NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
«IGOR SIKORSKY POLYTECHNICAL INSTITUTE»

Informatic and Computer Engineering Faculty
Computer Engineering Department

«On the rights of the manuscript» «Defence is allowed»
VAK __004.942 Head of the Computer Science Dep-t
S.G. Stirenko
(sign) (name)
“.” 2018p.
Master's thesis

In speciality 123 Computer Engineering
Specialization: 123. Computer systems and networks
theme: Method of increasing the efficiency of devices

for the calculation of elementary functions

Fulfilled: student of VI course, group _I0 64m
(group sign)

Hasan Muhammad Jamal

(Full Name) (signature)

Haykogwuii kepiBuuk ~ Ass.Prof., Dr.Sci, S.Sci. Sergiyenko A.M.

(position, scientific degree, academic rank, surname and initials) (signature)

Reviewer Ass.Prof., Dr.Sci, Docent Romankevich V.O.
(position, scientific degree, academic rank, surname and initials) (signature)

I certify that in this master's thesis there are no
borrowings from the works of other authors
without the corresponding references.

Student

(signature)

Kyiv - 2018

PEDEPAT

Meton miaBHIEeHHS €(QEKTUBHOCTI MPUCTPOIB i OOYMCICHHS
eJIeMeHTapHUX (DYHKITIN

AKTyaJabHicTh TeMu. [IporpamoBani soriuni iHTerpaibHi cxemu (ITJIIC)
— 1Ie CyyacHa eleMeHTHa 0a3a, sika mpu3HaueHa JJii BHUCOKOMPOJYKTUBHOTO
BUKOHAHHS CIHEI[iali30BaHUX aJIrOpPUTMIB 3 4YHCJIaMH, SKI MpEACTaBlIeHl 3
¢dikcoBaHOIO KOMOM. Jly’Ke dYacTo B TaKUX aIrOPUTMAX 3YCTPIYAETHCS
obuncieHHs eneMmeHTapHux ¢yHkid. Ane mnoctaBuuku CAIIP TIJIIC He
3a0€3MeuyloTh PO3POOHMKIB TOTOBUMH BHUCOKOIMPOIYKTUBHUMH BIPTYyaJIbHUMHU
MOJAYJISAMH OOYMCIICHHS €leMeHTapHUX (YHKUINA, a (QipMU-PO3POOHUKM TaKUX
MOJIYJIIB TIOIIMUPIOIOTH 1X 3a BeMUKYy 1iHY (01u3bpko Tucsadl gonapiB CIIHA). Kpim
TOTO, CepeJl HUX HE 3yCTPIUalOThCs MOIYJI, SIKI CIIPOMOKHI 0OUMCITIOBATH KiJIbKa
pizHux ¢yHKuid. OTxe, ICHYe HecTaya y MPOEKTax MPHUCTPOIB I OOUHCICHHS
enementapuux ¢yHkiii y IJIIC ta BoHn moTpeOyroTh YI0CKOHAJICHHS.

O0’ekTOM [OCTiIKeHHSI € Oprasizamis OOYMCIIOBAaJbHUX IMPOIECIB Yy
BHUCOKOIPOJIYKTUBHUX CIIEL1AJII30BaHUX MPOIIECOpax.

IIpeamerom n0cC/iIzKeHHsSI € MPOSKTYBAaHHSA KOHBEEPHUX MPUCTPOIB IS
OOYHCIICHHS €JIEMEHTapHUX (PYHKIIIH.

Meta poboTH: CTBOPEHHSI METOAY MPOEKTYBAHHS BHUCOKOIPOTYKTUBHHUX
CHELNPOIecOpiB AJist o0UHcIeHHs eneMenTapHux ¢pynkiiit y IIJIIC.

HaykoBa HOBH3HA MOJISITa€ B HACTYITHOMY:

1. VYiaockoHareHO aJIropuT™M Ta TMPUCTPIA OOYUCIEHHA (PYHKIIT
KBaJIPATHOTO KOPEHs, 3aBASKU YOMY IIs1 (PyHKIIISI OOUMCIIIOETHCS YTPHUUI IIBHIIIE
IIPY HEBUCOKUX alapaTHUX BUTpaTax.

