, Fault Tolerance, Intelligence 

(ICSFTI2018), May 10 – 12, 2018, Kyiv. 

Publications of the work 

The main features of these investigations are published in two works. In 

the work [41] the author has proposed an approach, which provides the hardware 

minimization. In the work [5] the author has proposed the way to speed-up the 

calculations. 
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The structure and scope of the work  

Master's thesis consists of an introduction, three sections and conclusions. 

The introduction gives a general description of the work, assesses the 

current state of the problem, substantiates the relevance of the research direction, 

formulates the purpose and objectives of the research, shows the scientific novelty 

of the obtained results and the practical value of the work, provides information 

on the approbation of the results and their implementation. 

In the first section, the features of the architecture of modern FPGA have 

been investigated, algorithms for calculation of elementary functions and their 

known realizations in parallel computing systems and FPGAs are analyzed. 

In the second section, an algorithm and a square root function calculator 

are improved, and a method for increasing the efficiency of devices to perform the 

elementary functions is developed. 

In the third section, the efficiency of using the proposed square root 

calculation algorithm and the method of increasing the efficiency of devices for 

performing the elementary functions are investigated. 

The conclusions show the results of the work. 

The work is presented in 70 pages, contains a reference to the list of used 

literature and appendicies. 
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1 METHODS AND TOOLS FOR ELEMENTARY FUNCTION 

CALCULATIONS 

1.1 Basics of the elementary function calculations 

 
1.1.1 Preliminary conditions 

Usually the elementary functions in computer engineering are the most 

commonly used mathematical functions: sin, cos, tan, sin�1 , cos�1 , tan�1 , sinh, 

cosh, tanh, sinh�1 , cosh�1 , tanh�1 , exponentials, and logarithms. From a 

mathematical point of view, 1/x is an elementary function as well [6,7]. 

Theoretically, the elementary functions are not much harder to compute 

than quotients. It was in [8] that these functions are equivalent to division with 

respect to the Boolean circuit depth. This means that a circuit can output n digits 

of a sine, cosine, or logarithm in a time proportional to log n. But for practical 

implementations, it is quite different, and much care is necessary if we want fast 

and accurate elementary functions. 

There are many works devoted to the elementary function algorithms 

[7,9,10]. But at times those functions were implemented in software only. Since 

the Intel 8087 �oating-point unit, elementary functions have sometimes been 

implemented, at least partially, in hardware, a fact that induces serious 

algorithmic changes. Furthermore, the emergence of high-quality arithmetic 

standards, such as the IEEE-754 standard for �oating-point arithmetic, have 

accustomed users to very accurate results. So, the investigations of the elementary 

function implementation in hardware is of great demand. 

Current circuit designers must build algorithms and architectures that are 

guaranteed to be much more accurate and effective. Among the various properties 

that are desirable, when the function is implemented in FPGA, one can cite: 

• speed; 

• accuracy; 
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• reasonable amount of resource (ROM/RAM, LUTs, registers, power 

consumptions); 

• preservation of important mathematical properties such as monotonicity, 

and symmetry; ; 

• preservation of the direction of rounding; 

�  range limits, for example, 1.0 £sin(x) £ 1.0. [6]. 

 

1.1.2 Algoritm classification 

The hardware approximation algorithms can be classi�ed into four broad 

categories. 

The first category is the polynomial approximation. This category is a 

diverse category. The general description of this class is as follows: the interval of 

the argument is divided into a number of sub-intervals. For each sub-interval the 

elementary function is approximated by a polynomial of a suitable degree. The 

coefficients of such polynomials are stored in a table [10].  

The second category is called functional recurrence. Algorithms that 

belong to this category employ addition, subtraction and full multiplication 

operations as well as tables for the initial approximation. In this class of 

algorithms the algorithm starts by a given initial approximation and it is feededt to 

a polynomial in order to obtain a better approximation. This process ise repeated a 

number of times until the desired precision is reached. These algorithms converge 

quadratically or better. Examples from this category include Newton-Raphson for 

square root [10]. 

The third category is called digit recurrence techniques, or shift-and-add 

algorithms. The algorithms that belong to this category are linearly convergent 

and they employ addition, subtraction, shift and single digit multiplication 

operations. Example of such algorithms is CORDIC [11, 12]  
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The fourth category is the rational approximation algorithms. In this 

category the given interval of the argument is divided into a number of sub-

intervals. For each sub-interval the given function is approximate by a rational 

function. A rational function is y a polynomial divided by another polynomial. It 

employs division operation in addition to tables, addition and multiplication 

operations, which are used in the polynomial approximation. The rational 

approximation is rather costly in hardware due to the fact that it uses division 

[10]. 

Range reduction is the �rst step in elementary functions computation. It 

aims to transform the argument into another argument that lies in a small interval. 

This approachnis often used before the calculating the function according to one 

of the general method mentioned above. 

Let us consider the algorithms of these methods more precisely in order to 

select among them the best candidates for the implementation in FPGA. 

 

1.2 Polynomial approximation 

 

The polynomial approximation is the representation of an algorithm of the 

function calculation as a polynomial. A polynomial is an expression constructed 

from one or more variables and constants using the operations addition, 

subtraction, multiplication, and raising to the power of integer numbers. Examples 

of polynomial functions are: x3 –6x2 + 10 and x3y2 + 15x2y2 – 6x. The first is a 

univariate polynomial, while the second is a multivariate polynomial.  

The problem of the polynomial approximation has two parts. The first one 

is the finding out the coefficients, the second one is selection of the effective 

algorithm and structure for the polynomial calculating.  

Three base techniques for computing the coefficients of the approximating 

polynomials are Taylor approximation, minimax approximation and interpolation. 
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Taylor approximation gives analytical formulas for the coefficients and 

the approximation error. It is useful for some algorithms namely the Bipartite, 

Multipartite, Powering algorithm and functional recurrence. 

Minimax approximation is a numerical technique that gives the values of 

the coefficients and the approximation error numerically. It has the advantage that 

it gives the lowest polynomial order for the same maximum approximation error 

[10]. 

Interpolation is a family of techniques. Some techniques use values of the 

given function in order to compute the coefficients while others use values of the 

function and its higher derivatives to compute the coefficients. Interpolation can 

be useful to reduce the size of the coefficients table at the expense of more 

complexity and delay and that is by storing the values of the function instead of 

the coefficients and computing the coefficients in hardware on the �y [13]. 

Polynomial expressions are computational intensive as they contain a 

number of additions and multiplications which are expensive operations. These 

calculations take many clock cycles to compute on a processor. When 

implemented in an ASIC, or FPGA they occupy a large area and consume a lot of 

power in addition to increasing clock periods. It is, therefore, imperative to reduce 

the number of operations in polynomial expressions as much as possible. These 

reductions can be achieved by factoring these expressions and finding common 

subexpressions among multiple-polynomial expressions. Unfortunately, not many 

tools are available to perform this, especially for multiple-variable expressions. 

The problem of optimization of polynomial expressions can be stated as 

follows: given a set of polynomial expressions of any degree and consisting of 

any number of variables, find an implementation that has the least number of 

operations (additions, subtractions, and multiplications). 

The Horner method is the default method of evaluating Taylor series 

approximations to trigonometric functions in many libraries such as the GNU 
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CLibrary [14]. For example, consider the following expression for sin (x) which 

has been approximated to four terms: 

sin (x) = x – 
x3

3! + 
x5

5! – 
x7

7! . 

Assuming that the terms 1/3!, 1/5!, and 1/7! are precomputed, the naive 

evaluation of this polynomial representation requires 3 additions/subtractions, 12 

variable multiplications, and 3 constant multiplications. 

The Horner form of this expression can be written as: 

sin (x) = x 
�
�
�

�
�
�

1 + x2

�
�
�

�
�
�

–
 1
3! + x2 

�
�
�

�
�
�1

5! – 
x2

7! .  . 

Most algorithms hand-optimize the resulting Horner form to remove the 

redundant computations of x2. The expression is then rewritten as: 

X = x2; 

sin (x) = x 
�
�
�

�
�
�

1 + X
�
�
�

�
�
�

–
 1
3! + X 

�
�
�

�
�
�1

5! – 
X
7! .  .     (1.1) 

The Horner form is a good representation for polynomials with single 

variables, but does not provide good results for multivariate polynomials. 

Furthermore, it cannot find common subexpressions automatically to further 

reduce the number of operations. 

Consider the terms 1/3!, 1/5!, and 1/7! are precomputed and denoted as S3, 

S5, and S7, respectively. Then, the four-term Taylor expansion of sin (x): 

d1 = x × x, 
d2 = S5 – S7 × d1, 
d3 = d2 × d1 – S3,      (1.2) 
d4 = d3 × d1 + 1, 
sin (x) = x × d4. 

Here, only three additions/subtractions, four variable multiplications, and 

one constant multiplication are needed. 

Traditional optimization methods have been designed for general purpose 

applications and do not do a good job of optimizing polynomial expressions. 

Some of the early work in code generation for arithmetic expressions [15, 16] 
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proposed algorithms to minimize the number of program steps and the number of 

storage references given a fixed number of registers. In [17] these techniques 

were extended to handle expressions with common subexpressions. Some work 

was done to optimize code having arithmetic expressions using factorization 

techniques [18]. The technique presented in [18] was very limited in that it could 

only optimize expressions which contained one type of associative and/or 

commutative operator at a time. As a result it could not optimize general 

polynomial expressions which have multiplication, addition, and subtraction 

operations. 

In many times the elementary function argument is divided into a set of 

intervals, and the function is approximated separately on each of them. Then, the 

small order polynomial is fit for such approximation. A special kind of 

approximation here is the table based approximation. A set of special algorithms 

are found for it.  

