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ABSTRACT

Method of increasing the efficiency of devices the calculation of
elementary functions

Relevance of the topic The field programmable gate array (FPGA) is a
modern element basis that is effectively utilizemt the high performance
iImplementation of application-specific algorithm&hwthe fixed-point numbers.
Very often, such algorithms encounter the calooiaif elementary functions.
But the suppliers of the FPGA CAD tools do not pdevthe developers with
ready-made high-performance intellectual propertyes for calculating the
elementary functions, and the providers of suchutesddistribute them at a high
price (about a thousand dollars). In addition, ¢hare no modules among them
that can calculate several different functions. €&guently, there are shortages in
the design of devices for the calculation of elefagnfunctions in FPGA and

they need to be improved.

The purpose of the work: the creation of a method designing the

application specific modules for the elementaryction calculation.

The object of the researchis the computational processes in high-

performance application-specific processors.

The subject of the researchis design of pipelined processors for the

elementary function calculations.

The objective is the creation of a method for designing the high
performance application-specfic processors for ¢akulation of elementary
functions in FPGA.

The scientific noveltyis as follows:

1. An algorithm and a structure of the square cadtulator are improved,

so this function is calculated three times fastéhn vow hardware costs.



2. A method for increasing the efficiency of devicesf calculating the
elementary functionsis developed, which is based on the combinatiosegéral
algorithms for calculating such functions, whichk®es it possible to build high-

performance multifunction devices.

The practical value of the results obtained in the work is that thedoles
for calculating the elementary functions, which deeloped by the proposed
method, are ready for use in modern projects oh-pgrformance systems on
FPGAs, which are used for digital signal processm@chine learning, image

recognition, and others like that.

The materials of the thesis were used in the rekeawnrk "Advanced
methods and tools of designing the configurable pders on the basis of
mapping the spatial synchronous data flow graptestime structure for FPGA",

+ .047U005087/ 0 -300 / 2017, which is held at NTUU “Igor Sikorsky’s
KPI”.

Approbation of the work. Substantive provisions and results of the work
were presented and discussed aR@th International ConferenceSystem
Analysis and Information TechnologWAIT 2018May 21 — 24, 2018, Kyiv, and
International Conference on Security, Fault Toleeancintelligence
(ICSFTI2018), May 10 — 12, 2018, Kyiv.

The structure and scope of work. Master's thesis consists of an
introduction, three sections and conclusions.

The introductiongives a general description of the work, assedses t
current state of the problem, substantiates thevaslce of the research direction,
formulates the purpose and objectives of the reeeahows the scientific novelty
of the obtained results and the practical valuéhefwork, provides information
on the approbation of the results and their impletiadeon.



In the first sectionthe features of the architecture of modern FPGy¥eha
been investigated, algorithms for calculation anedntary functions and their
known realizations in parallel computing systemd BRGAs are analyzed.

In the second sectip@mn algorithm and a square root function calculato
are improved, and a method for increasing theieffy of devices to perform the
elementary functions is developed.

In the third sectionthe efficiency of using the proposed square root
calculation algorithm and the method of increadimg efficiency of devices for
performing the elementary functions are investigate

The conclusionshow the results of the work.

The work is presented in 68 pages, contains aemwderto the list of used
literature and addendums.

Key words. FPGA, square root, elementary function, pipeliS&F

graph.
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ABBREVIATIONS

ASIC Application Specific Integrated Circuit
CPU Central Processing Unit

DSP Digital Signal Processing

FPGA field programmable gate array

GPU Graphic Processing Uunit

IC Integrated Circuits

IP core Intellectual Property core

LUT Look-Up Table

PU processing unit

RAM Random Access Memory
ROM Read-Only Memory

RTL Register Transfer Level logic
SDF Synchronous Data Flow graph

VHSIC  Very High Speed Integrated Circuits
VHDL  VHSIC Hardware Description Language
VLSI Very Large Scale Integration



INTRODUCTION

Nowadays, when gadgets and computers are presenéigday aspect of
our life, more advanced algorithms for shorter cotaponal timing are
tremendously important. Algebraic functions, fostamce square root, logarithm,
as well as trigonometric functions embrace the msdurce of algorithm
implementation in domains like digital signal presmg (DSP), wireless
communication, graphic processing units (GPU), ienagprocessing,
communication systems and medical robaotics.

The performance of only software implementationshese algorithms is
not satisfactory all the time, thus in order to roye the functionality, a

translation of the software into hardware is dekire

The square roo{ﬁ< and other elementary functions ares importanhen t
scientific calculations, digital signal and imageogessing [1]. The artificial
neural nets need these functions as well [2]. Asent, the field programmable
gate arrays (FPGASs) are expanded for solving tbblpms, where the elementary
function calculations are of demand. There areetbffit IP cores of the
elementary function calculation, which are proposgdhe FPGA manufacturers
and third-party companies [3]. But these IP coresanesigned decades ago and
they usually don't take into account the featurethe new FPGA generations.
Therefore, they need improvements.

This thesis proposes the method of the designeftiplication specific
hardware design, which is intended for the highedpelementary function
calculations. The use of FPGAs to implement thasactions allows us to
increase the speed, reduce the power consumptioredMer, the modernizing
the elementary function blocks can be implementethe device in use by the
way of the reconfiguration of FPGA.



The object of the researchs the high-performance application-specific

processors.

The subjectof the researchis the structure of pipelined processors for

the elementary function calculations.

The objective is the creation of a method for designing the high
performance application-specfic processors for ¢akulation of elementary
functions in FPGA.

To achieve the objective, the following tasks arwed in the thesis:

1. The methods of the mathematical modeling ofwhge propagation in
solids, and their comuter implementation are amalys

2. The method of the waveguide modeling is analysetlits application
to the modeling the solids is investigated.

3. The method of hardware simulation of the profiagaof ultrasonic
waves in a solid based on the waveguide modelsvsidped.

4. The method of hardware simulation the propagaticultrasonic waves
Is adapted for its implementation in modern FPGAs.

5. The proposed method effectiveness is proven dyeting of the wave
propagations in the solid rod.

The research methodsused in the work are based on the theory of
graphs, algorithm theory, modeling theory, comhlanat optimization methods,
as well as theorems, assertions and implicaticaisaite proved in the dissertation.
The main provisions and theoretical evaluationscamirmed by the results of
simulation on a computer, as well as by testsrafraber of experimental samples
of specialized calculators.

Experimental verification of scientific positionmoposals and results was
carried out by designing computing tools by theelewyed method using their
description in standard VHDL language with theirtiier simulation in the

simulator, compiling in the circuit and configuritige Xilinx FPGA.



The scientific noveltyis as follows:
1. An algorithm and a structure of the square cadtulator are improved,

so this function is calculated three times fastéhn Yow hardware costs.

2. A method for increasing the efficiency of dewder calculating the
elementary functions is developed, which is basethe combination of several
algorithms for calculating such functions, whichk®es it possible to build high-

performance multifunction devices.

The practical value of the results obtained in the work is that thedoles
for calculating the elementary functions, which deeloped by the proposed
method, are ready for use in modern projects oh-pgrformance systems on
FPGAs, which are used for digital signal processm@chine learning, image

recognition, and others like that.

The materials of the thesis were used in the rekeawnrk "Advanced
methods and tools of designing the configurable puders on the basis of
mapping the spatial synchronous data flow graptestime structure for FPGA",

+ .047U005087/ 0 -300 / 2017, which is held at NTUU “Ilgor Sikorsky’s
KPI”.

Approbation of the work. Substantive provisions and results of the work
were presented and discussed aR@th International ConferenceSystem
Analysis and Information TechnologyAIT 2018May 21 — 24, 2018, Kyiv, and
International Conference on Security, Fault Toleeancintelligence
(ICSFTI2018), May 10 — 12, 2018, Kyiv.

Publications of the work

The main features of these investigations are pliddl in two works. In
the work [41] the author has proposed an approablth provides the hardware
minimization. In the work [5] the author has proposhe way to speed-up the

calculations.



The structure and scope of the work

Master's thesis consists of an introduction, tlsextions and conclusions.

The introductiongives a general description of the work, assedses t
current state of the problem, substantiates trevaglce of the research direction,
formulates the purpose and objectives of the rekeahows the scientific novelty
of the obtained results and the practical valuéhefwork, provides information
on the approbation of the results and their impletiadeon.

In the first sectionthe features of the architecture of modern FPGy¥eha
been investigated, algorithms for calculation afneéntary functions and their
known realizations in parallel computing systemg BRGAS are analyzed.

In the second sectip@mn algorithm and a square root function calculato
are improved, and a method for increasing theieffy of devices to perform the
elementary functions is developed.

In the third sectionthe efficiency of using the proposed square root
calculation algorithm and the method of increadimg efficiency of devices for
performing the elementary functions are investigate

The conclusionshow the results of the work.

The work is presented in 70 pages, contains aemederto the list of used

literature and appendicies.



1 METHODS AND TOOLS FOR ELEMENTARY FUNCTION
CALCULATIONS

1.1Basics of the elementary function calculations

1.1.1 Preliminary conditions

Usually the elementary functions in computer engiiimg are the most
commonly used mathematical functions: sin, cos, &m', cos’, tan', sinh,
cosh, tanh, sinh, cosh', tanh', exponentials, and logarithms. From a
mathematical point of view, #is an elementary function as well [6,7].

Theoretically, the elementary functions are not mbarder to compute
than quotients. It was in [8] that these functi@me equivalent to division with
respect to the Boolean circuit depth. This meaas dhcircuit can output digits
of a sine, cosine, or logarithm in a time proparébto logn. But for practical
implementations, it is quite different, and mucleces necessary if we want fast
and accurate elementary functions.

There are many works devoted to the elementarytiimalgorithms
[7,9,10]. But at times those functions were implated in software only. Since
the Intel 8087 oating-point unit, elementary fuicts have sometimes been
implemented, at least partially, in hardware, at f#ltat induces serious
algorithmic changes. Furthermore, the emergencehighh-quality arithmetic
standards, such as the IEEE-754 standard for gatmint arithmetic, have
accustomed users to very accurate results. Smvhstigations of the elementary
function implementation in hardware is of great dach

Current circuit designers must build algorithms anchitectures that are
guaranteed to be much more accurate and effeétmeng the various properties
that are desirable, when the function is implemgme=PGA, one can cite:

* speed;

* accuracy;



» reasonable amount of resource (ROM/RAM, LUTSs,istegs, power
consumptions);

* preservation of important mathematical propersigsh as monotonicity,
and symmetry; ;

* preservation of the direction of rounding;

range limits, for example, 1f&in(x) £ 1.0. [6].