2. Pozpobneno w™eron miABUINEHHA €()EKTHUBHOCTI MPHUCTPOIB A
BUKOHAHHS €JIEMEHTapHUX (PYHKIIIH, KU OCHOBAaHO Ha KOMOIHYBAaHHI KUIBKOX
QITOPUTMIB OOYHMCIIEHHsS] TakuxX (QYHKIIHA, 3aBISIKH YOMY CTa€ MOXJIUBOIO

noOy10Ba BUCOKOMPOTYKTUBHUX 0arato()yHKI[IOHAILHUX MIPUCTPOIB.

IIpakTH4yHa WiHHICTH OTPUMAHUX B POOOTI pe3ysIbTATIB MOJIATAE B TOMY,
o po3poOJieHI 3a 3ampolMOHOBAHMM METOJOM MOJYJi OOYMCIICHHS
eJIeMEHTapHUX (YHKI[IH € TOTOBUMH JJII BUKOPUCTAHHA Yy CYYacHHX MPOEKTax
BUCOKOMPOXYKTUBHUX cucteM Ha IIJIIC, siki BUKOPUCTOBYIOThCS sl U(PPOBOT
00pOoOKY CUTHAJIB, MAIIMHHOTO HaBYAHHS, PO3Ii3HABaHHS 00pa3iB, TOIIIO.

Marepiasiu poOOTH BUKOPUCTAHI Yy HAyKOBO-JOCTIAHIA pPOOOTI
«Y I0OCKOHaJIeH1 METOU Ta 3aCO0M MPOEKTYBaHHS KOH(IrypoBaHUX KOMII IOTEPIB
Ha OCHOBI BiOOpa)K€HHsI MPOCTOPOBOro Irpady CUHXPOHHUX IMOTOKIB JaHUX Yy
CTPYKTypH Ha 0a3l MNporpaMoBaHUX JIOTIYHUX IHTErpAJIbHUX CcXeM», No
JAP.047U005087, mmdp PIOT-30T/2017, sixa npoBoauthes y HTYY “KIII im.
Iropst CikopchKoro.

AmpoOariisi po6otu. OCHOBHI TOJIOKEHHA 1 pe3yibTatd poOoTH Oynu
npeiacTaBieHi Ta oOroBoproBaiuchk Ha 20-Tiii MDbKHAaponHIA KOHpepeHIil
«CuctemHuil anani3 ta iHdopmariitai Texnonorii» SAIT-2018 21 — 24 TpaBHus
2018 poxy, KuiB Ta mixHapomHiii koHpepenmii "besneka, BimMoBOCTIiKICTb,
Inrenext" 10 — 12 TpaBus 2018 poky, Kuis.

CtpykTypa Ta o6csir po6oTn. Marictepchka AucepTallisi CKIaJaeThCs 3i
BCTYILY, TPhOX PO3/ILIIB Ta BUCHOBKIB.

YV 6écmyni mogaHo 3arajbHy XapaKTEPUCTHKY POOOTH, 3pOOJIEHO OIlIHKY
Cy4aCHOTO CTaHy MpoOJIeMH, OOTPYHTOBAHO aKTyaJIbHICTh HAMPSMKY JTOCIIKECHb,
chopMynbOBaHO METY 1 3ajJadi JOCIHIKeHb, IIOKa3aHO HAayKOBY HOBHU3HY
OTPUMAHUX PE3yJIbTATIB 1 MPAKTHUYHY I[IHHICTH pOOOTH, HABEJIEHO BIIOMOCTI PO
ampo0artito pe3yabTaTiB 1 iXHE BIPOBAIKCHHS.

Y nepwomy po30ini MOCHIIKEHO OCOOJIMBOCTI apXiTEKTYpHU Cy4acCHUX
[JIIC, po3risHyTO Ta MpOaHANIiI30BaHO AITOPUTMHU Ui OOUMCIICHHS elleMeHTap-
HUX (QYHKIIH Ta X BiAOMI peani3alii B mapaielbHUX O0YHCIIOBAILHUX CHCTEMAax

1 TIIIC.

Y opyeomy po30ini ynOCKOHAJIGHO ajJrOpUTM Ta TMPHUCTPIA OOYMCICHHS
GyHKIIT KBaJApaTHOTO KOPEHS Ta PO3pO0JIEHO METOJ MiJBUIICHHS €(PEeKTUBHOCTI
IPUCTPOIB JIJIsl BAKOHAHHS €JIEMEHTAPHUX (DYHKIIIM.