The powering algorithm [19] which is a �rst order algorithm that employs 

a table, a multiplier and a special hardware for operand modi�cation. This 

algorithm can be used for single precision results or as an initial approximation 

for the functional recurrence algorithms. Table and add algorithms can be 

considered a polynomial based approximation. These algorithms are �rst order 

polynomial approximation in which the multiplication is avoided by using tables. 

Examples of table add techniques include the work in [20] Bipartite [21,22], 

Tripartite [23] and Multipartite [24, 25, 26]. Examples of other work in 

polynomial approximation include [27, 28]. The convergence rate of polynomial 

approximation algorithms is function-dependent and it also depends to a great 

extent on the range of the given argument and on the number of the sub-intervals 

that we employ. 

It is noteworthy that computing the polynomial expressions, even in their 

optimized form, is expensive in terms of hardware, cycle time, and power 
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consumption. If the arguments to these functions are known beforehand, the 

functions can be precomputed and stored in lookup tables in memory. However, 

in cases where these arguments are not known or the memory size is limited, 

these expressions must be computed during the execution of the application that 

uses them. 

1.3 Functional recurrence algorithms 

As it is mentioned above, the functional recurrence algorithm starts by a 

given initial approximation and it is feeded to a polynomial in order to obtain a 

better approximation. This process ise repeated a number of times until the 

desired precision is reached. The prominent example of such algorithm is the 

Newton’s method, hich is a major tool in arbitrary-precision arithmetic. 

Suppose that some function f has a zero x if f(x)= 0. Then, consider f(x0) is 

an initial approximation of this point, and that f(x) has two continuous derivatives 

in the region of interest. From the Taylor’s theorem: 

f(x) = f(x0) + (x – x0) f ‘(x0) + 
(x – x0)

2

2  f “(x0), 

for some point x in an interval including {8, x0}. Consider f(8) = 0, then we see 

that 

x1 = x0 � f(x0)/f ‘(x0) 

is an approximation to 8. If x0 is suf�ciently close to 8, we have  

|x1 � 8| �  |x0 � 8|/2 < 1. 

This motivates the de�nition of Newton’s method as the iteration 

xj+1 = xj � 
f(xj)

 f ‘(xj)
 , j = 0, 1, …  

The error of such approximation of x is en = xn – x. The fact is, that the 

error after the next iteration is  

|en+1| �  K|en|
2, 

i.e., the order of the algorithm convergention is 2. 
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Consider applying Newton’s method to the function 

f(x) = y � x� m, 

where m is a positive integer constant, and y is a positive constant. Since 

f’ (x) = mx�( m+1), the Newton’s iteration is simpli�ed to 

xj+1 = xj + xj (1 – xm
j  y)/m.     (1.2) 

This iteration converges to 8 = 1/
m

y, which is provided by the initial 

approximation x0. It is surprising that (1.2) does not involve divisions. In 

particular, the reciprocal square roots (the case m = 2) can be computed by this 

method. In this situation, the iteration is obtained:  

xj+1 = xj + xj (1 – x2
jy)/2,      (1.3) 

which converges to 1/y  if x0 is a suf�ciently good approximation. From (1.3) 

the square root function is got as 

y  = y*(1/ y ). 

Here, the method does not involve any divisions. In contrast, if the other 

the Newton’s method is applied to the function f(x) = x2 � y, the Heron’s iteration 

formula is obtained:  

xj+1 = 
1
2 

�
�
�

�
�
�

1 +  
y
xj

 ,      (1.4) 

This requires a division by xj at iteration j, so it is essentially different 

from the iteration (1.3) [28]. 

There are a lot of algorithms of elementary function calculations, which 

are based on the functional recurrence algorithms. Among them are log x, ax, and 

others [10]. The disadvantage of all of them is the computational complexity in 

the number of multiplications and divisions. However, this figure is proportional 

to the log n, where n is the argument bit width.  
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1.4 Digit recurrence algorithms 
 

1.4.1. Introduction 

The digit recurrence techniques, or shift-and-add algorithms often are 

named as the bti-by-bit algorithms because for each iteration, a single exact 

resulting bit is achieved. This feature goes form the fact that these algorithms are 

linearly convergent.  

Among these algorithms the CORDIC algorithm is the well-known. The 

CORDIC algorithm was introduced in 1959 by Volder [29]. In Volder’s version, 

CORDIC makes it possible to perform rotations and to multiply or divide 

numbers using only shift-and-add elementary steps. The results are sine, cosine, 

and arctangent functions.  

In 1971, this algorithm was generalized to compute logarithms, 

exponentials, and square roots [30]. CORDIC is not the fastest way to perform 

multiplications or to compute logarithms and exponentials but, since the same 

algorithm allows the computation of most mathematical functions using very 

simple basic operations, it is attractive for hardware implementations. CORDIC 

has been implemented in many pocket calculators and in arithmetic coprocessors 

such as the Intel 8087 [31]. 

 

1.4.2 CORDIC algorithm substantiatiation 

The Volder’s CORDIC algorithm can be denoted in the C-like language as 

j 0 = j ;  

� 0 = 0,607252935; 

 y0 = 0; 

for(i = 0, i < n, i++) { 

  if (j i ³  0) 

      {  � i+1 = � i -  yi *2
- i ;   
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yi+1 = yi + xi *2
- i ;  

j i+1 = j i -  atan(2- i) ;} 

  else 

      {  � i+1 = � i + yi *2
- i ;   

yi+1 = yi -  xi *2
- i ;  

j i+1 = j i + atan(2- i) ;} 

} 

The results are yn = sin j , � n = cos j , j n = 0. The terms atan2�n  are 

precomputed and stored in ROM. If 

|j 0| < �
k=0

µ
atan 2-k   = 1.783287…,  

then 

limn®µ  

�
�
�

�
�
�

 
xn

yn

j n

  = K 
�
�
�

�
�
�

 
x0 cos j 0 – y0 sin j 0 
 x0  sin j 0 + y0 cos j 0

0
  ,  

where the scale factor K is equal to Õ
j=1

µ  
1 + 2-2j  = 1.64676… . Therefore, to 

compute the sine and the cosine of a number j , the initial data are j 0 = j ; 

� 0 = 0,607252935; y0 = 0, as shown above. 

That algorithm is based on the decomposition of j 0 = j  on the discrete 

base wk = atan 2� k, using the nonrestoring algorithm. The nonrestoring 

algorithm gives a decomposition of j  : 

j  = �
k=0

µ
 dk wk ,    , dk = ± 1. 

The basic idea of the rotation mode of CORDIC is to perform a rotation of 

angle j  as a sequence of elementary rotations of angles dk wk. The algorithm starts 
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from (x0,y0), and obtains the point (xk+1,yk+1) from the point (xk,yk) by a rotation of 

angle dk wk. This gives: 

�
�
�

�
�
�

 
xk+1

yk+1
  = 

�
�
�

�
�
�cos(dk wk) –  sin (dk wk) 

 sin (dk wk) + cos(dk wk)
 
�
�
�

�
�
�

 
xk

yk
 . 

This can be simpli�ed as: 

�
�
�

�
�
�

 
xk+1

yk+1
  = cos(wk) 

�
�
�

�
�
�1 – dk 2

-k 
 
dk 2

-k + 1
  

�
�
�

�
�
�

 
xk

yk
 . 

Since, cos(wk) = 1/ 1 + 2-2k  is stable in each iteration, it is taken into 

account as the common factor K. Then, the formula can be simplified to 

 
�
�
�

�
�
�

 
xk+1

yk+1
  = 

�
�
�

�
�
�1 – dk 2

-k 
 
dk 2

-k + 1
  

�
�
�

�
�
�

 
xk

yk
 , 

which is the basic CORDIC step, in the trigonometric type of iteration: it is no 

longer a rotation of angle wk, but a similarity, or a “rotation-extension” of 

angle wk and factor 1/cos wk.  

The choice of dk can be slightly simpli�ed. If the angles are defined as 

j 0 = j ; j i+1 = j i – dk wk ; dk = 1 if j i > 0, and –1 otherwise. So, the algorithm is 

got, which is mentioned above. 

The feature of the algorithm is that it performs only shifts (multiplies 

by 2–k) and additions (subtractions) [6].  

 

1.4.3 CORDIC-like algorithms 

Similarly, to the described above algorithm, the rest of the CORDIC-

like algorithms are got. Below some of them are represented, which are 

selected in [7,10]. 

Algorithm for the functions j  = arctg(y/x) and �  = k x2 + y2   by 

-p  £ j  < p, k =1.64676025812.  

j 1 = 0; � 0 =x, y0 = y. 

for(i = 0, i < n, i++) { 

  if (xi ³  0) 
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      {  � i+1 = � i -  yi *2
- i ;  

 yi+1 = yi + xi *2
- i ;  

j i+1 = j i -  atan(2- i) ;} 

  else 

      {  � i+1 = � i + yi *2
- i ;  

 yi+1 = yi -  xi *2
- i ;  

j i+1 = j i + atan(2- i) ;} 

} 

The results are yn = 0, � n = k x2 + y2  , j �  = arctg(y/x). 

Algorithm for the functions sh j , ch j .  

 y0 = y, x0 = 1.2051366, j 0 = j . 

i =0; j = 0; 

while (i <=n ){ 

if ( j i ³  0){ 

     yi+1 = yi + xi*2
–j;  

xi+1 = xi + yi*2
–j;  

j i+1 = j i – arth(2–j) ;  

} 

else 

{      yi+1 = yi – xi*2
–j;  

xi+1 = xi – yi*2
–j;  

j i+1 = j i + arth(2–j) ;  

} 

if ( i = 4 ) j = 4; 

else if ( i = 13) j =13; 

else j++;  

i++ ; 

} 
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The results are xn = ch j , yn = sh j ,  j n = 0. 