1.1.2 Algoritm classification

The hardware approximation algorithms can be clgsnto four broad
categories.

The first category is the polynomial approximatidrhis category is a
diverse category. The general description of tlasscis as follows: the interval of
the argument is divided into a number of sub-irdsvFor each sub-interval the
elementary function is approximated by a polynonofab suitable degree. The
coefficients of such polynomials are stored inkded10].

The second category is called functional recurremdgorithms that
belong to this category employ addition, subtractend full multiplication
operations as well as tables for the initial appration. In this class of
algorithms the algorithm starts by a given iniagproximation and it is feededt to
a polynomial in order to obtain a better approxioratThis process ise repeated a
number of times until the desired precision is heg@c These algorithms converge
guadratically or better. Examples from this catggoclude Newton-Raphson for
square root [10].

The third category is called digit recurrence tegues, or shift-and-add
algorithms. The algorithms that belong to this gatg are linearly convergent
and they employ addition, subtraction, shift andgk digit multiplication

operations. Example of such algorithms is CORDIC [12]



The fourth category is the rational approximatidgoathms. In this
category the given interval of the argument is akd into a number of sub-
intervals. For each sub-interval the given functisrapproximate by a rational
function. A rational function is y a polynomial died by another polynomial. It
employs division operation in addition to tablesldiéion and multiplication
operations, which are used in the polynomial appnekon. The rational
approximation is rather costly in hardware duehe tact that it uses division
[10].

Range reduction is the rst step in elementary fioms computation. It
aims to transform the argument into another arguiext lies in a small interval.
This approachnis often used before the calculatiegfunction according to one
of the general method mentioned above.

Let us consider the algorithms of these methodsmaozcisely in order to
select among them the best candidates for the mgiation in FPGA.

1.2 Polynomial approximation

The polynomial approximation is the representatban algorithm of the
function calculation as a polynomial. A polynomislan expression constructed
from one or more variables and constants using dperations addition,
subtraction, multiplication, and raising to the mowf integer numbers. Examples
of polynomial functions are® -6 + 10 andx’y’ + 15Xy” — 6. The first is a
univariate polynomial, while the second is a maltiate polynomial.

The problem of the polynomial approximation has fpveots. The first one
Is the finding out the coefficients, the second @heelection of the effective
algorithm and structure for the polynomial calculgt

Three base techniques for computing the coeffisiehthe approximating

polynomials are Taylor approximation, minimax apgmaation and interpolation.

10



Taylor approximation gives analytical formulas the coefficients and
the approximation error. It is useful for some aidpons namely the Bipartite,
Multipartite, Powering algorithm and functional veence.

Minimax approximation is a numerical technique thiates the values of
the coefficients and the approximation error nuoaly. It has the advantage that
it gives the lowest polynomial order for the sam&xmmum approximation error
[10].

Interpolation is a family of techniques. Some teghas use values of the
given function in order to compute the coefficiemsile others use values of the
function and its higher derivatives to compute tbefficients. Interpolation can
be useful to reduce the size of the coefficientdetaat the expense of more
complexity and delay and that is by storing theugalof the function instead of
the coefficients and computing the coefficientiandware on the y [13].

Polynomial expressions are computational intensigethey contain a
number of additions and multiplications which asgpensive operations. These
calculations take many clock cycles to compute onpracessor. When
implemented in an ASIC, or FPGA they occupy a laagea and consume a lot of
power in addition to increasing clock periodsslttherefore, imperative to reduce
the number of operations in polynomial expressiassnuch as possible. These
reductions can be achieved by factoring these sgmmes and finding common
subexpressions among multiple-polynomial expressitimfortunately, not many
tools are available to perform this, especiallyrfartiple-variable expressions.

The problem of optimization of polynomial expressccan be stated as
follows: given a set of polynomial expressions of/ alegree and consisting of
any number of variables, find an implementationt thas the least number of
operations (additions, subtractions, and multipicses).

The Horner method is the default method of evahgafiaylor series

approximations to trigonometric functions in mariyraries such as the GNU

11



CLibrary [14]. For example, consider the followiegpression for sinxj which

has been approximated to four terms:

X X

. x>
sin (X) =X—31+t5—7-
Assuming that the terms 1/3!, 1/5!, and 1/7! arecpmputed, the naive
evaluation of this polynomial representation regsiiB additions/subtractions, 12
variable multiplications, and 3 constant multiptioas.

The Horner form of this expression can be written a

. 1 1 X
sin (x) = x 1+x2—§+ ﬁ—%

Most algorithms hand-optimize the resulting Horfmm to remove the

redundant computations gf. The expression is then rewritten as:

X =¥
1 1 X
sin X) =X 1+X—§+X 5IT70 - (1.1)

The Horner form is a good representation for pomrabs with single
variables, but does not provide good results forltivariate polynomials.
Furthermore, it cannot find common subexpressiom®naatically to further
reduce the number of operations.

Consider the terms 1/3!, 1/5!, and 1/7! are preasengh and denoted &,
S, andS;, respectively. Then, the four-term Taylor expanbsin &):

d]_ =X XX,

d, =S-S5 xd,,

ds =d, xd;, - S, (1.2)
d4 = d3 xdl + 1,

sin (X) = X xd,.

Here, only three additions/subtractions, four @aamultiplications, and
one constant multiplication are needed.

Traditional optimization methods have been designedeneral purpose
applications and do not do a good job of optimizpmynomial expressions.

Some of the early work in code generation for amgtic expressions [15, 16]

12



proposed algorithms to minimize the number of paogisteps and the number of
storage references given a fixed number of register [17] these techniques
were extended to handle expressions with commoexgubssions. Some work
was done to optimize code having arithmetic expoessusing factorization

techniques [18]. The technique presented in [18] wexy limited in that it could

only optimize expressions which contained one tygeassociative and/or

commutative operator at a time. As a result it doabt optimize general

polynomial expressions which have multiplicatiorddgion, and subtraction

operations.

In many times the elementary function argumentiveddd into a set of
intervals, and the function is approximated sepéyain each of them. Then, the
small order polynomial is fit for such approximatioA special kind of
approximation here is the table based approxima#loset of special algorithms
are found for it.

The powering algorithm [19] which is a rst ordelgarithm that employs
a table, a multiplier and a special hardware foerapd modi cation. This
algorithm can be used for single precision resoittgs an initial approximation
for the functional recurrence algorithms. Table et algorithms can be
considered a polynomial based approximation. Tlagerithms are rst order
polynomial approximation in which the multiplicatios avoided by using tables.
Examples of table add techniques include the wark2D] Bipartite [21,22],
Tripartite [23] and Multipartite [24, 25, 26]. Exg@hes of other work in
polynomial approximation include [27, 28]. The cenyence rate of polynomial
approximation algorithms is function-dependent #@ndlso depends to a great
extent on the range of the given argument and emtimber of the sub-intervals
that we employ.

It is noteworthy that computing the polynomial eegsions, even in their

optimized form, is expensive in terms of hardwacgcle time, and power

13



consumption. If the arguments to these functiores larown beforehand, the
functions can be precomputed and stored in lookbje$ in memory. However,
in cases where these arguments are not known oméreory size is limited,
these expressions must be computed during the exeaf the application that
uses them.

1.3 Functional recurrence algorithms

As it is mentioned above, the functional recurrealgorithm starts by a
given initial approximation and it is feeded to @lymomial in order to obtain a
better approximation. This process ise repeateduraber of times until the
desired precision is reached. The prominent exaraplsuch algorithm is the
Newton’s method, hich is a major tool in arbitrgmgcision arithmetic.

Suppose that some functibhas a zera if f(x)= 0. Then, considei(xo) is
an initial approximation of this point, and tHét) has two continuous derivatives

in the region of interest. From the Taylor’s theore
( )2
X —_
f(x) = f(x0) + (x — %) f'(x0) + 2)6 (o),

for some poin in an interval including § xo}. Considerf(8) = 0, then we see
that

X1 =X f(x)/f “(Xo)
IS an approximation t8. If xyis suf ciently close ta8, we have

K 8 K 82<1.

This motivates the de nition of Newton’s methodthe iteration

f(x) .
X+1= X %z_(lij),J:O, 1,

The error of such approximation vfis e, = x, — X. The fact is, that the

error after the next iteration is
e+l Kledf,

l.e., the order of the algorithm convergention.is 2

14



Consider applying Newton’s method to the function
f)=y x"
where m is a positive integer constant, aydis a positive constant. Since
f(x) = mx{™%, the Newton’s iteration is simpli ed to
X1 =X + % (1 =X y)/m. (1.2)

This iteration converges t8 = 1/%, which is provided by the initial
approximation xo. It is surprising that (1.2) does not involve diens. In
particular, the reciprocal square roots (the case 2 can be computed by this
method. In this situation, the iteration is obtaine

X1 =% + X (1 —XY)/2, (1.3)
which converges to i@ If Xo is a suf ciently good approximation. From (1.3)
the square root function is got as
\y =Y*(LAlY).

Here, the method does not involve any divisionscdntrast, if the other

the Newton’s method is applied to the functfon = x* vy, the Heron’s iteration

formula is obtained:

1
X115 1+§é , (1.4)

This requires a division by at iterationj, so it is essentially different
from the iteration (1.3) [28].

There are a lot of algorithms of elementary funttaalculations, which
are based on the functional recurrence algoritnsong them are log, &, and
others [10]. The disadvantage of all of them is ¢benputational complexity in
the number of multiplications and divisions. Howewu&is figure is proportional

to the logn, wheren is the argument bit width.

15



1.4 Digit recurrence algorithms

1.4.1. Introduction

The digit recurrence techniques, or shift-and-atigbrdhms often are
named as the bti-by-bit algorithms because for dsatation, a single exact
resulting bit is achieved. This feature goes fone fact that these algorithms are
linearly convergent.

Among these algorithms the CORDIC algorithm is wl-known. The
CORDIC algorithm was introduced in 1959 by Vold29]. In Volder’s version,
CORDIC makes it possible to perform rotations andntultiply or divide
numbers using only shift-and-add elementary st€ps. results are sine, cosine,
and arctangent functions.