Y mpemwvomy po3dini JOCHIKEHO e(PEKTUBHICTh BUKOPHUCTAHHS
3alpONOHOBAHUX AQJITOPUTMY OOYMCIEHHS KBaJApPAaTHOTO KOPEHS Ta METOay
M1ABUIICHHS €(EKTUBHOCTI MPUCTPOIB JJIsI BUKOHAHHS €JIEMEHTapHUX (DYHKITIH.

V sucnoexax npencTaBieHi pe3yibTaTd MPOBEACHOI POOOTH.

PobGora mpencraBneHa Ha 68 apkymiax, MICTUTh MOCHJIAHHS Ha CIIHMCOK
BUKOPHUCTAHUX JIITEPATYPHUX JKEPEI Ta JOIATKH.

Kmouosi caoBa: TUIIC, xBagpaTHuii KOpiHb, €leMEHTapHa (QYHKIIIS,

KOHBE€p, rpad) CHHXPOHHUX MOTOKIB JTaHUX.

ABSTRACT

Method of increasing the efficiency of devices for the calculation of
elementary functions

Relevance of the topic. The field programmable gate array (FPGA) is a
modern element basis that is effectively utilized for the high performance
implementation of application-specific algorithms with the fixed-point numbers.
Very often, such algorithms encounter the calculation of elementary functions.
But the suppliers of the FPGA CAD tools do not provide the developers with
ready-made high-performance intellectual property cores for calculating the
elementary functions, and the providers of such modules distribute them at a high
price (about a thousand dollars). In addition, there are no modules among them
that can calculate several different functions. Consequently, there are shortages in
the design of devices for the calculation of elementary functions in FPGA and

they need to be improved.

The purpose of the work: the creation of a method for designing the

application specific modules for the elementary function calculation.

The object of the research is the computational processes in high-

performance application-specific processors.

The subject of the research is design of pipelined processors for the

elementary function calculations.

The objective is the creation of a method for designing the high-
performance application-specfic processors for the calculation of elementary

functions in FPGA.
The scientific novelty is as follows:

1. An algorithm and a structure of the square root calculator are improved,

so this function 1s calculated three times faster with low hardware costs.

2. A method for increasing the efficiency of devices for calculating the
elementary functions is developed, which is based on the combination of several
algorithms for calculating such functions, which makes it possible to build high-

performance multifunction devices.

The practical value of the results obtained in the work is that the modules
for calculating the elementary functions, which are developed by the proposed
method, are ready for use in modern projects of high-performance systems on
FPGAs, which are used for digital signal processing, machine learning, image

recognition, and others like that.

The materials of the thesis were used in the research work "Advanced
methods and tools of designing the configurable computers on the basis of
mapping the spatial synchronous data flow graphs into the structure for FPGA",
No JTP.047U005087, ®IOT-30T / 2017, which is held at NTUU “Igor Sikorsky’s
KPI”.

Approbation of the work. Substantive provisions and results of the work
were presented and discussed at a 20-th International Conference «System
Analysis and Information Technology» SAIT 2018 May 21 — 24, 2018, Kyiv, and
International ~Conference on Security, Fault Tolerance, Intelligence
(ICSFTI2018), May 10 — 12, 2018, Kyiv.

The structure and scope of work. Master's thesis consists of an
introduction, three sections and conclusions.

The introduction gives a general description of the work, assesses the
current state of the problem, substantiates the relevance of the research direction,
formulates the purpose and objectives of the research, shows the scientific novelty
of the obtained results and the practical value of the work, provides information

on the approbation of the results and their implementation.

In the first section, the features of the architecture of modern FPGA have
been investigated, algorithms for calculation of elementary functions and their
known realizations in parallel computing systems and FPGAs are analyzed.

In the second section, an algorithm and a square root function calculator
are improved, and a method for increasing the efficiency of devices to perform the
elementary functions is developed.

In the third section, the efficiency of using the proposed square root
calculation algorithm and the method of increasing the efficiency of devices for
performing the elementary functions are investigated.

The conclusions show the results of the work.

The work is presented in 68 pages, contains a reference to the list of used
literature and addendums.

Key words: FPGA, square root, elementary function, pipeline, SDF
graph.