Algorithm for the functions j  = arth(y/x), M = k x2 – y2  , k = 

0.82978162.  

 y0 = y, x0 = x, j 0 = 0. 

i =0; j = 0; 

while (i <=n ){ 

if ( j i ³  0){ 

     yi+1 = yi – xi*2
–j;  

 xi+1 = xi – yi*2
–j;  

j i+1 = j i + arth(2–j) ;  

} 

else 

{     yi+1 = yi + xi*2
–j;  

xi+1 = xi + yi*2
–j;  

j i+1 = j i – arth(2–j) ;  

} 

if ( i = 4 ) j = 4; 

else if ( i = 13) j =13; 

else j++;  

i++ ; 

} 

The results are xn = k x2 – y2  , j n = arth(y/x). 

Algorithm for the function y = ex. 0 £ x<1. 

 y0 = 1, x0 = x. 

i =0; j = 0; 

while (i <=n ){ 

if (xi ³  0){ 

     yi+1 = yi + xi*2
–j;  
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 xi+1 = xi – ln(1 + 2–j) ;  

} 

else{ yi+1 = yi – xi*2
–j;  

 xi+1 = xi + ln(1 – 2–j) ;  

} 

if ( i = 4 ) j = 4; 

else if ( i = 13) j =13; 

else j++;  

i++ ; 

} 

The results are yn = ex,  xn =0. 

Algorithm for the function y = ln(x). 0 £ x<1. 

y0 = 0, x0 = x. 

i =0; j = 0; 

while (i <=n ){ 

if (1 – xi < 0){ 

     xi+1 = xi + xi*2
–j;  

 yi+1 = yi – ln(1 + 2–j) ;  

} 

else{ 

     xi+1 = xi – xi*2
–j;  

 yi+1 = yi + ln(1 + 2–j) ;  

} 

if ( i = 4 ) j = 4; 

else if ( i = 13) j =13; 

else j++;  

i++ ; 

} 
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The results are yn = ex,  xn =0. 

Algorithm for the function 2�  by the Brigg’s method. 

� 0 = �  . 

for(i = 1, i <= n, i++) { 

   if (� i < log2 (1 + 2- (i+1)) ) 

       {  � i+1 = � i;  

ai+1 = 0; } 

   else 

       {  � i+1 = � i -  log2 (1 + 2- i) ;  

ai+1 = 1; }  

} 

 y0 = 1; 

for(i = 1, i <= n, i++) { 

    if (ai = 1)  yi+1 = yi*(1 + 2- i); 

} 

The result is yn = 2� . 

 

1.4.4 Square root algorithm 

The well-known CORDIC algorithm of the x  calculations consists in the 

following. It calculates the function atanh(x/y) as it is shown above. But the side 

result is the function K x2 - y2  , and by the substitution x = A + 0.25, y = A –

 0.25, we get xn = K A  [32].  

The disadvantages of this algorithm are additional multiplication to the 

coefficient 1/K » 1.207, and repeating some iterations (4-th and 13-th when n < 

32) for the algorithm convergence. 
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1.5 Hardware implementation of the elementary functions 
 

As it is shown above, both the polynomial expressions and rational 

approximations are computational intensive as they contain a number of 

additions, multiplications, and even divisions, which are expensive operations. 

When implemented in an ASIC, or FPGA they occupy a large area and consume a 

lot of power in addition to increasing clock periods. 

When the function argument is divided into a set of intervals, and the 

small order polynomial is fit for such approximation, then, such is approximation 

often used in hardware [33]. A special kind of approximation here is the table 

based approximation [34].  

The CORDIC algorithms have got the most intensive use in the FPGA 

implementation due to their simplicity. The problems and solutions of these 

algorithm implementations are shown in the popular work [35]. 

 

1.6 Preliminary conclusions 
 

In this section, the algorithms for the elementary function calculation are 

reviewed. Among them are polynomial approximation, functional recurrence, and 

digit recurrence algorithms. 

It is found out that the hardware implementation of the elementary 

function computations is not investigated at the proper level.  

It is noted, that the algorithms, which utilize only additions, shifts, table 

functions, and small number of multiplications are the best candidats for the 

FPGA implementations. Among them the CORDIC like algorithms play the 

leading role. 

In the next section, the theoretical basics of the new methods are 

developed, which satisfy the mentioned above features.  
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2 DESIGN OF THE PROCESSING UNITS FOR THE ELEMENTARY 
FUNCTION CALCULATION  

 

2.1 FPGA as the computing environment for elementary functions 

 

2.1.1 FPGA architecture 

Below, the properties of the Xilinx FPGAs are considered, because this 

company is considered as the larger FPGA supplier. But the proposed reasons are 

true for FPGAs of other companies as well. 

In Xilinx FPGAs, the basic building blocks are Configurable Logic Blocks 

(CLBs). In Spartan-6 devices, the CLBs are made up of two logic slices which are 

independently connected to the general routing on the FPGA and to a carry chain 

structure [36]. There are two types of logic slices in Spartan-6, SLICEL and 

SLICEM. SLICEL can be seen as the basic logic slice type, and contains four 6-

input look-up-tables (LUTs), together with four D-type flip-flops(DFFs) and 

multiplexers for routing purposes. The LUTs can implement any 6-input logic 

function. SLICEM slices contain shift register functionality and provide the 

option of using the LUTs as distributed user RAM, as well as the basic resources 

described for SLICEL slices. When used as distributed RAM, LUTs are 

configured as memories for user data storage.  

 Other resources on the FPGA include Digital Clock Managers (DCM), 

Phase-Locked Loops (PLL), Block RAMs, DSP blocks, I/O blocks (IOBs) and 

buffers for connecting package pins. The FPGA resources are connected together 

by a configurable routing matrix. A common way of describing FPGAs is as 

configurable logic “islands” connected together by a “sea” of configurable routing 

paths.  

When synthesising an FPGA design, the circuit function defined by the 

designer is mapped to these resources by synthesis tools. This mapping makes up 
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the configuration of the device, and is stored in the SRAM-based configuration 

memory.  

The configuration memory defines the function and operation of all the 

described resources as well as the routing and connections on the FPGA, and can 

be seen as an underlying device definition layer.  

SRAM-based FPGAs are programmed using a binary bit-stream, usually 

stored offchip. For space applications, this off-chip configuration storage is 

usually in the form of EEPROM or Flash. Since the SRAM-based configuration 

memory is volatile, the bit stream has to be reprogrammed onto the FPGA on 

startup and power-cycling.  The programming logic is responsible for writing the 

configuration memory via one of the configuration interfaces.  

Xilinx Spartan-6 FPGAs contain dedicated DSP circuitry, in the form of 

DSP48A slices. Fig. 2.1 shows a simplified view of a DSP48A slice, featuring a 

25x18 multiplier, internal pipelining registers and an arithmetic unit. DSP blocks 

are hard ASIC blocks embedded in the FPGAs array of programmable logic, and 

are much more area efficient compared to soft logic implementations of the same 

functionality [37]. As such, DSP blocks are not defined by an underlying 

configuration layer. The DSP48A is well suited for common DSP operations such 

as multiply-accumulate.  

 

 

. 

Fig.2.1. Simplified view of a DSP48A slice 
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The configuration vectors can be synthesised as constants or as signals 

originating from other parts of the system. DSP slices are arranged on the FPGA 

so that they can be cascaded through the use of fixed carry and shift lines to create 

wider operators than what would fit into a single DSP slice.  

Block RAM, or BRAM, in Spartan-6 are made up of 36 kB SRAM 

memory blocks. These blocks can be cascaded and divided into a number of 

different configurations. For example, a single 36kB block can be used as a 36kx1 

RAM, or as two functionally separate 18kx1 RAMs. It is also possible to create 

wider or larger RAM blocks by cascading BRAMs together. 

So, when choosing an elementary function algorithm, one should keep in 

mind the features of an FPGA structure that has CLB resources, multipliers, 

adders, multiplication blocks, but does not have divisions. For its rapid execution, 

the elementary function should be implemented as a parallel structure that allows 

the pipelinined operations, because this mode is effectively supported in FPGA. 

 

2.1.2 FPGA project optimization critera 

Mentioned above FPGA resources are valuable. Different projects for 

FPGA, which perform the same task, can be distinguished in different folume of 

these resources. Moreover, these projects can be of different throughput. To select 

properly the best project, the effective effectiveness criteria must be selected. 

Below, some considerations to these criteria selection are considered.  

Hardware volume criterium 

In advance, we consider, that the processing unit bit width is equal to n, 

and its hardware is proportional to n in some limitations, and by other equal 

conditions. 

The adder is the main operational unit in FPGA project. Usually, one bit 

of the adder is implemented in a single LUT, not taking into account the proper 

carry propagation network. Besides, each LUT output can be stored to the 
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respective register (trigger), as in is shown in Fig. 2.2,a. Thus, the n-bit adder, and 

the n-bit register have the same complexity, or cost. Then, such register, and 

adder have the relative cost, which is equal to a 1. 

Also it is important to consider that LUT has the mode SRL16, in which it 

operates as a shift register with the programmable length of 1 to 16 bits 

(Fig.2.2,b). 

In the FPGA chip one DSP48 unit takes 60–300 CLB slices, averagely, 

160 CLB slices. For reference, the hardwired 18x18 bit multiplier is implemented 

as an equivalent circuit of 208 CLB slices. Consider a DSP processor configured 

in FPGA with the hardware resources being used effectively. Then all multiplier 

resources should be loaded by the useful computations, and other computations 

are distributed among all adders and multiplexers implemented in FPGA. By this 

condition, one multiplier takes 160 CLB slices. These CLBs are enough to 

implement up to 20 adders and 20 registers of the same bit width. Thus, the 

complexity of the multiplier unit is estimated as the complexity of 20 adders. 

Similarly, the complexity of the Distributed RAM can be estimated. 

 

 

 

Fig. 2.2. Structure of the Xilinx FPGA elements: CLBS (a), SRL16 (b) 
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Table 2.1 shows the complexity of the different elements of the same bit 

width configured in FPGA, which is expressed in the complexity of a single 

register.  