In 1971, this algorithm was generalized to compudgarithms,
exponentials, and square roots [30]. CORDIC isthetfastest way to perform
multiplications or to compute logarithms and expurads but, since the same
algorithm allows the computation of most mathenatiitinctions using very
simple basic operations, it is attractive for hamdsvimplementations. CORDIC
has been implemented in many pocket calculatorsraadthmetic coprocessors
such as the Intel 8087 [31].

1.4.2 CORDIC algorithm substantiatiation
The Volder's CORDIC algorithm can be denoted in@ikke language as
jo=];
0= 0,607252935;

Yo= 0;
for(i=0,i<n,it+){
if j i3 0)

{ = i-y*2';

16



Yier = Vit Xi*27;
jini=]i- atan(2') ;}
else
{ = i+yi*2";
Y1 =i - %*27;
j w1=] i+ atan(2) ;}
}

The results arg,= sinj , ,=cosj ,j = 0. The terms at&i! are
precomputed and stored in ROM. If

_ u
| of< atan 2 =1.783287...,

k=0
then
Xn XoCOSj ¢ —YoSiNnj o
imey Yo =K X Sinjo+YoCOSjo
Jn 0

i
where the scale factdt is equal toO~/1 + 2% = 1.64676... . Therefore, to
=1

compute the sine and the cosine of a nunmhethe initial data ar¢ o = ;
o= 0,607252935y,= 0, as shown above.

That algorithm is based on the decompositiopngf | on the discrete
basew, = atan 2, using the nonrestoring algorithm. The nonrestprin

algorithm gives a decomposition jof.

The basic idea of the rotation mode of CORDIC ip@dorm a rotation of

anglej as a sequence of elementary rotations of amigles The algorithm starts
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from (Xo,Yo0), and obtains the poink,y«+1) from the point Xy« by a rotation of
angledywy. This gives:

Xerl COSdek) — sin (dek) Xk

Vs SiN @W) + cosEiow) Yk
This can be simpli ed as:
Xice1 1-d2* X
= cos i :
Vit W gavan oy,

Since, cosfi) = 1A/1 + 2% is stable in each iteration, it is taken into
account as the common factrThen, the formula can be simplified to

X+l 1-0d2 %
Yicr1 d2¥+1 vy

which is the basic CORDIC step, in the trigononeetype of iteration: it is no
longer a rotation of anghe, but a similarity, or a “rotation-extension” of
anglew, and factor 1/cow.

The choice ofl, can be slightly simpli ed. If the angles are defthas
Jo=]:)ir1=]i—dwg; de=11ifj >0, and -1 otherwise. So, the algorithm is
got, which is mentioned above.

The feature of the algorithm is that it performs$yashifts (multiplies
by 2*) and additions (subtractions) [6].

1.4.3 CORDIC-like algorithms
Similarly, to the described above algorithm, th&t i the CORDIC-
like algorithms are got. Below some of them areesented, which are
selected in [7,10].
Algorithm for the function§ = arctgg/X) and =k\X@+y* by
-p £] <p,k=1.64676025812.
J1=0; 0=X Yo=Y.
fori=0,i<n,i++){

if (x 3 0)
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{ 1= i-y*27;
Yier = Vit Xi*27;
jwi=] - atan(2) ;}
else
{ = i+yi*2";
Yier =i - %*27;
i m=ji+atan(2) ;)
}
The results arg,= 0, ,=k\)X* +y* ,j = arctgg/X).
Algorithm for the functions sh, chj .

Yo=Y, % = 1.2051366} o =] .

1=0;]=0;
while (i <=n){
if (j i3 OX
Y1 = Vi + %*27;
Xis1 =X+ Y27,
j =] i—arth(2);
}
else
{ Wer = Yi—X*27;
Xiu1 = %= Y27,
jw1=] i+ arth(2);
}
if(i=4)j=4;
else if (i = 13)j =13;
elsej++;
i++

}



The results arg, = chj ,y,=shj, j ,=0.

Algorithm for the functiong = arth@/X), M = k\/)é —y* ,k =
0.82978162.

Yo=Y, %=X o0o=0.

1=0;j=0;
while (i <=n){
if (j i3 OX
We1 = Yi— X*27;
X1 = X — Yi*27;
j =] i+ arth(2);
}
else
{ Wer = i+ X*27;
X1 = X%+ Y27,
j w1=]i— arth(2);
}
if(i=4)j=4;
else if (i = 13)j =13;
elsej++;
i++

}
The results arg, = k\)@ —=y? ,j »= arth{/x).
Algorithm for the function y =°. 0 £ x<1.
Yo=1, X% =X
i1=0;j=0;
while (i <=n){

if (x 3 O}

Yo = Vit %*27;
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}

X = X— In(L + 2);
}
else{ Vii=y,—x*27;
X=X+ In(1 = 2);

}

if(i=4))=4
elseif (i= 13)j =13;
elsej++;

I++

The results arg, = €, x, =0.

Algorithm for the function y = In(). 0 £ x<1.

Yo=0, % =X.
1=0;]=0;
while (i <=n){
if (1 -x <0}
X1 = X+ %*27;
Yur=Yi— In(1 + 2);
}
else{
X1 = X—X%*27;
Yer=Yi+ In(l + 2);
}
if(i=4)j=4;
else if (i = 13)j =13;
elsej++;
I++:
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The results arg, = €, x, =0.

Algorithm for the function 2by the Brigg’s method.

0=
for(i=1,i<=n,i++){

if (i<log(1+2"Y))

{ =
a:1=0;}
else
{ = i- log(1+2Y);
a.1=1;}
}
Yo=1;

for(i=1,i<=n, i++){
if (a=1) Y= y*(1 + 2);

}
The resultig,=2.

1.4.4 Square root algorithm

The well-known CORDIC algorithm of th¢x calculations consists in the
following. It calculates the function atamy) as it is shown above. But the side
result is the functioi+/x* - y* , and by the substitution= A+ 0.25,y = A—
0.25, we gek, = Ky/A [32].

The disadvantages of this algorithm are additionaltiplication to the
coefficient 1K » 1.207, and repeating some iterations (4-th anthi8henn <

32) for the algorithm convergence.
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1.5 Hardware implementation of the elementary fomst

As it is shown above, both the polynomial exprassi@and rational
approximations are computational intensive as tleytain a number of
additions, multiplications, and even divisions, @hiare expensive operations.
When implemented in an ASIC, or FPGA they occupgrge area and consume a
lot of power in addition to increasing clock persod

When the function argument is divided into a setimérvals, and the
small order polynomial is fit for such approximatjdhen, such is approximation
often used in hardware [33]. A special kind of apomation here is the table
based approximation [34].

The CORDIC algorithms have got the most intensige in the FPGA
implementation due to their simplicity. The probkrand solutions of these

algorithm implementations are shown in the populark [35].

1.6 Preliminary conclusions

In this section, the algorithms for the elementanyction calculation are
reviewed. Among them are polynomial approximatiomgctional recurrence, and
digit recurrence algorithms.

It is found out that the hardware implementation tbé elementary
function computations is not investigated at thappr level.

It is noted, that the algorithms, which utilize pradditions, shifts, table
functions, and small number of multiplications dhe best candidats for the
FPGA implementations. Among them the CORDIC likgoaithms play the
leading role.

In the next section, the theoretical basics of tleev methods are

developed, which satisfy the mentioned above featur
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2 DESIGN OF THE PROCESSING UNITS FOR THE ELEMENTARY
FUNCTION CALCULATION

2.1 FPGA as the computing environment for elemgrftarctions

2.1.1 FPGA architecture

Below, the properties of the Xilinx FPGAs are colesed, because this
company is considered as the larger FPGA supigrthe proposed reasons are
true for FPGAs of other companies as well.

In Xilinx FPGAS, the basic building blocks are Cigrable Logic Blocks
(CLBSs). In Spartan-6 devices, the CLBs are madefuwo logic slices which are
independently connected to the general routingherHPGA and to a carry chain
structure [36]. There are two types of logic slicesSpartan-6, SLICEL and
SLICEM. SLICEL can be seen as the basic logic slype, and contains four 6-
input look-up-tables (LUTS), together with four e flip-flops(DFFs) and
multiplexers for routing purposes. The LUTs can lenpent any 6-input logic
function. SLICEM slices contain shift register ftiooality and provide the
option of using the LUTs as distributed user RA weell as the basic resources
described for SLICEL slices. When used as disteBuRAM, LUTs are
configured as memories for user data storage.

Other resources on the FPGA include Digital Cldd&nagers (DCM),
Phase-Locked Loops (PLL), Block RAMs, DSP block§) blocks (IOBs) and
buffers for connecting package pins. The FPGA ressuare connected together
by a configurable routing matrix. A common way asdribing FPGAs is as
configurable logic “islands” connected togetherad{gsea” of configurable routing
paths.

When synthesising an FPGA design, the circuit flonctliefined by the
designer is mapped to these resources by syntioedss This mapping makes up
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the configuration of the device, and is storedhie SRAM-based configuration
memory.

The configuration memory defines the function amperation of all the
described resources as well as the routing andeotions on the FPGA, and can
be seen as an underlying device definition layer.

SRAM-based FPGAs are programmed using a binargtkegm, usually
stored offchip. For space applications, this offaclconfiguration storage is
usually in the form of EEPROM or Flash. Since ti®AM-based configuration
memory is volatile, the bit stream has to be re@ogned onto the FPGA on
startup and power-cycling. The programming logicasponsible for writing the
configuration memory via one of the configuratiaterfaces.

Xilinx Spartan-6 FPGAs contain dedicated DSP ctrguin the form of
DSP48A slices. Fig. 2.1 shows a simplified viewaoDSP48A slice, featuring a
25x18 multiplier, internal pipelining registers aad arithmetic unit. DSP blocks
are hard ASIC blocks embedded in the FPGAs arrgyragrammable logic, and
are much more area efficient compared to soft logjgementations of the same
functionality [37]. As such, DSP blocks are not idefl by an underlying
configuration layer. The DSP48A is well suited f@mmon DSP operations such

as multiply-accumulate.

7

O > WO
ARNE NN

Fig.2.1. Simplified view of a DSP48A slice
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The configuration vectors can be synthesised astaots or as signals
originating from other parts of the system. DSkediare arranged on the FPGA
so that they can be cascaded through the useeaf farry and shift lines to create
wider operators than what would fit into a singl8Mslice.