PE®EPAT

Meton mnoBbieHHs 3(P(GEKTUBHOCTH YCTPONCTB ISl BBIYMCIICHUS
AJIEMEHTApHbBIX (PyHKLINH

AKTYaJbHOCTH TeMbl. [IporpammupyeMble JOrn4ecKkue HHTErpaibHbIe
cxembl (IIJIKC) - aTo coBpemeHHast aieMeHTHas 6a3a, KoTopasi IpeJHa3HaueHa
UL BBICOKOIIPOMU3BOAMTENIBHOIO BBINOJHEHHS CHELUAIU3HPOBAHHBIX
QJITOPUTMOB C YMCJIaMH, KOTOpbIE MPEACTABIEHbI C (PUKCUPOBAHHOMN 3aIATOM.
Od4eHp 4acTO B TaKMX aNrOPUTMax BCTPEYACTCS BBIYMCIICHUS 3JIEMEHTAPHBIX
¢byuxuit. Ho nocraBmuku CAIIP TUVIMC He oOecneunBaroT pa3paboOTUMKOB
TrOTOBBIMU BBICOKOIIPOU3BOIUTEIbHBIMU BUPTYaJIbHBIMU MOZYJISIMU
BBIUMCIICHHUSI 3JEMEHTApHBIX (QYHKIUH, a (UPMBI-pa3pabOTUUKU TaKUX
MOJyJEeH pacHpOCTPaHAIOT MX 3a OOJBIIYI0 IIEHY (OKOJIO THICSAYU JOJUIAPOB
CIHIA). Kpome Toro, cpeay HUX HE BCTPEUAKOTCS MOAYJIH, KOTOPhIE CITIOCOOHBI
BBIUUCTISATh HECKOJIBKO Pa3nuuHbIX (yHKIUH. MTak, cyliecTByeT HeXBaTKa B
IPOEKTaX YCTPOMCTB /I BbIYMCIICHUS 3eMeHTapHbIX ¢yHkuuil B [IJINC u
OHM HYXJAKTCS B yCOBEPIICHCTBOBAHNH.

OO0beKTOM HCCJIeI0BAHMSA SIBISETCS OPraHU3ALMS BBIYMCIUTEIBHBIX
IIPOLIECCOB B BBICOKOIIPOU3BOAMTEINIBHBIX CIIEMAIN3UPOBAHHBIX IPOLECCOPAX.

IIpeameTrom uccaef0BaHUA ABISETCA NPOCKTUPOBAHUE KOHBEHEPHBIX
YCTPOMCTB sl BBIYMCIIEHUS 3JIEMEHTAPHBIX (QYHKIUH.

Ienb padoThl: co3n1aHHe METOAA INPOEKTUPOBAHUSA BBICOKOIPOU3BO-
JOUTENBHBIX CHEIIPOIIECCOPOB ISl BBIYUCICHUS 3JIEMEHTApPHBIX (YHKIMHA B
IJINC.

HayuyHasi HOBH3HA 3aKJIFOYAETCS B CIEIYIOLIEM:

1. YcoBepiieHCTBOBaHA aJrOPUTM U YCTPOHUCTBO BBIYUCIEHUS (DYHKIIUU
KBaJIpaTHOTO KOpHs, Oyarojapst 4emy 3Ta (yHKLMs BBIYHUCISETCS B TPU pasa

ObICTpee MpH HU3KUX alMapaTHbIX 3aTpaTax.

2. Pazpaboran Meron mnoBbllieHUs 3()PEKTUBHOCTU YCTPOUCTB IS
BBITIOJIHEHHSI ~ DJIEMEHTapHBIX (YHKIMH, KOTOPBIM OCHOBaH Ha
KOMOMHUPOBAHUM HECKOJIbKUX aJTOPUTMOB BBIUMCIEHUS TakuX (QYHKIHM,
Onaronaps yemy CTaHOBUTCSA BO3MOKHBIM OCTpOEHUE
BBICOKOTIPOM3BOIUTEIHLHBIX MHOTO()YHKITMOHATBHBIX YCTPOMUCTB.

IIpakTH4yeckasi 1EHHOCTb TIOJYYEHHBIX B paboTe pe3yJbTaToB
3aKJII0YAeTCsl B TOM, YTO pa3pabOTaHHbIE MO MPEIOKEHHOMY METO1Yy MOAYIH
BBIUMCIICHUS JJEMEHTapHbIX (YHKUMWA ABJISIIOTCS TOTOBBIMH IS
UCIIOJIb30BAaHUSI B COBPEMEHHBIX MPOEKTaX BHICOKOMPOU3BOIUTEIBHBIX CUCTEM
Ha [IJIMC, xotopple HCMONB3YIOTCA ISl IUGPOBOM 0OpaOOTKHA CHUTHAJIOB,
MaIIMHHOTO 00y4Y€eHHUs, paclio3HaBaHMs 00pa30B U TOMY 0JI00HOE.