 

Table 2.1. 

Complexity of elements, configured in FPGA 

 

 

Its analysis shows, that multiplying units should be minimized primarly. 

Since in the actual application specific processors the 2–5 input multiplexers 

frequently are used, then the complexity of the multiplexer, which takes to a 

single input, is equal approximately to 0.27. This means that it is necessary to 

mimimize not only the number of registers and adders, but also number of 

multiplexot inputs. 

According to the arguments above, the following complexity criterion of 

the FPGA project is proposed: 
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QS = nR
 + nA

 + 20nM
 + 0.27nx

 ,     (2.1) 

Where nR
 is the register number, including the FIFO number, which are 

mapped into SRL16 primitive, excluding the registers in the DSP48 modules; 

nA
 is the adder number, due to the CLB construction, up to three input 

adder is implemented in a single CLB column, therefore, nA considers 2- or 3-

input adders; 

nM
 is the multiply unit number; 

nx is the number of the multiplexor inputs [38]. 

 

Performance criterion 

The signal delay in the multiplier blocks is approximately equal to 4.5 ns 

for Spartan-6 FPGA. In the two-staged pipelined multiplier the minimum 

multiplication period is equal to 2–2.5 ns. The adder delay is derived from the 

carry signal propagation and therefore, it is proportional to the bit width. Since the 

adder is formed as a line of the locally coupled DLB slices, then its delay is 

stable, and for 16-bit adder is equal to 1.4–2.5 ns. 

It has to taken into considerations, that the proportion of the delay in the 

logic elements is 35–85% of the clock period depending on the degree of the 

placing and routing optimization, and on the complexity of the structure. 

In the practice, the multiplier delay is about twice te adder delay, taking 

into account the interconnection delays. 

The multiplexer network has far less latency then the adder has. It is not 

depended on the word length, and is nearly independed on the input number., but 

depends on the quality of the wiring of the lines, which connect it to the 

neighboring elements. As a result, the connection of the additional multiplexor to 

the adder adds a delay of 0.4–1.6 ns depending on the multiplexor number (1 or 2) 

and routing quality. 

Thus, the proposed performance criterion is: 
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QT = n’A
 + cTM n’M

 + cTX n’x
 ,     (2.2) 

where cTM , cTX are the ratios of the multiplier and multiplexor delay to the 

adder delay, cTM  = 2.2,  cTX = 0.5; 

n’A
 is the adder number;  

n’M
 is the number multipliers; 

n’x is the number of multiplexers, 

staying in the critical path, which connects the output of one register and the input 

of another one.  Here, a single unit delay is estimated as the delay of the adder 

with the average delays in the communication lines.  

Really, QT is equal to the minimum clock period, derived for the current 

placed and routed project, when the results are outputted in each clock cycle. It is 

hold on when the processing unit is implemented as a whole combinational 

network, which performs the elementary function, or if it is wholly pipelined 

network.  

The real processing unit projects can calculate the algorithm for L > 1 

clock cycles not in the pipelined mode. Thus, the expression (2.2) must be 

multiplied by the value of L:  

QT = L (n’A
 + cTM n’M

 + cTX n’x.).     (2.3) 

The integral criterium has to take into account both hardware volume and 

performance criteria. Then, it can be selected as: 

Q = QS × QT       (2.4) 

This criterium shows, how many adders are needed to calculate, say, one 

million of results per second. The better solution has the smaller value of Q, 

because it has smaller hardware volume and/or higher clock frequency, which is 

proportional to the processor performance. 



31 
 

 

2.2 Synchronous dataflow graph for the elementary function calculations 

 

The processing module for the elementary function calculation belongs to 

the datapaths. The modern high-performance computers operate with high clock 

frequencies, thanks to the pipelined mode of data processing and transmission. 

There are various methods for the design and optimization of the pipelined 

datapaths. These methods are based on the structural synthesis of the datapath, 

describing it at the register transfer level and further conversion to the gate level. 

The basis of many methods is a representation of the algorithm as a synchronous 

dataflow graph (SDF) and its transformation [39]. 

Such SDF optimization techniques as retiming, folding, unfolding and 

pipelining, are widely used in microelectronics, and design of digital signal 

processing (DSP) devices [40].  

SDF is isomorphic to the graph of the computer structure, which performs 

a predetermined algorithm. The nodes of such a graph correspond to the 

computing resources like adders, multipliers, processing units (PUs). The edges 

correspond to the communication lines, and the labels on them are mapped to the 

registers. Consequently, SDF is a directed graph G = (V, E), representing the 

computer structure, where v Î  V represent some logic network with delay of d 

time units. The edge e Î  E corresponds to a link and is loaded by w[e] labels, 

which is equal to the depth of the FIFO buffer.   

The minimum duration of the clock cycle � �  is equal to the maximum 

delay of the signal from one register output to the input of another register, i.e., to 

the critical path through the adjacent nodes with delays d, for which w[e] = 0. It 

should be noted, that with such a one-to-one mapping of SDF, the duration of the 

algorithm cycle � �  coincides with the duration of a clock period, i.e., TA = TC, that 

in the other algorithm mapping is not respected. 
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The retiming is such a exchange of the labels in SDF edges, which does 

not affect the algorithm results. Usually it is realized as a sequence of elementary 

retimings, each of them consists of a transferring a group of labels (i.e., registers) 

from the input edges of some node v to its outputs. 

In most cases, it is allowed to increase the latent delay of the algorithm 

and to insert the additional registers on the inputs or outputs of SDF. After 

retiming such modified SDF, the pipelined network with low value of TC is 

achieved. This technique is called as SDF pipelining.  

A cut-set retiming is an effective metod, which implements the pipelining, 

and therefore, is widely used for the pipelined datapath design. The cut-set in an 

SFG is a minimal set of edges, which partitions the SFG into two parts. The 

procedure is based upon two simple rules [1]. 

Rule 1: Delay scaling. All delays D presented on the edges of an original 

SFG may be scaled, i.e., D’  � �  9D, by a single positive integer 9, which is also 

known as the pipelining period of the SFG. Correspondingly, the input and output 

rates also have to be scaled by a factor of �  (with respect to the new time unit D’ ). 

Time scaling does not alter the overall timing of the SFG. 

Rule 2: Delay transfer. Given any cut-set of the SFG, which partitions the 

graph into two components, we can group the edges of the cut-set into inbound 

and outbound, depending upon the direction assigned to the edges. The delay 

transfer rule states that a number of delay registers, say k, may be transferred from 

outbound to inbound edges, or vice versa, without affecting the global system 

timing. 

These rules provide a method of systematically adding, removing and 

distributing delays in a SFG and therefore adding, removing and distributing 

registers throughout a circuit, without changing the function. The cut-set retiming 

procedure is then employed, to cause suf�cient delays to appear on the 
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appropriate SFG edges, so that a number of delays can be removed from the graph 

edges and incorporated into the processing blocks, in order to model pipelining 

within the processors; if the delays are left on the edges, then this represents 

pipelining between the processors.  

SDF has the properties that it can be described by VHDL, and then, be 

translated into the FPGA bit stream [38].  

 

 

2.3 Example of the processing module synthesis 
 

Consider the design of the processing module, which implements the 

equations (1.2). The initial SDF is illustrated by the Fig.2.3,a. After implementing 

a set of cut-set retimings, the SDF becomes balanced, as in Fig.2.3,b, where the 

black bars represent the delay marks. 

The balanced SDF is acyclic SDF, in each route of it the same number of 

delay marks stays. Each delay mark is mapped to a single pipeline register. So, 

the balanced SDF can be described directly in VHDL as follows. 

 process(CLK) begin 

  if RISING_EDGE(CLK) then  

   if RESET ='1' then 

    d11<=0; d12<= 0; d13<= 0; d14<= 0; 

    d15<= 0; d16<= 0; d17<= 0;   

    d1s7<= 0; d1d2<= 0;d1d3<= 0; 

    d2<= 0; d3<= 0; d4<= 0; y<=0; xd<=0; 

   else   

    xd <= X; 

    d11<= xd*xd; 

    d12<= d11; d13<= d12; d14<= d13; 

    d15<= d14; d16<= d15; d17<= d16;  

    d1s7<= d11*S7; 

    d2<= d1s7 + S5; 
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    d1d2<= d13*d2; 

    d3<= d1d2 + S3; 

    d1d3<= d15*d3; 

    d4<= d1d3 + S1; 

    y<= d17*d4; 

   end if; 

  end if; 

 end process;    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.3. SDF for equations (1.2) (a), and SDF after pipelining (b) 

 

x 

d1 S7 S5 

d2 

S3 

d3 

1 

d4 

sin x 

a) b) 

x 

d11 S7 S5 

d2 

S3 

d3 

1=S1 

d4 

Y=sin x 

d13 

d15 

d17 

d1s7 

d1d2 

d1d3 



35 
 

Here, di means the signal, which is delayed to i  clock cycles. All the 

signals and constants except clock signal CLK and reset signal RESET are 

considered to be integers, which have scaled properly. Due to the balanced SDF, 

the derived processing unit operates in the pipelined mode. Its critical path goes 

only through a single multiplier unit. Therefore, according to (2.2) its 

performance is QT = 2.2. The hardware volume (2.1) is QS = 8 + 3 + 20×5 = 111, 

taking into account that the registers d11, d1s7, d1d2, d1d3, y are considered as 

the registers of the DSP48 modules, couples of adjacent registers are implemented 

in SRL16 units.  

The resulting criterium (2.4) is Q = QS × QT = 111×2,2 = 244,2 adders per 

bln. results per second. This figure is rather high, and the most fraction in it (90%) 

is the multiplier costs. This proves the fact that the polynomial approximation is 

bad solution for the elementary function approximation. 