Block RAM, or BRAM, in Spartan-6 are made up of BB SRAM
memory blocks. These blocks can be cascaded andedivnto a number of
different configurations. For example, a single B@é#ock can be used as a 36kx1
RAM, or as two functionally separate 18kx1 RAMsisltalso possible to create
wider or larger RAM blocks by cascading BRAMSs tduaat

So, when choosing an elementary function algoritbng should keep in
mind the features of an FPGA structure that has Gé&&urces, multipliers,
adders, multiplication blocks, but does not hawastns. For its rapid execution,
the elementary function should be implemented parallel structure that allows

the pipelinined operations, because this moddestefely supported in FPGA.

2.1.2 FPGA project optimization critera

Mentioned above FPGA resources are valuable. @iffteprojects for
FPGA, which perform the same task, can be distsitrd in different folume of
these resources. Moreover, these projects can éhéerent throughput. To select
properly the best project, the effective effecteeh criteria must be selected.
Below, some considerations to these criteria seleetre considered.

Hardware volume criterium

In advance, we consider, that the processing uniwvidth is equal ton,
and its hardware is proportional toin some limitations, and by other equal
conditions.

The adder is the main operational unit in FPGA gxbjUsually, one bit
of the adder is implemented in a single LUT, nddrtg into account the proper

carry propagation network. Besides, each LUT outpam be stored to the
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respective register (trigger), as in is shown . 2i.2,a. Thus, the-bit adder, and
the n-bit register have the same complexity, or cost.nJlsich register, and
adder have the relative cost, which is equalto a 1

Also it is important to consider that LUT has theda SRL16, in which it
operates as a shift register with the programmaéigth of 1 to 16 bits
(Fig.2.2,b).

In the FPGA chip one DSP48 unit takes 60—-300 Cli€es] averagely,
160 CLB slices. For reference, the hardwired 18sit 8nultiplier is implemented
as an equivalent circuit of 208 CLB slices. Cons@éSP processor configured
in FPGA with the hardware resources being usectfdy. Then all multiplier
resources should be loaded by the useful compuotat@and other computations
are distributed among all adders and multiplexensiemented in FPGA. By this
condition, one multiplier takes 160 CLB slices. $8eCLBs are enough to
implement up to 20 adders and 20 registers of #mesbit width. Thus, the
complexity of the multiplier unit is estimated dstcomplexity of 20 adders.
Similarly, the complexity of the Distributed RAM tde estimated.

COUT/]\

CLB t——> YB
G4 > Y
3 LuT S LT U S va SRL16

G1 / D
N —ﬁ
AO0...A3

LS, XB

S X
F4

‘ = MUX /
:zg LUT|_|CY > XQ x
F1
Q Vv
CIN

a)

Fig. 2.2. Structure of the Xilinx FPGA elements:E3 (a), SRL16 (b)
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Table 2.1 shows the complexity of the differeninadats of the same bit
width configured in FPGA, which is expressed in twmplexity of a single

register.

Table 2.1.
Complexity of elements, configured in FPGA

Type Complexity
Register 1
Adder 1
Adder-subtractor 1
2-input multiplexor 1
3,4 -input multiplexor 2
5,6-input multiplexor 3
7,8-input multiplexor 4
Registered delay to 2-16 registers (FIFO) 1-2
Multiplier unit 20
16 word RAM 1
1024 word RAM 20

Its analysis shows, that multiplying units shoule mainimized primarly.
Since in the actual application specific procesdbes 2-5 input multiplexers
frequently are used, then the complexity of the tipleixer, which takes to a
single input, is equal approximately to 0.27. Thieans that it is necessary to
mimimize not only the number of registers and asidéut also number of
multiplexot inputs.

According to the arguments above, the following ptaxity criterion of

the FPGA project is proposed:
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Qs=hng+ Ny+ 20Ny + 0.27h,, (2.1)

Whereng is the register number, including the FIFO numlverich are
mapped into SRL16 primitive, excluding the registerthe DSP48 modules;

Na is the adder number, due to the CLB constructigntauthree input
adder is implemented in a single CLB column, thenefn, considers 2- or 3-
input adders;

Ny is the multiply unit number,

nyis the number of the multiplexor inputs [38].

Performance criterion

The signal delay in the multiplier blocks is approately equal to 4.5 ns
for Spartan-6 FPGA. In the two-staged pipelined tipligr the minimum
multiplication period is equal to 2-2.5 ns. The eddelay is derived from the
carry signal propagation and therefore, it is propoal to the bit width. Since the
adder is formed as a line of the locally coupledBDdlices, then its delay is
stable, and for 16-bit adder is equal to 1.4-2.5 ns

It has to taken into considerations, that the priogo of the delay in the
logic elements is 35-85% of the clock period depanan the degree of the
placing and routing optimization, and on the comipyeof the structure.

In the practice, the multiplier delay is about tviie adder delay, taking
into account the interconnection delays.

The multiplexer network has far less latency thean adder has. It is not
depended on the word length, and is nearly indegbioth the input number., but
depends on the quality of the wiring of the lingghiich connect it to the
neighboring elements. As a result, the connectiathe additional multiplexor to
the adder adds a delay of 0.4-1.6 ns dependingeomtiltiplexor number (1 or 2)
and routing quality.

Thus, the proposed performance criterion is:
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Qr=n'a+ CryN'm+ Crx N'x, (2.2)
wherecry, Crx are the ratios of the multiplier and multiplexoitadeto the
adder delaygry = 2.2, ¢rx = 0.5;

n’is the adder number;

n’wis the number multipliers;

n’sis the number of multiplexers,
staying in the critical path, which connects thgatiof one register and the input
of another one. Here, a single unit delay is estoh as the delay of the adder
with the average delays in the communication lines.

Really, Qr is equal to the minimum clock period, derived tioe current
placed and routed project, when the results anguttetd in each clock cycle. It is
hold on when the processing unit is implementedaawhole combinational
network, which performs the elementary function,ifoit is wholly pipelined
network.

The real processing unit projects can calculatealgerithm forL > 1
clock cycles not in the pipelined mode. Thus, tx@ression (2.2) must be
multiplied by the value of:

Qr=L (N'a+CrmN'm+ Crx N'y). (2.3)

The integral criterium has to take into accounhbwrdware volume and
performance criteria. Then, it can be selected as:

Q=Qs*Qr (2.4)

This criterium shows, how many adders are neededltulate, say, one
million of results per second. The better solutlmas the smaller value @,
because it has smaller hardware volume and/or higlbek frequency, which is
proportional to the processor performance.
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2.2 Synchronous dataflow graph for the elementangtion calculations

The processing module for the elementary functaioutation belongs to
the datapaths. The modern high-performance congoerate with high clock
frequencies, thanks to the pipelined mode of dategssing and transmission.
There are various methods for the design and aopditnon of the pipelined
datapaths. These methods are based on the stiusyuthesis of the datapath,
describing it at the register transfer level andhfer conversion to the gate level.
The basis of many methods is a representationeoélporithm as a synchronous
dataflow graph (SDF) and its transformation [39].

Such SDF optimization techniques as retiming, faldiunfolding and
pipelining, are widely used in microelectronics,dadesign of digital signal
processing (DSP) devices [40].

SDF is isomorphic to the graph of the computercstme, which performs
a predetermined algorithm. The nodes of such ahgregrespond to the
computing resources like adders, multipliers, pssgey units (PUs). The edges
correspond to the communication lines, and theldadtye them are mapped to the
registers. Consequently, SDF is a directed grgph(V, E), representing the

computer structure, wherel V represent some logic network with delaydf

time units. The edgel E corresponds to a link and is loaded ] labels,
which is equal to the depth of the FIFO buffer.

The minimum duration of the clock cycle is equal to the maximum
delay of the signal from one register output toitiput of another register, i.e., to
the critical path through the adjacent nodes welaysd, for whichwe] = 0. It
should be noted, that with such a one-to-one mgppirSDF, the duration of the
algorithm cycle coincides with the duration of a clock period,,ilga = T, that

in the other algorithm mapping is not respected.
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The retimingis such a exchange of the labels in SDF edgeshwioes
not affect the algorithm results. Usually it islieed as a sequence of elementary
retimings, each of them consists of a transferargyoup of labels (i.e., registers)
from the input edges of some nodt® its outputs.

In most cases, it is allowed to increase the latletdy of the algorithm
and to insert the additional registers on the igpoit outputs of SDF. After
retiming such modified SDF, the pipelined networkhwlow value of T¢ is
achieved. This technique is calledS{3F pipelining

A cut-setretimingis an effective metod, which implements the pipaly,
and therefore, is widely used for the pipelinecagath design. Theut-setin an
SFG is a minimal set of edges, which partitions 8#G into two parts. The
procedure is based upon two simple rules [1].

Rule 1:Delay scaling All delaysD presented on the edges of an original

SFG may be scaled, i.®, 9D, by a single positive integ&; which is also

known as the pipelining period of the SFG. Corresjiogly, the input and output

rates also have to be scaled by a factor @fith respect to the new time uiit).

Time scaling does not alter the overall timingled SFG.

Rule 2:Delay transfer Given any cut-set of the SFG, which partitions th
graph into two components, we can group the edfélseocut-set into inbound
and outbound, depending upon the direction assigoetie edges. The delay
transfer rule states that a number of delay ragissayk, may be transferred from
outbound to inbound edges, or vice versa, withdfgcang the global system
timing.

These rules provide a method of systematically rayJdremoving and
distributing delays in a SFG and therefore addimgnoving and distributing
registers throughout a circuit, without changing thnction. The cut-set retiming

procedure is then employed, to cause sufcient yeldo appear on the
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appropriate SFG edges, so that a number of detaybe& removed from the graph
edges and incorporated into the processing blaoksrder to model pipelining
within the processors; if the delays are left oa #uges, then this represents
pipelining between the processors.

SDF has the properties that it can be describe®HiL, and then, be
translated into the FPGA bit stream [38].

2.3 Example of the processing module synthesis

Consider the design of the processing module, wimgblements the
equations (1.2). The initial SDF is illustratedthg Fig.2.3,a. After implementing
a set of cut-set retimings, the SDF becomes bathrasin Fig.2.3,b, where the
black bars represent the delay marks.