Matepuansl paOOTBl HCIOJB30BaHBl B HAYYHO-MCCIIEIOBATEIbCKON
paboTe «YCOBEpIICHCTBOBAaHHbIE METOABI W CPEACTBA MPOCKTHUPOBAHUS
KOH(UTypUPYEMBIX KOMITBIOTEPOB Ha OCHOBE OTOOpaKEeHUS
MPOCTPAHCTBEHHOTO Tpada CHHXPOHHBIX MOTOKOB JAaHHBIX B CTPYKTYPHI Ha
0aze MNporpaMMHpPYEMbIX JIOTHUYECKMX HMHTErpajbHBIX cxem», No
JIP.0470005087, mmupp PIOT-30T / 2017, xoropas mpoBoautcs B HTYY
"KIIN um. Uropst Cukopckoro”.

Anpobauusi padoTbl. OCHOBHBIE TOJOXKEHUS U PE3yJIbTaThl paOOThI
ObUIM MPEACTABIEHBI U 00CYX)AaTUCh Ha 20-01 MEXAYHAPOJHOU KOH(DEepeHINH
«CuctemMHbI aHanmu3 U MHPopMarmoHHble TexHonorun» SAIT-2018, 21 - 24
masg 2018, KwueB wu MexayHaponHod KoHdepeHiuu "be3onacHOCTb,
OtkazoycroitunBocth, Uutemnekt" 10 - 12 mas 2018, Kues.

Crpykrypa u 060beM padoThl. Marucrepckas AuccepTaius COCTOUT U3
BBEJICHUSI, TPEX TJIaB U BHIBOJOB.

Bo 66edenuu mpencraBneHa o0mas XapakTepUCTHKA pabOTHI,
IpoU3BEJEHA OIIEHKa COBPEMEHHOIO0 COCTOSIHUS TNpoOsieMbl, OOOCHOBaHA

aKTyaJIbHOCTh HAMPaBIICHUS UCCIEIO0BaHUM, CHOPMYITHPOBAHBI IIEIH U 3aa91

UCCJICIOBAHNM, IOKa3aHO HAYYHYH0 HOBHU3HY IIOJIy4EHHBIX pE€3yJIbTaTOB U
MPAKTUYECKYI0 IEHHOCTh pPalOoThl, MPUBEIACHBI CBEACHHUS 00 ampodaruu
PE3yNbTaTOB U UX BHEIPECHHUE.

B nepsom paszoene wuccnenoBaHbl OCOOEHHOCTH apXUTEKTYpPbI
coBpemeHHbIX IIJIMC, paccMOTpeHBl U MPOAHAIM3UPOBAHBI AJITOPUTMBI IS
BBIUMCJIEHUSI JIEMEHTap- HbIX (PYHKUMA M KX M3BECTHBIC peaju3alud B
napajuieabHbIX BEIYMCIUTENBHBIX cucTeMax u [IJINC.

Bo emopom pazodene yCOBEpILIEHCTBOBaHAa aJIrOPUTM U YCTPOMCTBO
BBIUMCIIEHNS] (YHKIUHU KBaJpaTHOIO KOPHS M pa3pabOTaH METOJ IOBBIIIEHHUS
3¢ (HEeKTUBHOCTH YCTPOUCTB AJIsl BBIMOJIHEHUSI SJIEMEHTAPHBIX (PYHKITHIA.

B mpemwvem paszoene uccinenoBaHa 3OPEKTUBHOCTb HCIOJIH30BAHUS
MPEMJIOKEHHBIX aJTOPUTMa BBIYMCICHHS] KBAJPAaTHOIO KOpPHA M METOJa
MOBBIIIEHUS 3(PPEKTUBHOCTH YCTPOMCTB MJSi BBIMOJIHEHUS 3JIEMEHTAPHBIX
GyHKIUH.

B BbIBOAX NIPECTABICHBI PE3YJIbTAThI IPOBEACHHON paOOTHI.

Pabora npencraBiena Ha 68 cTpaHUIaX, COAEPKUT CCHUIKM Ha CIIUCOK
UCII0JIb30BAaHHBIX JIMTEPATYPHBIX HCTOYHUKOB U ITPUIIOKEHUS.