 

 

2.4. Development of the square root computing module 

 

2.4.1 Introduction 

The function of the square root is the very popular elementary function in 

the science computations, DSP, and image processing, and pattern recognition 

[1,41]. Most often it is computed in a floating-point coprocessor, which has a 

certain delay. But the common low-cost microprocessors do not have such 

coprocessors. 

In our time, FPGAs are used to solve the same problems, which require 

the use of the function x. There are IP cores for the function x, which are 

offered by FPGA manufacturers, and other firms that supply the licenses to such 

modules for their configuration in FPGAs [42]. Such a module is able to calculate 

the function of the square root in hardware in a pipelined mode with high speed. 
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These modules have been developed one to two decades ago, and generally, they 

do not take into account the features of new FPGAs that appeared on the market a 

few years ago. So, such modules need to be improved. 

Next, we will consider the square root extraction algorithms with an 

evaluation of their efficiency for 24-bit input data and fixed-point results that can 

be claimed for implementation in the FPGA. This level is acceptable for most 

signal processing algorithms and for the implementation of floating point 

calculations of single accuracy. 

 

2.4.2 Base algorithm selection 

Polynomial  approximation 

The traditional solution for calculating an elementary function is a 

polynomial calculation, which is, for example, a Taylor series, as the next [43]: 

1 + x  = 1 + 
1
2 x -   

1
8 x2 +  

1
16 x

3-   . 

It is impossible to achieve a calculation error less than 0,2% if x �  (0; 1). 

In addition, the algorithm requires the implementation of many multiples. 

Therefore, it is inappropriate for implementation in the FPGA, though, it may be 

agreed on a piecewise polynomial approximation. 

Functional recurrence algorithm 

The following iterative algorithm is based on the Newton-Raffson formula 

(1.3), which does not require dividing operations. Here x0 » 1/  y  is the 

approximate value of the function,   y  » xyn,.  Each subsequent iteration of the 

algorithm approximately doubles the number of correct result bits. Therefore, in 

order to calculate the correct 24-bit result, it is necessary to perform n = 2 

iteration of the algorithm and obtain the value of x0 from the table with a seven-

digit input of the address, that is, volume 27. The algorithm can be executed in one 

iteration, if the table has a 13-bit input, that is, it has a volume of 213 words. 
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The performance QT and hardware QS costs of this algorithm an previous 

one are given in Table 2.2. When calculating QS, it was considered that the 

mentioned tables are implemented in the FPGA as a ROM, which has an 

approximate complexity as the complexity of two and sixty adders, respectively. 

Digit recurrence algorithm 

A well-known CORDIC algorithm for calculating  x   is based on the 

following. In the calculation of the arctgh(x/y) function, the  x   function is the 

by-result of the function xn = K x2 -  y2  , with substitution x = A + 1, y = A -  1, 

we obtain xn = K  A   [44,45]. This algorithm has been successfully implemented 

in many FPGA projects, such as in [46].  

The disadvantages of this algorithm are the need for additional 

multiplication by the factor 1/K » 1,204, as well as the repetition of some 

iterations for the convergence of the algorithm.  

A more constructive algorithm is the Digit recurrence algorithm, which 

aims to obtain the function x [44,47]. It is based on the following relations. For 

each number �  Î  [0,25; 1.0]  we can choose the following coefficients � � Î  [0, 1]  

that 

Õ
i= 1

¥

(1 + ai2- i)2
  = 1.0.     (2.5) 

Therefore,   

1/  x   » Õ
i= 1

m

(1 + ai2- i)  

or  

  x   »  xÕ
i= 1

m

(1 + ai2- i) .         (2.6) 

The implementation of the algorithm consists in repeating a series of 

iterations. During the m-th iteration, the coefficient am is chosen to ensure equality 
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(2.5) and the found coefficient is substituted in (2.6). In order to handle the 

numbers �  Î  [0; 1.0), they can be normalized if (2.6) and (2.7) initially accept i = 

0 and ai = 1 until the first overflow of the product in (2.5). As a result, we get the 

following algorithm [44]. 

y0 = x;  x0 = x; m = 0; f = 0; 

for (i = 0; i < n; i++)  

{ 

        t  = xi + 2- m
*x i; 

        u  = t  + 2- m
*t  ; 

        if   (u ³  1.0)  { 

                 f = 1;  

                 xi+1 = xi ;  

                 yi+1 = yi ; 

              } 

        else { 

                 xi+1 = u;  

                 yi+1 = yi  + 2- m
*y i;       

              } 

        if (f == 1) m++; 

} 

When performing the algorithm initially, when m = 0, the normalization of 

the operand xi  is performed with the correction of the partial result yi. Then 

m = 1, 2,..., n and in the process of convergence, xi goes to one, and yi goes to x  

, where n is the number of binary digits of the result. 

To implement the algorithm in FPGA, it is desirable to perform the 

normalization of x0 and the corresponding correction yn in the normalization block 

based on the shift unit. 
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Table 2.2 

Costs to calculate the functionx   

Algorithm DSP48 modules QS QT 

Polynomial algorithm 5 111 8 

Functional recurrence algorithm, 1 iteration 2 102 7 

Functional recurrence algorithm, 2 iterations 4 86 13 

Digit recurrence algorithm  -  52 50 

Modified digit recurrence algorithm 1 35 17 

 

Then, the algorithm receives an acceleration in the worst case by one 

third. The experience of building a normalization unit shows that its complexity, 

together with the complexity of the denormalization block for 24-bit data, is 

evaluated as the complexity of four adders. In addition, 2n adders for the parallel 

calculation (2.5) and (2.6). Then the algorithm is executed for 2n = 48 clock 

cycles for obtaining the resulting digits (two cycles of calculating t and u for n 

cycles) and two cycles for normalization and denormalization. Thus, the 

algorithm has the complexity of QS = 52 and QT = 50 (in the non-pipelined mode). 

So, the digit recurrence algorithm for calculating  x  is preferable for its 

FPGA implementation. 

 

2.4.3 Modernization of the digit recurrence algorithm 

The largest delay in the digit recurrence algorithm, discussed above, gives 

a double addition of a shifted datum that distinguishes this algorithm from other 

algorithms of this type: 

t  = xi + 2
- m

 xi;          

u  = t  + 2
- m

 t. 

These two steps of addition can be reduced to one: 
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u  = xi + 2
- m

 xi   + 2
- m

 (xi + 2
- m

 xi) = xi + 2
- m+1

xi   + 2
- 2m

 xi. 

Since in modern FPGA the three-input adder is implemented in a single 

layer of six-input LUTs, then such calculation can be performed in one cycle 

without additional time and hardware costs. Considering this feature, for even n 

the algorithm looks like the following. 

 

k = FLO(x);  

y0 = SHR(x,k/2); 

x0 = SHR(x,k/2*2); 

m = 1; 

for (i = 0; i < n; i++)  

{ 

        u  = xi + 2
-m+1

*x i + 2
-2m

*x i; 

        if   (u ³  1.0)  { 

                 xi+1 = xi ;  

                 yi+1 = yi ; 

              } 

        else { 

                 xi+1 = u;  

                 yi+1 = yi  + 2- m
*y i;       

              } 

        m++; 

} 

Y = SHL(yn,k/2); 

 

 

Here, the FLO function determines the number of digits before the most 

significant bit, and the SHL, and SHR functions perform a shift the data to the left 
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and to the right for a given number of bits. Consequently, the number of 

equivalent adders for this algorithm is the same, but the delay of calculations 

decreases to QT = 26 cycles. 

When analyzing the execution of this algorithm, it can be seen that when 

reaching i the limit n/2, then the most significant i – 1 bits of the data xi become 

equal to a one for any x0. Consequently, the most significant bits of yi are the exact 

bits of the result. One can put forward the hypothesis that the least significant bits 

of the result can be calculated by analyzing and processing the difference 1 – xi. 

For example, this could be determined using the table function. 

Let e1 = 1 – xi and ex = x   –  yi  or x   = ex + yi. That is, in order to obtain 

the refined value of the result, the value of the correction ex should be calculated 

and added to the approximate result, and the correction should be calculated 

taking into account the difference e1.  

Due to (2.5) and (2.6), 

e1  = 1 -  xÕ
i= 1

m

(1 + ai2- i)2
 , 

ex = x   –  xÕ
i= 1

m

(1 + ai2- i) . 

Let z =  x  Õ
i= 1

m
(1 + ai2

- i) ,  then 

e1  = 1 -  z2 = (1 + z)(1 -  z); 

and ex =  x   (1 -  z). 

Since z » 1, then   e1  » 2(1 -  z); 

  And    ex » x  e1/2 » yi (1 – xi)/2 .  

So, in order to obtain a refined result, yi (1 – xi)/2 should be added to the 

approximate result yi. To do this, you need to perform an additional subtraction 
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and one multiplication. Moreover, because of the difference in e1 and the 

corrections ex    half of the highest bits are zero, then multiplication can be 

performed at twice the smaller bit. That is, the hardware complexity of such 

multiplication can be estimated by five adders. The resulting modified algorithm 

looks like the following. 

 

k = FLO(x);  

y0 = SHR(x,k/2);  x0 = SHR(x,k/2*2);  

for (i = 0; i < n/2; i++)  

{ 

        u  = xi + 2
-i
*x i + 2

-2i-2
*x i; 

        if   (u ³  1.0)  { 

                 xi+1 = xi ;  

                 yi+1 = yi ; 

             } 

        else { 

                 xi+1 = u;  

                 yi+1 = yi  + 2
-i-1

*y i;       

             } 

 } 

y = yi+1 + yi+1*(1.0 - xi+1)/2; 

y  = SHL(yn, k/2);   

 

Thus, the costs for this algorithm for n = 24 are QS = 35 and QT = 17. 

Thus, due to the modification, the algorithm received an acceleration about 50/17 

» 3 times and has a minimal latent delay among all considered algorithms. 