The balanced SDF is acyclic SDF, in each route thfd same number of
delay marks stays. Each delay mark is mapped togeespipeline register. So,
the balanced SDF can be described directly in ViBlfollows.

process(CLK) begin
if RISING_EDGE(CLK) then

if RESET ='1" then
d11<=0; d12<=0; d13<=0; d14<=0;
d15<=0; d16<=0; d17<=0;
d1s7<=0; d1d2<= 0;d1d3<=0;
d2<=0; d3<= 0; d4<= 0; y<=0; xd<=0;

else
xd <= X;
d11<= xd*xd;
d12<=d11; d13<=d12; d14<=d13;
d15<=d14; d16<= d15; d17<= d16;
d1s7<=d11*S7;
d2<=d1s7 + S5;
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dld2<=d13*d2;
d3<=d1d2 + S3;
d1d3<= d15*d3;
d4<=d1d3 + S1;
y<= d17*d4;
end if;
end if;
end process;

Fig.2.3. SDF for equations (1.2) (a), and SDF gitpelining (b)
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Here, d means the signal, which is delayeditoclock cycles. All the
signals and constants except clock signal CLK aesketr signal RESET are
considered to be integers, which have scaled psod@ue to the balanced SDF,
the derived processing unit operates in the pipdlimode. Its critical path goes
only through a single multiplier unit. Thereforeccarding to (2.2) its
performance i€y = 2.2. The hardware volume (2.1)@g=8 + 3 + 266 = 111,
taking into account that the registers d11, d14d2dd1d3, y are considered as
the registers of the DSP48 modules, couples otadjaegisters are implemented
in SRL16 units.

The resulting criterium (2.4) IQ = Qs ¥Qr = 1112,2 = 244,2 adders per
bin. results per second. This figure is rather hagid the most fraction in it (90%)
Is the multiplier costs. This proves the fact ttreg polynomial approximation is

bad solution for the elementary function approxiorat

2.4. Development of the square root computing madul

2.4.1 Introduction

The function of the square root is the very popelamentary function in
the science computations, DSP, and image procesanty pattern recognition
[1,41]. Most often it is computed in a floating-pbicoprocessor, which has a
certain delay. But the common low-cost microprooessdo not have such
COprocessors.

In our time, FPGAs are used to solve the same enakl which require
the use of the function/x. There are IP cores for the functigfx, which are
offered by FPGA manufacturers, and other firms thaiply the licenses to such
modules for their configuration in FPGAs [42]. Sucimodule is able to calculate
the function of the square root in hardware in@efed mode with high speed.
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These modules have been developed one to two deegde and generally, they
do not take into account the features of new FPtBAsappeared on the market a
few years ago. So, such modules need to be improved

Next, we will consider the square root extractidgoathms with an
evaluation of their efficiency for 24-bit input @aand fixed-point results that can
be claimed for implementation in the FPGA. Thiseleis acceptable for most
signal processing algorithms and for the implenteortaof floating point

calculations of single accuracy.

2.4.2 Base algorithm selection
Polynomial approximation
The traditional solution for calculating an elenagt function is a

polynomial calculation, which is, for example, aylta series, as the next [43]:

\/m:1+%x- :—éxz+ 1_16)(3

It is impossible to achieve a calculation erroslédsan 0,2% ik (0; 1).
In addition, the algorithm requires the implemeotatof many multiples.
Therefore, it is inappropriate for implementationthe FPGA, though, it may be
agreed on a piecewise polynomial approximation.

Functional recurrence algorithm

The following iterative algorithm is based on theviNon-Raffson formula
(1.3), which does not require dividing operatiortdere xo» 1/\/7 Is the

approximate value of the function/? » X¥n,. Each subsequent iteration of the
algorithm approximately doubles the number of adrresult bits. Therefore, in
order to calculate the correct 24-bit result, itniscessary to perform = 2
iteration of the algorithm and obtain the valuexgfrom the table with a seven-
digit input of the address, that is, volunfe Phe algorithm can be executed in one

iteration, if the table has a 13-bit input, thatiidias a volume of'2words.
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The performanc€&; and hardwar€)s costs of this algorithm an previous
one are given in Table 2.2. When calculatiQg it was considered that the
mentioned tables are implemented in the FPGA asOMRwhich has an
approximate complexity as the complexity of two andy adders, respectively.

Digit recurrence algorithm

A well-known CORDIC algorithm for calculating’? Is based on the
following. In the calculation of the arctgh(x/y)rfction, the\/? function is the
by-result of the functiorx, = K\/W , with substitutiorx = A+ 1,y = A - 1,
we obtainx, = K\/K [44,45]. This algorithm has been successfullylenmgented
in many FPGA projects, such as in [46].

The disadvantages of this algorithm are the need ddditional
multiplication by the factor K » 1,204, as well as the repetition of some
iterations for the convergence of the algorithm.

A more constructive algorithm is the Digit recurcenalgorithm, which
aims to obtain the function x [44,47]. It is baswdthe following relations. For
each number T [0,25; 1.0] we can choose the following coeffitie 1 [0, 1]
that

6(1 +a2")° =1.0. (2.5)
i=1
Therefore,
INX »O(1 +a2)
i=1
or

X » x(m)(l +a2"). (2.6)

The implementation of the algorithm consists ineapg a series of

iterations. During then-th iteration, the coefficierd,, is chosen to ensure equality
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(2.5) and the found coefficient is substituted h6§. In order to handle the
numbers 1T [0; 1.0), they can be normalized if (2.6) and J2dftially accepti =
0 anda = 1 until the first overflow of the product in §). As a result, we get the
following algorithm [44].

Yo=X; %=x;m=0;f=0;

for 1=0;i<n;i++)

{
t =x+ 2'm*xi;
u=t+2"%t ;
if (ud 1.0) {
f=1,;
K1= X,
¥1 =W,
}
else {
%K1= U,
Y1= Y+ 2y
}
if (f==1) m++;
}

When performing the algorithm initially, when= 0, the normalization of
the operandx, is performed with the correction of the partiabuk y;. Then
m=1, 2,...nand in the process of convergengeoes to one, ang goes tcx/?

, Wheren is the number of binary digits of the result.

To implement the algorithm in FPGA, it is desiralite perform the

normalization of, and the corresponding correctignn the normalization block

based on the shift unit.
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Table 2.2

Costs to calculate the functign

Algorithm DSP48 modules | Qs Qr
Polynomial algorithm 5 111| 8
Functional recurrence algorithm, 1 iteration 2 10Z
Functional recurrence algorithm, 2 iteratigns 4 86 13
Digit recurrence algorithm - 52 50
Modified digit recurrence algorithm 1 35 17

Then, the algorithm receives an acceleration inwoest case by one
third. The experience of building a normalizatiamitishows that its complexity,
together with the complexity of the denormalizatiblock for 24-bit data, is
evaluated as the complexity of four adders. In taati 2n adders for the parallel
calculation (2.5) and (2.6). Then the algorithmeiecuted for & = 48 clock
cycles for obtaining the resulting digits (two a®lof calculating andu for n
cycles) and two cycles for normalization and deraimation. Thus, the
algorithm has the complexity €ds= 52 andQ = 50 (in the non-pipelined mode).

So, the digit recurrence algorithm for calculati\dlg Is preferable for its

FPGA implementation.

2.4.3 Modernization of the digit recurrence aldant

The largest delay in the digit recurrence algoritdiscussed above, gives
a double addition of a shifted datum that distisgas this algorithm from other
algorithms of this type:

t=x+2"x;
us=t+2t

These two steps of addition can be reduced to one:
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u=x+2"x #2720 =x+ 2 + 27

Since in modern FPGA the three-input adder is imgleted in a single
layer of six-input LUTs, then such calculation da@ performed in one cycle
without additional time and hardware costs. Congigethis feature, for even

the algorithm looks like the following.

k = FLO(X);
Yo = SHR(X,k/2);
Xo = SHR(x,k/2*2);
m = 1;
for I=0;i<n;i++)
{
u = x+ 2—m+1*xi + 2—2m*
if (ud 1.0) {
K1=X,
¥1=Yi,
}

else {

Xi;

%1 = U,

Yi=y + 2y

m++;

}
Y = SHL(yn,k/2);

Here, the FLO function determines the number oftsligefore the most
significant bit, and the SHL, and SHR functionsfpan a shift the data to the left
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and to the right for a given number of bits. Conssdly, the number of
equivalent adders for this algorithm is the samd, the delay of calculations
decreases tQr = 26 cycles.

When analyzing the execution of this algorithngan be seen that when
reachingi the limit n/2, then the most significant- 1 bits of the datg become
equal to a one for amg. Consequently, the most significant bitsyadre the exact
bits of the result. One can put forward the hypsithéhat the least significant bits
of the result can be calculated by analyzing amtgssing the difference 1x-
For example, this could be determined using thke taimction.

Lete,= 1 —x ande,=~/x —V; or\/x =g +y. Thatis, in order to obtain
the refined value of the result, the value of tbeectione, should be calculated
and added to the approximate result, and the d@reshould be calculated
taking into account the differeneg

Due to (2.5) and (2.6),

e=1- XC~)(1 +aa2")2,

i=1
e=x —-xO(1+a27).
i=1
m _
Letz=+/x O +a2"), then
i=1
e=1-Z=01+2(- 2;
ande,= \x (1- 2).
Sincez » 1, then e »2(1- 2;
And e» X ef2» yi (1 —x)/2.

So, in order to obtain a refined resy{t(1 —x;)/2 should be added to the

approximate resuly;. To do this, you need to perform an additionaltisadtion
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and one multiplication. Moreover, because of th#ence ine, and the
correctionse, half of the highest bits are zero, then multigima can be
performed at twice the smaller bit. That is, thediaare complexity of such
multiplication can be estimated by five adders. Tésulting modified algorithm

looks like the following.

k = FLO(x);
Yo = SHR(x,k/2); %= SHR(x,k/2*2);
for (1=0;1<n/2;i++)
{
u =x+ 2'i*xi + 2'2i'2*xi;
if (ud 1.0) {
K1=X,
¥1=Yi,
}
else {
%K1= U,

Yi=Yy + Z_i_l*Yi;

}
Y = Yoo+ Vi (1.0 - %e1)/2;
y = SHL(y, k/2);

Thus, the costs for this algorithm far= 24 areQs = 35 andQ; = 17.
Thus, due to the modification, the algorithm reeeian acceleration about 50/17
» 3 times and has a minimal latent delay amongaaisiciered algorithms.

SDF of a single iteration of this algorithm is showw Fig. 2.4.
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Fig.2.4. SDF of a single iteration of thlex calculating

The arrow “ " in it means arithmetical shift right to the giveit number
of the data in the respective edge, the white d&aresents a multiplexor, which
throughputs left or right edge data depending erBbolean operand, which
enters the multiplexor side. Here, this Boolearrape is the sign bii(n) of the
intermediate result.