KuarwueBsie caoBa: I[IJIMC, kBagpaTHbBII KOpEHb, 3JI€MEHTapHas

GbyHKLMS, KOHBEHED, Ipad) CUHXPOHHBIX TOTOKOB JIAHHBIX.

10

CONTENTS

CONTENTS ..ttt ettt ettt e st sbe e et et e e sane e 1
ABBREVIATIONS ...ttt ettt st e 3
INTRODUCTION ...ttt ettt ettt ettt e s e sbeeesneeens 4
1 METHODS AND TOOLS FOR ELEMENTARY FUNCTION
CALCULATIONS ...ttt ettt ettt st st et e e 8
1.1 Basics of the elementary function calculations...........cccoeecuveeeevriiieeeeennnenn.. 8
1.2 Polynomial apProXimationcceeeeeeeriuireeeenniiireeeeeniireeeessnireeessssnsneeessssnnneeens 10
1.3 Functional recurrence algorithmscoocueiiriiiiiiiiieiniieeee e 14
1.4 Digit recurrence algOrithmscccuviiiiiiiiiiiiiiiiiieee e 16
1.5 Hardware implementation of the elementary functionsccccceeveerveernnenns 23
1.6 Preliminary CONCIUSIONSccccuuiiiiiiiiiiieeeiiie ettt et e e 23
2 DESIGN OF THE PROCESSING UNITS FOR THE ELEMENTARY
FUNCTION CALCULATION. ..ottt 24
2.1 FPGA as the computing environment for elementary functions....................... 24
2.2 Synchronous dataflow graph for the elementary function calculations............ 31
2.3 Example of the processing module synthesis...........cccoveeeieiiiiiiiniiiiiniieecieens 33
2.4. Development of the square root computing moduleccccceeevviivieeeennnnnn.. 35
2.5 Method of the multifunction processor module design...........cccecceeeeriiieeenneenn. 44
2.6 Preliminary CONCIUSIONSccccuuiiiiiiiiiiiiieeiiie ettt e e e esaee e 48
3 IMPLEMENTATION OF THE ELEMENTARY FUNCTION PROCESSOR
MODULES IN FPGA ..ottt 49
3.1 Synthesis of the processor module for the \/1 function calculation................ 49
3.2 Synthesis of the multifunction processor moduleccccceeevciiiiiniiiiienienennne. 54
3.3 Preliminary CONCIUSIONSccuveiiriiieiniiieiiiie ettt e et e e e e 59
CONCLUSTONS ...ttt ettt ettt e st e st e e beeebeeenaneens 60
REFERENCESottt ettt 62

APPENDICES ...ttt

APPENDIX 1
APPENDIX 2

...

ABBREVIATIONS

ASIC Application Specific Integrated Circuit
CPU Central Processing Unit

DSP Digital Signal Processing

FPGA field programmable gate array

GPU Graphic Processing Uunit

IC Integrated Circuits

IP core Intellectual Property core

LUT Look-Up Table

PU processing unit

RAM Random Access Memory

ROM Read-Only Memory

RTL Register Transfer Level logic

SDF Synchronous Data Flow graph

VHSIC Very High Speed Integrated Circuits
VHDL VHSIC Hardware Description Language
VLSI Very Large Scale Integration

INTRODUCTION

Nowadays, when gadgets and computers are present in everyday aspect of
our life, more advanced algorithms for shorter computational timing are
tremendously important. Algebraic functions, for instance square root, logarithm,
as well as trigonometric functions embrace the main source of algorithm
implementation in domains like digital signal processing (DSP), wireless
communication, graphic processing units (GPU), image processing,
communication systems and medical robotics.

The performance of only software implementations of these algorithms is
not satisfactory all the time, thus in order to improve the functionality, a

translation of the software into hardware 1s desired.

The square root \/;c and other elementary functions ares important in the
scientific calculations, digital signal and image processing [1]. The artificial
neural nets need these functions as well [2]. At present, the field programmable
gate arrays (FPGAs) are expanded for solving the problems, where the elementary
function calculations are of demand. There are different IP cores of the
elementary function calculation, which are proposed by the FPGA manufacturers
and third-party companies [3]. But these IP cores were designed decades ago and
they usually don't take into account the features of the new FPGA generations.
Therefore, they need improvements.