SDF of a single iteration of this algorithm is shown in Fig. 2.4.  
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Fig.2.4. SDF of a single iteration of the  x  calculating 

The arrow “� ” in it means arithmetical shift right to the given bit number 

of the data in the respective edge, the white bar represents a multiplexor, which 

throughputs left or right edge data depending on the Boolean operand, which 

enters the multiplexor side. Here, this Boolean operand is the sign bit u(n) of the 

intermediate result u. 

This SDF is the base for the IP core description in VHDL, Which is 

shown in Appendix. The development and investigation of this IP core are shown 

in [4,5]. 

As a result, the modernized digit recurrence algorithm is the best of 

considered algorithms for the function  x  calculating for implementing in 

FPGA. 
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2.5 Method of the multifunction processor module design  

 
2.5.1 Background of the method 

A set of algorithms of calculating the elementary function are considered 

above. Among them, the digit recurrence algorithms have the features of the 

minimum hardware volume for their FPGA implementation. And really, such 

algorithms are often implemented in FPGA. But they usually implemented as a 

single function in the separate IP core. 

The multifunction processing modules are often needed for design of 

complex computer systems. Such processing module serves as the mathematical 

coprocessor for the general purpose microprocessor, is used for implementing 

complex algorithms of the parallel-sequential nature.  

But the multifunction processor modules are not proposed by the provi-

ders. Some experimental multifunction processors are found very rarely. The po-

lynomial approximation fits the most of elementary function calculation because 

the processor structure remains the same, but only the coefficient set is exchan-

ged. But as it is shown above, the hardware volume of such processor is too high. 

 The most of multifunction processors for the FPGA implementation are 

based on the CORDIC algorithm [48] because they utilize the similarity of the 

equations for the different functions [35]. For example, to calculate the functions 

like sin, cos, atan, sinh, cosh, x2 - y2  , x2 + y2   the same structure is used, but 

only the control of signs of adders is exchanged. 

The traditional method of the multifunction processor design consists in 

selection of the set of hardware resources, finding out the schedules for each 

algorithm, and in forming the structure, which implements each of given algo-

rithms in a sequence [49]. But the resulting structures can be far from the opti-

mum because each of the steps of tsuch structure synthesis has different criteria. 

Therfore, it is valuable to develop a method for the multifunction 

processor designing.  



45 
 

 

2.5.2 SDF of the combined algorithm 

In the subsection 2.2 and 2.3 it was shown that SDF is mapped by the one-

to-one mapping to the pipelined datapath. So, if SDF represents a set of 

algorithms, then the respective datapath implements each of the algorithms 

belonging to this set.  

The example of the SDF in Fig. 2.4 shows that SDF can express the 

algorithm, in which the data streams are dynamically interchanged.  

Consider two algorithms, each of them implement the same operation set 

{ V} 1 = {V} 2 = {V}, but they are distinguished in the algorithm graphs. Then the 

combined SDF is possible, which contains the node set {V},  to some nodes Vi �  

{ V} are connected the multiplexor nodes. So, when these multiplexers are 

switched in one position, then SDF performs the first algorithm, and when they 

are swithed in another position, then SDF performs the second algorithm. As a 

result, such combined SDF is mapped into the multifunction datapath structure, 

which performs both algorithms.   

Definition. Combined SDF is SDF, which contains a set of multiplexor 

nodes, due to that it performs a set of different algorithms. 

2.5.3 Formulation of the method 

Using the features of the combined SDF a method of the multifunction 

processor design can be formed. The method is formulated as follows. 

The method of the multifunction processor module design consists in 

forming the combined SDF, which performs a set of algorithms of the elementary 

function calculation, in balancing this SDF, and in mapping it into the pipelined 

datapath.  

Comparing to other methods, this method is simpler because the steps of 

resource selection, task scheduling and resource allocation, and structure forming 

are combined, and it provides better hardware and performance effectiveness. 
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2.5.4. Example of the multifunctional processor unit design 

Consider the design of the multifunctional processing module, which 

calculates the functions of x, sin x, and cos x. The first function is calculated 

using the algorithm, described in the paradraph 2.4.3, and the rest of functions are 

calculated by the CORDIC algorithm. 

SDF of the first algorithm is based on the cycle SDF shown in Fig. 2.4. 

The respective SDF of the CORDIC cycle is shown in Fig. 2.5, which is built on 

the base of the algorithm, described in the paragraph 1.4.2. 

 

 

 

 

 

 

 

Fig.2.5. SDF of a single iteration of the CORDIC algorithm 

 

 

 

 

 

 

 

 

 

Fig.2.6. SDF of a single iteration of the CORDIC algorithm 
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After performing the combining the SDFs in Fig 2.4 and 2.5, we have got 

SDF, which is illustrated by Fig. 2.6. 

The resulting combined SDF in Fig.2.6 forms the n-staged pipelined SDF, 

which is described as a GENERATE operator in VHDL: 

STAGES: for i in 0 to n-1 generate 

  process(CLK)    

   variable u:STD_LOGIC_VECTOR(n+1 downto 0); 

   variable ii:STD_LOGIC_VECTOR(5 downto 0); 

  begin     

   ii:=conv_std_logic_vector(i,6); 

   if rising_edge(CLK) then   

    if F='0' then   

     u:=x(i)+SHR(x(i),ii) +SHR(x(i), (ii&'0')+2); 

     if (u(n) ='0' or u(n+1) ='0') then  

      x(i+1)<= u ;   

      y(i+1)<= y(i) + SHR(y(i), ii+1) ;    

     else 

      x(i+1)<= x(i);   

      y(i+1)<= y(i) ;   

     end if; 

    else  

     if (fi(i)(n) = '0') then 

      u  := x(i) - SHR(y(i), ii); 

      y(i+1)<= y(i) + SHR(x(i), ii); 

      fi(i+1)<= fi(i) - atan(i); 

     else 

      u  := x(i) + SHR(y(i), ii); 

      y(i+1)<= y(i) - SHR(x(i), ii); 

      fi(i+1)<= fi(i) + atan(i); 

     end if; 

     x(i+1)<= u;   
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    end if;    

   end if; 

  end process;  

 end generate; 

 The whole IP core description is presented in the Appendix 1.  

 

2.6 Preliminary conclusions 

In this section, the FPGA architecture is investigated to select its features, 

which infer the selection of the elementary function algorithm implementation. 

This investigation helped to select the hardware cost and performance criteria for 

the processor module optimization.  

It was proven, that the digit recurrence algorithms are best fitted for the 

FPGA implementation. 

A new modification of the digit recurrence algorithm for the function  x  

calculating is proposed, which provides the decreasing the latent delay up to three 

times. 

The method of SDF mapping into the pipelined structure of the processor 

module was studied, which helps to derive the effective structures for the 

elementary function calculations. 

A new method of the multifunction processor module design is proposed, 

which consists in forming the combined SDF, which performs a set of algorithms 

of the elementary function calculation, in balancing this SDF, and in mapping it 

into the pipelined datapath, which is simpler and provides better hardware and 

performance effectiveness comparing to the other similar methods. 

The method was used in the design of the processor module for the  x  , 

sine, and cosine function calculations. 

The effectiveness of the proposed method and algorithms is proven in the 

next section. 
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3 IMPLEMENTATION OF THE ELEMENTARY FUNCTION PROCESSOR 
MODULES IN FPGA 

 

3.1 Synthesis of the processor module for the  x  function calculation   

The project o the processor module for the  x  function calculation is 

described in VHDL as the entity SQRT_C5, and implements the algorithm, 

described in the paragraph 2.4.3. Its text is shown in Appendix 1.  

The module is tunable by the generic constants: 

generic(ni:natural:=24; -- input bit width 

  no:natural:=24; -- output bit width 

  norm:natural:=0;  --0- unnormalized input data, 1 - normalized 

  pipe:natural:=1);-- 1 –fully pipelined , 0 – combinatorial 

network 

The module has the following ports: 

port( 

 CLK : in STD_LOGIC; 

 DI : in STD_LOGIC_VECTOR(ni-1 downto 0);  --initial data 

 DO : out STD_LOGIC_VECTOR(no-1 downto 0) -- result 

); 

By testing this IP core, the signal of the linear form was feeded its inpit 

port, and the output signal was investigated. The output signal represents the 

function  x   with the error, which is not sucseed a single least significant bit. For 

the purposes to preserve such precision, the IP core has the inner data bit width, 

which is to 5 bits higher than the input data bit width. The resulting modeled 

diagrams are shown in Fig.3.1.  
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 DI

 DO

us1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 

Fig.3.1. Input and output signals of the processor module for computing  x   

 

Then, the processor module was synthesized, mapped, placed and routed 

in the Xilinx FPGA xc6lx-16 (Spartan-6) by the CAD system ISE ver. 13.3. The 

results of mapping for the input and output bit width of 24 bits are shown in 

Fig.3.2. The timing result message table for this core is the following: 
��������������������������������������������������� ��������������������������������������������������� �����
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�	��������������������� ����
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In fig. 3.3, the graphs of the dependences of hardware volume in the 

number of LUTs on the bitwidth of input data are shown. Note, that this bitwidth 

is equal to the one results, the modules have the conventional and pipelined 

structure. It should be noted that the modules with a bitwidth up to 32 inclusive 

additionally have a multiplication unit DSP48, and the rest of then four such 

blocks have. 
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Fig.3.2. Results of mapping the square root processor for the input and output bit 

width of 24 bits 
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Fig.3.3. Hardware volume of the processor x  depending on the bitwidth n 

According to Fig. 3.3, the hardware volume of the module with the 

combinatorial network significantly outperform the volume of the pipelined 

module. This can be interpreted in that the compiler-synthesizer is better able to 

optimize the pipelined network because the parts of the network to be optimized, 

that is, the gates and LUTs located between the two layers of registers have much 

less complexity. 

Fig. 3.4 shows the maximum clock frequency of the synthesized modules. 