This SDF is the base for the IP core descriptioHtbL, Which is
shown in Appendix. The development and investigatibthis IP core are shown
in [4,5].

As a result, the modernized digit recurrence atboriis the best of
considered algorithms for the functioq‘? calculating for implementing in
FPGA.
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2.5 Method of the multifunction processor modulsige

2.5.1 Background of the method

A set of algorithms of calculating the elementamdtion are considered
above. Among them, the digit recurrence algoritimse the features of the
minimum hardware volume for their FPGA implemeraati And really, such
algorithms are often implemented in FPGA. But tlhisyally implemented as a
single function in the separate IP core.

The multifunction processing modules are often mdetbr design of
complex computer systems. Such processing modwesas the mathematical
coprocessor for the general purpose microprocessarsed for implementing
complex algorithms of the parallel-sequential natur

But the multifunction processor modules are notpps2d by the provi-
ders. Some experimental multifunction processoesf@aund very rarely. The po-
lynomial approximation fits the most of elementéupction calculation because
the processor structure remains the same, buttbalygoefficient set is exchan-
ged. But as it is shown above, the hardware volohseich processor is too high.

The most of multifunction processors for the FP{@&#lementation are
based on the CORDIC algorithm [48] because thdiz@tthe similarity of the
equations for the different functions [35]. For exde, to calculate the functions

like sin, cos, atan, sinh, cos{ix” -y~ ,+/x"+Yy~ the same structure is used, but
only the control of signs of adders is exchanged.

The traditional method of the multifunction procasslesign consists in
selection of the set of hardware resources, finding the schedules for each
algorithm, and in forming the structure, which ieqplents each of given algo-
rithms in a sequence [49]. But the resulting strreed can be far from the opti-
mum because each of the steps of tsuch structotkests has different criteria.

Therfore, it is valuable to develop a method foe tmultifunction

processor designing.
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2.5.2 SDF of the combined algorithm

In the subsection 2.2 and 2.3 it was shown that SDRapped by the one-
to-one mapping to the pipelined datapath. So, ifFSi@presents a set of
algorithms, then the respective datapath implemeatsh of the algorithms
belonging to this set.

The example of the SDF in Fig. 2.4 shows that S@R express the
algorithm, in which the data streams are dynamnyaaterchanged.

Consider two algorithms, each of them implementsémme operation set

{V}1= {V}.= {V}, but they are distinguished in the algorithm drapThen the
combined SDF is possible, which contains the nedg\4, to some nodey,
{V} are connected the multiplexor nodes. So, whersdhewultiplexers are
switched in one position, then SDF performs thst failgorithm, and when they
are swithed in another position, then SDF perfoties second algorithm. As a
result, such combined SDF is mapped into the nadfion datapath structure,
which performs both algorithms.

Definition. Combined SDHRs SDF, which contains a set of multiplexor
nodes, due to that it performs a set of differég@hms.

2.5.3 Formulation of the method

Using the features of the combined SDF a methoth@fmultifunction
processor design can be formed. The method is fatetias follows.

The method of the multifunction processor modulsigie consists in
forming the combined SDF, which performs a setlgbdthms of the elementary
function calculation, in balancing this SDF, andmapping it into the pipelined
datapath.

Comparing to other methods, this method is simp&rause the steps of
resource selection, task scheduling and resoul@eaéibn, and structure forming

are combined, and it provides better hardware anfibpnance effectiveness.
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2.5.4. Example of the multifunctional processott aigisign

Consider the design of the multifunctional procegsmodule, which
calculates the functions afx, sin x, and cosx. The first function is calculated
using the algorithm, described in the paradraptB2ahd the rest of functions are
calculated by the CORDIC algorithm.

SDF of the first algorithm is based on the cycleFShown in Fig. 2.4.
The respective SDF of the CORDIC cycle is showFRim 2.5, which is built on
the base of the algorithm, described in the papdgiad.2.

Atan(2')

é

j i+1

Fig.2.5. SDF of a single iteration of the CORDI@aithm

Atan(Z") .

— —— —
4

ii+1 x Xis1 ® Vit 1 x

Fig.2.6. SDF of a single iteration of the CORDI@aithm
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After performing the combining the SDFs in Fig 2dd 2.5, we have got
SDF, which is illustrated by Fig. 2.6.

The resulting combined SDF in Fig.2.6 forms théagsd pipelined SDF,
which is described as a GENERATE operator in VHDL:

STAGES: foriin 0 to n-1 generate
process(CLK)
variable u:STD_LOGIC_VECTOR(n+1 downto 0);
variable ii:STD_LOGIC_VECTOR(5 downto 0);
begin
li:=conv_std_logic_vector(i,6);
if rising_edge(CLK) then
if F='0" then
u:=x(i)+SHR(x(i),ii) +SHR(x(i), (ii&'0")+2);
if (u(n) ='0" or u(n+1) ='0") then
X(i+1l)<=u;
y(i+1)<=y(i) + SHR(y(), ii+1) ;
else
x(i+1)<= x(i);
y(i+1)<=y(i) ;
end if;
else
if (fi(i)(n) ='0") then
u = x(i) - SHR(y(), ii);
y(i+1)<= y(i) + SHR(x(i), ii);
fi(i+1)<=fi(i) - atan(i);
else
u = x(1) + SHR(y(), ii);
y(i+1)<=y(i) - SHR(x(i), 1i);
fi(i+1)<=fi(i) + atan(i);
end if;
X(i+1)<=u;
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end if;
end if;
end process;
end generate;
The whole IP core description is presented inAppendix 1.

2.6 Preliminary conclusions

In this section, the FPGA architecture is inveggdao select its features,
which infer the selection of the elementary funct@igorithm implementation.
This investigation helped to select the hardwaig aad performance criteria for
the processor module optimization.

It was proven, that the digit recurrence algorithans best fitted for the
FPGA implementation.

A new modification of the digit recurrence algontHor the functiom/?
calculating is proposed, which provides the dedngathe latent delay up to three
times.

The method of SDF mapping into the pipelined stmecbf the processor
module was studied, which helps to derive the @ffecstructures for the
elementary function calculations.

A new method of the multifunction processor modidsign is proposed,
which consists in forming the combined SDF, whienfprms a set of algorithms
of the elementary function calculation, in balagcthis SDF, and in mapping it
into the pipelined datapath, which is simpler amdvmes better hardware and
performance effectiveness comparing to the otmeitasi methods.

The method was used in the design of the procesedule for the|/ x ,
sine, and cosine function calculations.

The effectiveness of the proposed method and &tgosiis proven in the
next section.
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3 IMPLEMENTATION OF THE ELEMENTARY FUNCTION PROCES3®
MODULES IN FPGA

3.1 Synthesis of the processor module fonfhe function calculation
The project o the processor module for tlflg function calculation is
described in VHDL as the entity SQRT_C5, and immata the algorithm,
described in the paragraph 2.4.3. Its text is shiowkppendix 1.
The module is tunable by the generic constants:
generic(ni:natural:=24; -- input bit width
no:natural:=24; -- output bit width
norm:natural:=0; --0- unnormalized input data,ibrmalized
pipe:natural:=1);-- 1 —fully pipelined , 0 — comatorial
network

The module has the following ports:

port(
CLK:in STD_LOGIC;
DI :in STD_LOGIC_VECTOR(ni-1 downto 0); --inifigata
DO : out STD_LOGIC_VECTOR(no-1 downto 0)-- result
)i
By testing this IP core, the signal of the lineamf was feeded its inpit
port, and the output signal was investigated. Thgud signal represents the
function\/? with the error, which is not sucseed a singlstleaynificant bit. For
the purposes to preserve such precision, the I® ltas the inner data bit width,
which is to 5 bits higher than the input data bitltiw. The resulting modeled

diagrams are shown in Fig.3.1.
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DI

DO

Fig.3.1. Input and output signals of the processodule for computing/ x

Then, the processor module was synthesized, mapezed and routed
in the Xilinx FPGA xc6Ix-16 (Spartan-6) by the CAdystem ISE ver. 13.3. The
results of mapping for the input and output bit tiebf 24 bits are shown in

Fig.3.2. The timing result message table for thieds the following:

I S Y )
* 4] -/ POl ) )

In fig. 3.3, the graphs of the dependences of hardwolume in the
number of LUTs on the bitwidth of input data arewh. Note, that this bitwidth
Is equal to the one results, the modules have tmvemtional and pipelined
structure. It should be noted that the modules waithitwidth up to 32 inclusive
additionally have a multiplication unit DSP48, atiee rest of then four such

blocks have.
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Device Uiliration Summary
Slice Logic Utilization Used | Available | Utilization
Mumber of Slice Registers 88 18,224 1%
Mumber used as Flip Flops 80
MNumber used as Latches 0
MNumber used as Latch-thrus 0
Mumber used as AND/OR logics a8
Mumber of Slice LUTs 1,591 9,112 17%
Mumber used as logic 1,591 9,112 17%
Mumber using 06 output only 1,012
Mumber using OF output only o9
MNumber using 05 and 06 520
Mumber used as ROM 0
Mumber used as Memary ] 2,176 0%
Mumber of nccupied Slices 515 2,278 22%
Mummber of MUXCYs used 652 4, 556 14%
Mumber of LUT Flip Flop pairs used 1,616
Mumber with an unused Flip Flop 1,528 1,616 Q4%
Mumber with an unused LUT 25 1,616 1%
Mumber of fully used LUT-FF pairs 63 1,616 3%
Mumber of unique control sets 1
Mumber of slice register sites lost ] 158,224 0%
to control set restricions
Number of bonded [CBs 49 232 21%

Fig.3.2. Results of mapping the square root pracdss the input and output bit
width of 24 bits
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4500 / A
4000 / /
3500 / /

// —— Combinatorial
3000 / / /‘ network
2500 —— Pipelined
/ / / network
2000 —e— Xilinx Corelib

woo| 2]
500 A’?///

O I I I I I I
16 18 24 32 48 54

Fig.3.3. Hardware volume of the procesdar depending on the bitwidi

According to Fig. 3.3, the hardware volume of thedule with the
combinatorial network significantly outperform thelume of the pipelined
module. This can be interpreted in that the comyzymthesizer is better able to
optimize the pipelined network because the parth@ietwork to be optimized,
that is, the gates and LUTs located between thddy&rs of registers have much
less complexity.