When implementing the bitwidth 48 or more, the maximum clock frequency 

significantly decreases because the compiler-synthesizer builds a multiplication 
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unit with a bitwidth, which is more than 24, and at the same time, it manifests 

itself unable to build a pipelined network of the multiplication block. 
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Fig.3.4. Maximum clock frequency of the processor x   depending on 

the bitwidth �  

For comparison, Fig. 3.3 and Fig. 3.4 show the characteristics of the 

licensed modules offered by Xilinx company. Consequently, the proposed module 

approximates the hardware costs to the "firm" module at n = 32, but in general, it 

loses to him including the speed. Its advantages are that it is free and can be 

configured for arbitrary input and output bit width. In addition, the proposed 

module has a lower latency delay.  

For example, if the input data is normalized, then for bitwidth 24, the 

latent delay is only 15 cycles versus 24 cycles per competitor. If the circuit is not 

pipelined, then the delay from the input to the output is TL = 40.3 ns and 71.9 ns, 

respectively. This means, that when implementing the floating-point calculations, 

the proposed module provides the greater performance. 
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As a result, the gesigned processing module has the very high 

effectiveness. Comparing to the CORDIC processor (see below), it has in 1.6 

times less hardware volume in LUT number. It has in 2 times less latent delay due 

to the fact, that the modernized algorithm is calculated for n/2 clock cycles, and in 

1.6 times higher clock frequency by the same bit width n. 

 

3.2 Synthesis of the multifunction processor module    
 

The project o the processor module for the  x  , sine and cosine function 

calculations is described in VHDL as the entity SQRT_SIN, and implements the 

algorithm, described in the paragraph 2.5.4. Its text is shown in Appendix 1.  

The module is tunable by the generic constant: 

 generic (n : natural := 12); 

which gives the input and output bit width. 

The module has the following ports: 

port( 

  CLK : in STD_LOGIC; 

  RESET : in STD_LOGIC;   

  F : in STD_LOGIC;  -- function select F=0 when SQRT 

  XIN : in STD_LOGIC_VECTOR(n-1 downto 0); 

  YOUT : out STD_LOGIC_VECTOR(n-1 downto 0); 

  XOUT : out STD_LOGIC_VECTOR(n-1 downto 0) 

  ); 

The processor module was synthesized, mapped, placed and routed in the 

Xilinx FPGA xc6lx-16 (Spartan-6) by the CAD system ISE ver. 13.3. The results 

of mapping for the input and output bit width of 24 bits are shown in Fig.3.5. The 

timing result message table for this core is the following: 
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Fig.3.52. Results of mapping the square root processor for the input and output bit 

width of 24 bits 

In fig. 3.6, the graphs of the dependences of hardware volume in the 

number of LUTs on the bitwidth of input data are shown. Note, that this bitwidth 
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is equal to the one results, the modules have the conventional and pipelined 

structure.. 
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Fig.3.3. Hardware volume of the  multifunction processor module   

depending on the bitwidth n 

 

According to Fig. 3.6, the hardware volume of the module with the 

combinatorial network significantly outperform the volume of the pipelined 

module. This can be interpreted in that the compiler-synthesizer is better able to 

optimize the pipelined network because the parts of the network to be optimized, 
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that is, the gates and LUTs located between the two layers of registers have much 

less complexity. 

Fig. 3.7 shows the maximum clock frequency of the synthesized modules. 

When implementing the bitwidth 48 or more, the maximum clock frequency 

significantly decreases because the compiler-synthesizer builds a multiplication 

unit with a bitwidth, which is more than 24, and at the same time, it manifests 

itself unable to build a pipelined network of the multiplication block. 
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Fig.3.7. Maximum clock frequency of the multifunction processor module   

depending on the bitwidth �  

 

 

Additionally, the module of the multifunction processor was synthesized 

with the fixed input F = 0 and F =1. This means that the synthesized network 

performs only either the function x   or functions sin(x), cos(x), as the genuine 

CORDIC processor. The results of this synthesis are shown in Table 3.1. 
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Table 3.1 

Parameters of different processor structures 
 
Processor Structure  Hardware volume, LUTs Maximum clock frequency, 

MHz 

x   2402 145 

CORDIC 1665 156 

Combined  3251 139 

 
 

 

The Table 3.1 analysis shows that the combined structure has the 

hardware volume 3251 LUTs, which is smaller in 1.25 times than the overall 

hardware volume of 4067 LUTs of the processor computing x  , and the 

CORDIC processor. This means that really, the combined processor has the effect 

of the minimized hardware volume. Besides, its hardware volume is less than one 

of the analogous processor, which performs the function x  but using the 

CORDIC algorithm [46]. 

But the speed of the combined processor (139 MHz) is slightly less than 

the speed of the processors, which perform the separate functions (145 and 156 

MHz). This is explained, that the combined processor has the network, in which 

the critical path delay is expanded to the multiplexor delay.   

As a conclusion, this example shows the rather good effectiveness of the 

prposed method of design the multifunction processors for calculating the 

elementary functions. 
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3.3 Preliminary conclusions 

In this section, a set of processors for the elementary function 

implementation, which are designed according to the proposed method and 

algorithms are tested and probed. The results are the following. 

The designed processing module for the square root function has the very 

high effectiveness. Comparing to the CORDIC processor, it has in 1.6 times less 

hardware volume in LUT number, has in 1.6 times higher clock frequency by the 

same bit width n. and has in 1.6×2 = 3.2  times less latent delay due to the fact, that 

the modernized algorithm is calculated for n/2 clock cycles. 

The designed multifunction processing module has in 1.25 times less 

hardware volume than the processors, which perform the same algorithms but 

separately, by decreasing the clock performance only to 4 – 12%. This shows the 

rather good effectiveness of the prposed method of design the multifunction 

processors for calculating the elementary functions. 
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CONCLUSIONS 

 

This thesis has presented a detailed description and analysis of the 

algorithm selection and design of the high-speed processing modules for the 

elementary function computing, and development of a new method for such 

modules design.  On the base of the thesis materials the following conclusions are 

made. 

1) The algorithms for the elementary function calculation, like polynomial 

approximation, functional recurrence, and digit recurrence algorithms are 

reviewed. It is found out that the algorithms, which utilize only additions, shifts, 

table functions, and small number of multiplications are the best candidates for 

the FPGA implementations. Among them the CORDIC-like algorithms play the 

leading role. 

2) The FPGA architecture is investigated to select its features, which infer 

the selection of the elementary function algorithm implementation. This 

investigation helps to select the hardware cost and performance criteria for the 

processor module optimization.  

3) It was proven, that the digit recurrence algorithms are best fitted for the 

FPGA implementation. 

4) A new modification of the digit recurrence algorithm for the function 

 x  calculating is proposed, which provides the decreasing the latent delay up to 

three times. 

5) The method of the synchronous dataflow graph (SDF) mapping into the 

pipelined structure of the processor module was studied, which helps to derive the 

effective structures for the elementary function calculations. 

6) A method of the multifunction processor module design is proposed, 

which consists in forming the combined SDF, which performs a set of algorithms 

of the elementary function calculation, in balancing this SDF, and in mapping it 
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into the pipelined datapath, which is simpler and provides better hardware and 

performance effectiveness comparing to the other similar methods. 

7) The proposed method of the multifunction processor module design 

was used in the design of the processor module for  x  , sine, and cosine function 

calculations. Their configuring in FPGA and testing has shown that the designed 

processing module for the  x  function has the very high effectiveness. 

Comparing to the CORDIC processor, it has in 1.6 times less hardware volume in 

LUT number, has in 1.6 times higher clock frequency by the same bit width n. 

and has in 3.2  times less latent delay. 

8) The designed multifunction processing module has in 1.25 times less 

hardware volume than the processors, which perform the same algorithms but 

separately, by decreasing the clock performance only to 4 – 12%. This shows the 

rather good effectiveness of the proposed method of design the multifunction 

processors for calculating the elementary functions. 

9) The future works at this theme can be directed to the selection of the 

effective algorithms for the elementary function calculation and implementing 

them in the multifunction processors using the proposed method with the goals of 

the method improvement and proving its effectiveness.   
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APPENDICES 

 

APPENDIX 1 
Processor for calculating the square root function 
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Processor for calculating square root, sine and cosine functions 
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Anatoliy Sergiyenko, Hasan Muhammad Jamal, Pavlo Serhienko 
ALGORITHM AND STRUCTURE OF THE SQUARE ROOT 
CALCULATOR IMPLEMENTED IN FPGA 

  
+�'#���	*�$��  ��'����	  	�	�	���  ��������  ���  ����������  �
��!��  

�	��	���#�  ������  '	  ����	!�����  	�#������� . @	�������	���  	�#�����  
�	*  '��#
  ����������  ����������  �
��!��  �	��	���#�  ������  �	  '���,���  
	�	�	���  ���	��  '	  �	 
���  ����������  ���$��  ����	!��  �	�������  
������� . @	�������	���  	�#�����  ��'�	 �	���  �	  ��	��'	!�(  
  
���#�	��	��  ��#����  ����#�	�$��  � ��	 . 

#
$���  �
��	 : "%�& , �	��	����  �����$ , ����*� .  
+�� .: 3. 0	�� .:1. 1��� .: 4. 

 
The development of the hardware units for the square root (SQRT) function 

calculations is considered, which is based on the CORDIC-like iterative 
algorithm. The proposed algorithm helps both to speed-up the SQRT function 
calculations and to minimize the hardware volume due to substituting some 
iterations by the look-up tables. The algorithm is intended for the SQRT function 
implementation in FPGA. 

Key words: FPGA, SQRT, CORDIC, pipeline.  
Fig.: 3. Tabl.:1. Bibl.: 4. 
 