Fig. 3.4 shows the maximum clock frequency of Welsesized modules.
When implementing the bitwidth 48 or more, the maxn clock frequency

significantly decreases because the compiler-sgig@e builds a multiplication
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unit with a bitwidth, which is more than 24, andtla¢ same time, it manifests

itself unable to build a pipelined network of theltiplication block.

350 -
300

250

A \s\ —— Combinatorial

200

\ e network

\ —— Pipelined
network

150

\ —e— Xilinx Corelib

100

50

16

18 24 32 48 54

Fig.3.4. Maximum clock frequency of the proceséﬁr depending on

the bitwidth

For comparison, Fig. 3.3 and Fig. 3.4 show the attaristics of the

licensed modules offered by Xilinx company. Congstly, the proposed module

approximates the hardware costs to the "firm" meduh = 32, but in general, it

loses to him including the speed. Its advantagestlaat it is free and can be

configured for arbitrary input and output bit widtm addition, the proposed

module has a lower latency delay.

For example, if the input data is normalized, tiien bitwidth 24, the

latent delay is only 15 cycles versus 24 cyclescpenpetitor. If the circuit is not

pipelined, then the delay from the input to thepotiis T, = 40.3 ns and 71.9 ns,

respectively. This means, that when implementirgflbating-point calculations,

the proposed module provides the greater perforenanc
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As a result, the gesigned processing module has vitry high
effectiveness. Comparing to the CORDIC processee (3elow), it has in 1.6
times less hardware volume in LUT number. It ha2 times less latent delay due
to the fact, that the modernized algorithm is dal@d forn/2 clock cycles, and in

1.6 times higher clock frequency by the same buitkun.

3.2 Synthesis of the multifunction processor module

The project o the processor module forthg , Sine and cosine function
calculations is described in VHDL as the entity SOQRIN, and implements the
algorithm, described in the paragraph 2.5.4. ksiseshown in Appendix 1.

The module is tunable by the generic constant:

generic (n : natural := 12);
which gives the input and output bit width.

The module has the following ports:
port(
CLK :in STD_LOGIC,;
RESET :in STD_LOGIC;
F:in STD _LOGIC; -- function select F=0 when Q)
XIN :in STD_LOGIC_VECTOR(n-1 downto 0);
YOUT : out STD_LOGIC_VECTOR(n-1 downto 0);
XOUT : out STD_LOGIC_VECTOR(n-1 downto 0)
)i

The processor module was synthesized, mapped,doéatk routed in the
Xilinx FPGA xc6Ix-16 (Spartan-6) by the CAD systé8E ver. 13.3. The results
of mapping for the input and output bit width of Bi4s are shown in Fig.3.5. The

timing result message table for this core is thieyong:

I W 2060 '# )
* 4 -1 Y680 ) )
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Device Utilization Summary
Slice Logic Utilization Used | Available | Utilization
Mumber of Slice Registers 1,875 158,224 10%
Murnber used as Flip Flops 1,855
Mumber used as Latches 0
Number used as Latch-thrus 0
Mumber used as AND/OR. logics 20
Mumber of Slice LUTs 3,251 9,112 35%
Mumber used as logic 3,215 9,112 35%
Mumber using 06 output only 2,797
Mumber using 05 output only 4
Mumber using 05 and 06 414
Mumber used as ROM 0
Mumber used as Memory 0 2,176 0%6
Mumber used exdusively as route-thrus 36
Mumber with same-slice register load 12
Mumber with same-slice carry load 24
Mumber with other load 0
Mumber of occupied Slices aa0 2,278 42%
Mummber of MUXCYs used 2,564 4, 556 56%
Mumber of LUT Flip Flop pairs used 3,321
Mumber with an unused Flip Flop 1,477 3,321 445
Mumber with an unused LUT 70 3,321 2%
Mumber of fully used LUTFF pairs 1,774 3,321 53%

Fig.3.52. Results of mapping the square root psmdsr the input and output bit
width of 24 bits

In fig. 3.6, the graphs of the dependences of hardwolume in the

number of LUTs on the bitwidth of input data arewh. Note, that this bitwidth
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Is equal to the one results, the modules have tmyemtional and pipelined

structure..

14000 -
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8000 //// —— Combinatorial
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/ —— Pipelined
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2000 //
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s
O I I I I I |

12 16 24 32 48

\\\D\

—

Fig.3.3. Hardware volume of the multifunction peesor module

depending on the bitwidt

According to Fig. 3.6, the hardware volume of thedoe with the
combinatorial network significantly outperform thelume of the pipelined
module. This can be interpreted in that the comysijmthesizer is better able to

optimize the pipelined network because the parta@hetwork to be optimized,
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that is, the gates and LUTs located between thdayers of registers have much
less complexity.

Fig. 3.7 shows the maximum clock frequency of §ymlsesized modules.
When implementing the bitwidth 48 or more, the maxn clock frequency
significantly decreases because the compiler-sgiz@ebuilds a multiplication
unit with a bitwidth, which is more than 24, andle¢ same time, it manifests

itself unable to build a pipelined network of theltiplication block.

200 ~
180

160 . |
140 4—a=— A —— Combinatorial

120 TN network

T~ - Pipelined
100
30 network

60 e

40 e -
20

12 16 24 32 48

Fig.3.7. Maximum clock frequency of the multifuraetiprocessor module
depending on the bitwidth

Additionally, the module of the multifunction pras®r was synthesized

with the fixed input F = 0 and F =1. This meanst e synthesized network

performs only either the functioq‘; or functions sin(x), cos(x), as the genuine
CORDIC processor. The results of this synthesishosvn in Table 3.1.
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Table 3.1

Parameters of different processor structures

Processor Structure Hardware volume, LUTS Maximum clock frequency,
MHz

\/; 2402 145

CORDIC 1665 156

Combined 3251 139

The Table 3.1 analysis shows that the combinedctstrel has the
hardware volume 3251 LUTSs, which is smaller in 1tkbBes than the overall
hardware volume of 4067 LUTs of the processor cdingux/? , and the
CORDIC processor. This means that really, the captbprocessor has the effect

of the minimized hardware volume. Besides, its Wvar@ volume is less than one

of the analogous processor, which performs the tifmnmc\/f but using the
CORDIC algorithm [46].

But the speed of the combined processor (139 MsizJightly less than
the speed of the processors, which perform theraepéunctions (145 and 156
MHz). This is explained, that the combined proces$ss the network, in which
the critical path delay is expanded to the muliipledelay.

As a conclusion, this example shows the rather getattiveness of the
prposed method of design the multifunction processior calculating the

elementary functions.
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3.3 Preliminary conclusions

In this section, a set of processors for the ele¢amgn function
implementation, which are designed according to piheposed method and
algorithms are tested and probed. The resultsharéotlowing.

The designed processing module for the squarefunction has the very
high effectiveness. Comparing to the CORDIC proaess has in 1.6 times less
hardware volume in LUT number, has in 1.6 timedargclock frequency by the
same bit widtlhn. and has in 18 = 3.2 times less latent delay due to the faet, t
the modernized algorithm is calculated fé2 clock cycles.

The designed multifunction processing module hadl.Bb times less
hardware volume than the processors, which perfillensame algorithms but
separately, by decreasing the clock performance tordt — 12%. This shows the
rather good effectiveness of the prposed methodlesign the multifunction

processors for calculating the elementary functions
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CONCLUSIONS

This thesis has presented a detailed descriptiah amalysis of the
algorithm selection and design of the high-speeacgssing modules for the
elementary function computing, and development afiesv method for such
modules design. On the base of the thesis meagehalfollowing conclusions are
made.

1) The algorithms for the elementary function ckltan, like polynomial
approximation, functional recurrence, and digit ureence algorithms are
reviewed. It is found out that the algorithms, whidatilize only additions, shifts,
table functions, and small number of multiplicasoare the best candidates for
the FPGA implementations. Among them the CORDI@-ldtgorithms play the
leading role.

2) The FPGA architecture is investigated to satsdieatures, which infer
the selection of the elementary function algorithmplementation. This
investigation helps to select the hardware cost @arformance criteria for the
processor module optimization.

3) It was proven, that the digit recurrence aldponi$ are best fitted for the
FPGA implementation.

4) A new modification of the digit recurrence algom for the function
\/? calculating is proposed, which provides the desirgpthe latent delay up to
three times.

5) The method of the synchronous dataflow graphH)SBapping into the
pipelined structure of the processor module wadiastl) which helps to derive the
effective structures for the elementary functiolcalations.

6) A method of the multifunction processor moduésidgn is proposed,
which consists in forming the combined SDF, whienfprms a set of algorithms

of the elementary function calculation, in balagcthis SDF, and in mapping it
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into the pipelined datapath, which is simpler amdves better hardware and
performance effectiveness comparing to the otmeitai methods.

7) The proposed method of the multifunction prooessodule design
was used in the design of the processor moduld?or, sine, and cosine function
calculations. Their configuring in FPGA and testimgs shown that the designed
processing module for tha/? function has the very high effectiveness.
Comparing to the CORDIC processor, it has in Intef less hardware volume in
LUT number, has in 1.6 times higher clock frequebgythe same bit widtin.
and has in 3.2 times less latent delay.