)���( . /
��!��  �	��	���#�  ������  x— 	)��	  �������	��	  �
��!��    

�	
���  ��'�	 
��	 , �����!�  !�����  ��#�	��  �	  �����!�  '���	)��$  [1]. 
�	�����	� , ��	  ��������
*�$��  
  ��������  ����)	  [2]. 2  �	���  �	�  
�	#	��  '	�	�  ���,
(�$��  
  ���#�	��	��  ��#����  ����#�	�$��  � ��	  
("%�& ), ��  �	��)  ���� ����  ��'�	 �
	��  �
��!�(  x.  

���
(�$  ��'��  ���
	�$��  ���
��  ���  ����������  �
��!��  x, ���  
������
(�$��  �������	��  "%�&  �	  ����������  ����	�����  [3]. ���  !�  
���
��  �
��  ��'�������  �����������  ���
 , � ��� , ��  ��	��� , ��  �	 �
(�$  
����������  ���  �������$  "%�& . 0��
  �	��  ���
��  ������
(�$  
�������'	!�� . �  ������  [4] '	�������	��  ������	�����  	�#�����  
����������  �
��!��  x, ����  ���*���	���  �	  ��	��'	!�(  
  "%�& . �  �	���  
������  ������
*�$��  ��  ����  	�#����� , ����  ��������  ��	��'
*�$��  
  
"%�& .  
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�
"������  “  �.�	  �	   �.��$ ” . 2����	���  	�#�����
  ��'�	 
��
  
�������	����  �
��!��  ���
  “!���	  '	  !����( ” '����$��  ��  ���������  
�����	�����  ����	!�� , ��'
�$�	�	��  ���  * ���#��  �����  !����  ��'
�$�	�
 .  
2������  	�#�����  CORDIC, ����  ���'�	�����  ���  ��'�	 
���  x, ����#	*  
  �	��
����
 . 2��  ������(*  �
��!�(  atanh(x/y). ���  ��������  ��'
�$�	���  
* �
��!��  K x2+y2 , 	  '	  �	 
���  '	����  x = A + 0.25, y = A – 0.25, �����
(�$  
K �   [3,5]. �������	��  !$�#�  	�#�����
  * ���	����  ���)����  ��'
�$�	�
  
�	  �����!�*��  1/K » 1.207 � ���������  �����  ����	!��  ���  '��)�����  
	�#�����
 . 

1��$,  ������
������  	�#�������  * 	�#�����  “!���	  '	  !����( ” 
����������  �
��!��  x [4], ����  �	'
*�$��  �	  �	��
���  �������,���� . 
���  ��)��#�  ����	  x Î  [0.25; 1.0] '�	 ����$  �����!�*���  ai Î  [0; 1], �	��  ��  

Õ
i= 1

¥
(1 + ai2

- i)
2
  = 1.0.     (1) 

@����    

1/  x   » Õ
i= 1

m
(1 + ai2

- i)   	��    x   »  x Õ
i= 1

m
(1 + ai2

- i) .     (2)   

 
��)� , ����������  �
��!��  x ����#	*  
  ����	���  �����#�����#�  

���!��
 , '#����  '  ����  ��	'  (1) �	���)	*�$��  ��  �����!� ,   ���  �	�  ��  ��	'  
(2) �	���)	*�$��  ��  ,
�	��#�  '�	����� . ��#�����  !$�#�  ���!��
  
��	)	*�$��  �	��
����  ����� : 
x[0] = x; y[0] = x; 
for(i = 0, i < n, i++) { 

t = x[i] + 2^(-i)*x[i]; 
    q = t + 2^(-i)*t; 
    if (q < 1) { 

x[i+1] = q;  
y[i+1] = y[i] + 2^(-i)*y[i];}// a[i]=1 

    else { 
x[i+1] = x[i]; 
y[i+1] = y[i];}// a[i]=0  

} 
+�'
�$�	���  * y[n] = x. 
 

���������	��+  	
"����� . �	����$,
  '	�����
  ��'#���
��#�  
	�#�����
  �	*  �������  ���		���  '�
�
��  �	��  '  ��'
�$�	�	��  t �	  q. B� 
����������  ��)
�$  �
��  '	������  �����  ��	��� : 

q =  xi + 2
- m

 xi   + 2
- m

 (xi + 2
- m

 xi) = xi + 2
- m+1

xi   + 2
- 2m

 xi. 
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�����$��  
  �
�	���  "%�&  ��$�  �����  �
�	���  ��	��'
*�$��  ��  ����  
��
���$ , ����  �
�
*�$��  �	  �����  ,���� ����  ��#����  �	���!$  (%0), ��  
�	��  ����������  ��)
�$  �
��  ����	��  '	  ����  �	��  ��'  ���	����  '	������  
� ���	�  �	  ���	��	��� . ��	��'  	�#�����
  ���	'
* , ��  ����  i ����#	*  ��)�   
n/2, ��  ��	�,�  ��'����  ����	  xi ��	(�$  ����������  	  i ��	�,�  ��'����  y� * 
�������  ��	�,���  ��'���	��  ��'
�$�	�
 . ��)� , ��,�
  �����	��  ����  
��)�	  ���������  �����  	�	��'
  �	  ��'�	 
��
  ��'��!�  1 – xi.  

�� 	�  e1 = 1 – xn/2, ex = x – yn/2. B� �������  '#����  '  (1) � (2) �����((�$  

e1  = 1 -  x Õ
i= 1

n/2
(1 + ai2

- i)2 ;     ex = x   –  x Õ
i= 1

n/2
(1 + ai2

- i) .  

"�����	���  z =  x  Õ
i= 1

n/2
(1 + ai2

- i) , ����  

e1  = 1 -  z2 = (1 + z)(1 -  z);        ex =  x  (1 -  z). 

���
���  z » 1, ��  e1  » 2(1 -  z);   ex » x  e1/2 » yn/2 (1 – xn/2)/2 . ���  
����
��	�  �����$�   yn  = yn/2 + yn/2(1 – xn/2)/2 �	  ���������	��+  	
"�����  
�  �	���(��+ : 
x[0] = x; y[0] = x; 
for (i = 0; i < n/2; i++){ 

q = x i + 2
-i+1

*x i  + 2
-2i

*x i ; 
if (q < 1.0){ 
   x i+1  = u;  
   y i+1  = y i  + 2 -i-1 *y i ;} 
else {                 
   x i+1  = x i ;  
   y i+1  = y i ;} 
 } 

y = y i+1 + y i+1 *(1.0 - x i+1 )/2; 
 

���(�������	
��  ����
��	�� . �����	���  	�#�����  �
  ����	���  
���(  VHDL ��  ���
	�$���  ���
�$ . B��  ���
�$  �
��  '�����#
��	��  ���  
"%�&   Xilinx Spartan-6 ���  ��'���  ��'��������   ����  � � ����  �	�� . �	  
���
��	  1 �	  2 �	�����  '	��)����$  	�	�	���  ���	�    ���$�����  %0, 	  
�	��)  �	����	�$���   �	������  �	�����  ��  ��'��������  n  ����  �	��  � 
��'
�$�	��  ���  ������	!�����  � ����*����  � ��  !$�#�  ���
�� , �������� . 
&���  ��'�	���� , ��  ���
��  '  ��'�������(  32 ���	����  �	(�$  ����  ����  
���)����  DSP48, 	  ��,�	  — ������  �	��  ����� . 

 
���  ��������� , �	  ��� . 1, 2 ���	'	��   	�	����������  ���
	�$��  

���
�� , ���   ������
(�$��  ����	��*(  Xilinx Inc. @	#	��� , '	�������	���  
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���
�$  �	*  ���$,�  	�	�	���  ���	��  � ���,
  �	���
  �	����
 . B�  
�����(*�$��  ��� , ��  ���
�$ , ����  #����
*�$��  '	�����  Xilinx Coregen, 
����	���  �	  ����  %0 � ���#���  � ���
  	�	���	���  ��  	� �����
��  "%�&  
���������#�  ���
 . �  '	�������	���  ���
�$ ,  ��	  � ��  ������
*  ���	��#�  
#����
	��� , ������  �
��  '������$�	���  �����'	����� , ����  ����
*  
�������
 , 	��  ��  �����	�$�
   ������'	!�( . 

"���	#�  '	�������	��#�  ���
��  ����#	(�$    ���
 , ��  ��  * 
��'��,�����  � ��)�  �
��  �	�	,��	���  �	  ����$�
  ��'�������$   ����  
�	  � ����  �	�� , 	  �	��)  ���  �
�$ -���#�  ���
  "%�& . ����  ��#� , 
'	�������	���  ���
�$  �	*  ��)�
  �	�����
  '	�����
 , ��  * 	)���� , 
�	�����	� , ���  ����	���  �	  ��#�  �����  ����	!��  '  ��		(��(  ����( . 
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+�� .1. ��	�	���  ���	��  ����
  x  , 
%0,   '	��)�����  ��  n 

+�� .2. �	����	�$�	  �	���	  �	����	 , 
�;! , ����
  x    '	��)�����  ��  �  

 
�	�����	� , ���  ��'��������  24 ��� , �	�����	  '	�����	  ��	����$  ��,�  15 

�	���  �����  25 �	���  
  ����
������#�  ���	 . B�  �'�	�	* , ��  ���  ����	���  
��'�	 
���  '  ��		(��(  ����(  '	�������	���  ���
�$  '	��'���
*  ���$,
  
����
�������$ . 

)������� . @	�������	��  ��������	���  	�#�����  “!���	  '	  !����( ” 
���  ����������  �
��!��  �	��	����  ������ . ��#�����  ����'��*�$��  
������'�	��(  ���$����(  ����	!�� , ��	  ������'��  
����  ���,	  '	  ���$����$  
��'����  ��'
�$�	�
 . ��#�����  ����	���  ���(  VHDL � ���'�	�����  ���  
��	��'	!��  
  "%�&  �
�$ -����  ����� . �	����$,  �������	  ��#�  ��	��'	!��  ���  
����������  �
��!��  x  '  ��		(��(  ����( . 
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