8) The designed multifunction processing module iha%.25 times less
hardware volume than the processors, which perfiblensame algorithms but
separately, by decreasing the clock performance tordt — 12%. This shows the
rather good effectiveness of the proposed methodesfgn the multifunction
processors for calculating the elementary functions

9) The future works at this theme can be directethé selection of the
effective algorithms for the elementary functioricoéation and implementing
them in the multifunction processors using the psga method with the goals of

the method improvement and proving its effectivenes
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APPENDIX 1
Processor for calculating the square root function
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Processor for calculating square root, sine and cee functions

$
IE.
,_A _ 1, %
# " T ) (*&BF &(=
+, " , +
; +&IM T (&&
)
@ nn
+ "> A

&B (=*F @&F(CD %) ,C; *&)

&B (& &B'&CD JF@,C; )=%B 0
&B ()== ()FCD B)&,C: )@%B  0(
(& F) ((*CD @BF,C; ) %F*

() =*F (%=@ CD )F,C; *@&=

@& @&=B F*@FCD ()*B,C; =)=
B=*@'& (&=F CD @**%,C; 9% B&%

. .GGG2

GGG CH#. (0B 2
GGG CH#. " 2
GGG CH#. 2
.GGG" 2

' 3 0=62
3
Cl CH#. 2
GG CH#. 2
CH#. 2 +, , 0'J
a.$ CH#. /G H3 ("J '62



$2

AHD CH#. /G H3 ("J '62

aHD CH# /IGH3 ("J '6
62
+ $
3 6 + CH#. /|G H3 "J '62
1> >+ > 2
I 0 3')*&F&Y@F:& "::3 &662
| CH#. /G H3"J '60, ! " 1, 31>62
+ 1
3640,! " 1,3 3 $3& '":3 6:&"'::3 &666> 62
" 2
, 3CI6 ;
+ " 3CIl6
+ 3'640 a3a.$>62
+ 0Y'Y
13'640a3a.$>62
3'640a3a.$>62
13'640 12
36403 0ZY'Y62
mn +2
AHD 40 363 ("J '62
aHD 401363 ("J '62
n +2
, 2
#G + (
, 3Cl6
I CH#. /G H35("J '62
[ CH#. /G H3F"J '62
o,!" !, 3>62
+ " 3CIl6
+ 0Y'Y

01365 ]3136> 65 ]3136>3 [Y'Y 65862
+3360Y'Y 35(60Y'Y6

72



135(640 2
35(640 365 ]336> 5(62

13 5(640 13 62
35(640 362
n +2

+3+36360Y'Y6
0136 ]336> 62
35(640 365 ]3136> 62
+35(640+36 362

01365 ]336> 62
35(640 36 ]3136> 62
+35(640+365 362
-
13 5(640 2
-

n +2

73



APPENDIX 2

Copies of publications
004.383
+ ! " 1 * - 1 ! "
%; +70 &0+ 0+ %? %? 1>78%4 ? 2 +0 ; +4?
"% &

Anatoliy Sergiyenko, Hasan Muhammad Jamal, Pavlo Skienko
ALGORITHM AND STRUCTURE OF THE SQUARE ROOT
CALCULATOR IMPLEMENTED IN FPGA

v xS ' !
# ' ! # . @ #
* U # ! # "
' $ !
. @ # ' "1
# # # 3 :
#$ "% &, $ ., F

+ .:3.0 1.1 4.

The development of the hardware units for the sguaot (SQRT) function
calculations is considered, which is based on tHeRDIC-like iterative
algorithm. The proposed algorithm helps both toedpep the SQRT function
calculations and to minimize the hardware volume do substituting some
iterations by the look-up tables. The algorithnmitgended for the SQRT function
implementation in FPGA.

Key words: FPGA, SQRT, CORDIC, pipeline.

Fig.: 3. Tabl.:1. Bibl.: 4.

)y (.1 ! # \x— ) !
' ;b # D I A
, *$ ) [2]. 2
# (3 # # #$
("%&), ) ! 1 Ax
($ ' $ ! /X,
($ "% & [3]. !
1 ’ ’ ’ ($
$ "%&. 0 ($
! [4] #
! \JX, * 1 ( "% & .
*$ # . '*$
"% & .

74



5 (s

s * # ! '$ .
2 # CORDIC, ' ' X, #*
.2 (* I( atanh(x/y). '$
* KADCH?, ' X=A+025y=A-0.25  ($
KA/ [3,5]. I$# # * ) '$
| * 1K » 1.207 ! ")
# .
18, # * f “| o
! \Jx [4], '*$ ,
) # x1 [0.25;1.0] $ | * al [0; 1],
¥
O@ +a2'’y =1.0. (1)
i=1
@
m . m .
1/\R » Ol +a2") \R » xXO@l1 +a2"). (2)
i=1 =1
) ! \x o #* #o#
! H @ )*s L,
2) )*$ # ' . # I$ # !
)*$
X[0] = x; y[O] = x;
for(i=0,i<n,i++){
t = x[i] + 27(-i)*x[i];
q =t + 2°(-i)*t;
if (q<1)/{
x[i+1] = q;
yli+1] = y[i] + 27(¢i)*y[i;}/ ali]=1
else {
X[i+1] = X[i];
yli+1] = y[il;}// a[i]=0
}
+'$ *y[n] =+/x
+ " : $, ' # #
# * ' S t qB

) $
q=x+2"x +2"(x+2"x)=x+2" % +27"x,

75



$ "%N& $ '*$

$ ’ *$ , # |$ (%0)1
) $ ' ' '
L # E i #r )
n/2, , ' X (% i, ' y*
: ' '3 )
) ' ' 11 -x.
€ = 1 —Xap, & =\/;(—Yn/2- B # 1) @ (3
n/2 | n/2 |
e=1-xO@1+a2)?*; g=yx —xO(1 +a2").
i=1 =1
nf2 _
z=1/x Ol +a2"),
=1

e=1-7=01+2(1-2; &=+ (1- 2.

z»1, @»2(1-2; e»\X &/2»Yyur (1 —Xu2)/2.
$ Yo = Yz + Yo2(1 —Xn2)/2 +

(+

x[0] = x; y[0] = x;

for (i=0;i<n/2; i++){

q=X i +2 a4 2 2 *X i
if (q < 1.0){
X i1 = U .
Y w1 =Y +2 7ty
else {
X w1 =X i,
Y w1 =Y i}
}
Y=Y w1 Y i1 *(1.0-X i+1)/2;
( . #
( VHDL $ $ .B $ '#
"% & Xilinx Spartan-6 ' :
1 2 ') $ $ %0,
) $ ' n
$ ! * I$ #
& , ( 32 ($
) DSP48, —
, 1, 2 $
($ *( Xilinx Inc. @ #

76



$ * $,
*$ : $
%0 #
# ] 1
# $
$ 1
# #
)
, )
$ * )
#
5000 -
4500 / A
4000 / /
3500 / /
3000 / / -
2500 / //) —&—
2000 ;// —©— Xilinx Corelib
1500 / 1
1000 / / /
500 '/4// /
0
° 16I 18I 24I 32I 48I 54:,
+ .1 X,
%0 ') n
) 24
25 #
o (( (
$ .
) . @
( $ ( !
'$ . #
"%W& 9P -
Lo

, . B
# *$ Xilinx Coregen,
"% &
$ * #
#($ : *
$ 8
$ - # "% & . #
, * )
! (( (
350+
300 G\\\&\
250  — - —— |
200
150 1\\\ -
—6— Xilinx Corelib
100 \
50 -
0 N
16 18 24 32 48 54
+ 2. $
! X )
' $ 15
.B *
$ * $,
# l o
. # *$
$ 9
( VHDL
$, # l
(

77



| *

. Woods R. FPGA-bEased Implementation of Signal PiingsSystems / J.
McAllister, G. Lightbody, Y. Yi/ J. Wiley and Sonktd., Pub. 2008. 364 p.

. FPGA Implementations of Neural Networks". A. R. OQmp and J. C.
Rajapakse, Eds. Springer. 2006. 360 p.

. Yoshikawaa K. Development of Fixed-point Square tROperation for High-
level Synthesis / N. lwanagaa, A. Yamawaki // Pr@od Int. Conf. on
Industrial Application Engineering. 2014. P. 16 8- 2

L& #* N ! # "N& .
& #* II2 0 «" o : ( -
$ o o] . 2014.0.60,&. 40 — 45,
1, &. +. CORDIC- # | & +.
1, , %2, ', . =.& a2 . 1. - "% $
& .4 o )% 2 - L -
"%$ . ", 2006. &. 152—155.

. Chen T.C. Automatic computations of exponentiatgjatithms, ratios and
square roots. // IBM J. Res. and Develop. 1972. P. 380 — 388.

78



Sergiyenko A. M.! Hasan M. J.! Sergiyenko P. A.’
Computer Engineering Department of NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Square root calculations in FPGA

Introduction. The square root function +/z is important elementary function in the scientific
calculations, digital signal and image processing [1]. The artificial neural nets need this function
as well [2]. At present, the field programmable gate arrays (FPGAs) are expanded for solving the
problems, where the function /& calculations are of demand. There are different IP cores of the
function y/x, which are proposed by the FPGA manufacturers and third-party companies [3]. But
these IP cores were designed decades ago and they usually don’t take into account the features of
the new FPGA generations. Therefore, they need improvements. In the presentation, an improved
algorithm of the function \/z is proposed, which is suitable for the FPGA implementation.

CORDIC-type algorithms. The CORDIC-type algorithm of the elementary function calculation
derives a single exact digit of the result in each computation step. The well-known CORDIC
algorithm of the \/x calculations consists in the following. It calculates the function atanh(z/y).
But the side result is the function K +/x% — %2, and by the substitution z = A +0.25,y = A — 0.25,
we get z, = KVA [3]. The disadvantages of this algorithm are additional multiplication to the
coefficient 1/K ~1.207, and repeating some iterations for the algorithm convergence.

More constructive algorithm is the CORDIC-like algorithm of the function \/z calculation [4],
which is based on the following relations. For each number x € [0.25; 1.0] the coefficients a; € [0; 1]
are found so

r[JA+a27) = 10> 1/Ver [JQ+a27) = Var 2z [J(1+a:27). (1)
i=1 i=1 i=1
The algorithm is the following;:

x[0] = x; y[0] = x;

for(i = 0, i < m, i++) {t = x[i] + 27 (-1)*x[i];
q =t + 2°(-i)*t;
if (q < 1) {x[i+1] = q; y[i+1] = y[i] + 2" (-1)*y[i];}// alil=1
else {x[i+1] = x[i]l; yl[i+1] = y[il;}// alil=0

The result is v/z =~ y[n].

Modernized algorithm. The most delay in the considered algorithm gives the twofold addition of
the shifted data.These stages of addition can be substituted by a single stage:

q=(z; +27%x;) + 274z + 27%x;) = z; + 27y + 272,

Because modern FPGAs perform the three input adder as a single stage of the six input look-
up tables (LUTSs), then such computations can be implemented for a single clock cycle without
additional time and hardware overheads.

The algorithm analysis shows that when 7 reaches the limit n/2, then the most i-1 significant
bits of x; become equal to a one by any x;, and ¢ most significant bits of y; are exact digits of the
result. Therefore, the rest of resulting bits can be calculated after analysis and computation the
difference 1-x;.

Consider 1 = -, /9, and Vr=ce, + Yny2. Then, to get the exact result, the correction £, is
derived from the value 1, and it is added to the approximated result. Due to (1),

n/2 n/2
er=1-z][(1+a2 e, =va—a ][0 +a27).
i=1 i=1

Then

n/2

z = \/?H(l +a2 e =122 = (14 2)(1 — 2);6, = V(1 - 2).
i=1
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