This thesis proposes the method of the design of the application specific
hardware design, which is intended for the high speed elementary function
calculations. The use of FPGAs to implement these functions allows us to
increase the speed, reduce the power consumption. Moreover, the modernizing
the elementary function blocks can be implemented in the device in use by the

way of the reconfiguration of FPGA.

The object of the research is the high-performance application-specific

Processors.

The subject of the research is the structure of pipelined processors for

the elementary function calculations.

The objective is the creation of a method for designing the high-
performance application-specfic processors for the calculation of elementary

functions in FPGA.

To achieve the objective, the following tasks are solved in the thesis:

1. The methods of the mathematical modeling of the wave propagation in
solids, and their comuter implementation are analysed.

2. The method of the waveguide modeling is analysed and its application
to the modeling the solids is investigated.

3. The method of hardware simulation of the propagation of ultrasonic
waves in a solid based on the waveguide models is developed.

4. The method of hardware simulation the propagation of ultrasonic waves
1s adapted for its implementation in modern FPGAs.

5. The proposed method effectiveness is proven by modeling of the wave
propagations in the solid rod.

The research methods used in the work are based on the theory of
graphs, algorithm theory, modeling theory, combinatorial optimization methods,
as well as theorems, assertions and implications that are proved in the dissertation.
The main provisions and theoretical evaluations are confirmed by the results of
simulation on a computer, as well as by tests of a number of experimental samples
of specialized calculators.

Experimental verification of scientific positions, proposals and results was
carried out by designing computing tools by the developed method using their
description in standard VHDL language with their further simulation in the

simulator, compiling in the circuit and configuring the Xilinx FPGA.

The scientific novelty is as follows:
1. An algorithm and a structure of the square root calculator are improved,

so this function 1s calculated three times faster with low hardware costs.

2. A method for increasing the efficiency of devices for calculating the
elementary functions is developed, which is based on the combination of several
algorithms for calculating such functions, which makes it possible to build high-

performance multifunction devices.

The practical value of the results obtained in the work is that the modules
for calculating the elementary functions, which are developed by the proposed
method, are ready for use in modern projects of high-performance systems on
FPGAs, which are used for digital signal processing, machine learning, image

recognition, and others like that.

The materials of the thesis were used in the research work "Advanced
methods and tools of designing the configurable computers on the basis of
mapping the spatial synchronous data flow graphs into the structure for FPGA",
No JTP.0470005087, ®IOT-30T / 2017, which is held at NTUU “Igor Sikorsky’s
KPI”.

Approbation of the work. Substantive provisions and results of the work
were presented and discussed at a 20-th International Conference «System
Analysis and Information Technology» SAIT 2018 May 21 — 24, 2018, Kyiv, and
International Conference on Security, Fault Tolerance, Intelligence
(ICSFTI2018), May 10 — 12, 2018, Kyiv.

Publications of the work

The main features of these investigations are published in two works. In
the work [41] the author has proposed an approach, which provides the hardware
minimization. In the work [5] the author has proposed the way to speed-up the

calculations.

The structure and scope of the work

Master's thesis consists of an introduction, three sections and conclusions.

The introduction gives a general description of the work, assesses the
current state of the problem, substantiates the relevance of the research direction,
formulates the purpose and objectives of the research, shows the scientific novelty
of the obtained results and the practical value of the work, provides information
on the approbation of the results and their implementation.

In the first section, the features of the architecture of modern FPGA have
been investigated, algorithms for calculation of elementary functions and their
known realizations in parallel computing systems and FPGAs are analyzed.

In the second section, an algorithm and a square root function calculator
are improved, and a method for increasing the efficiency of devices to perform the
elementary functions is developed.

In the third section, the efficiency of using the proposed square root
calculation algorithm and the method of increasing the efficiency of devices for
performing the elementary functions are investigated.

The conclusions show the results of the work.

The work is presented in 70 pages, contains a reference to the list of used

literature and appendicies.

1 METHODS AND TOOLS FOR ELEMENTARY FUNCTION
CALCULATIONS

1.1 Basics of the elementary function calculations

1.1.1 Preliminary conditions

Usually the elementary functions in computer engineering are the most
commonly used mathematical functions: sin, cos, tan, sin”!, cos™, tan™', sinh,
cosh, tanh, sinh_l, cosh_l, tanh™", exponentials, and logarithms. From a
mathematical point of view, 1/x is an elementary function as well [6,7].

Theoretically, the elementary functions are not much harder to compute
than quotients. It was in [8] that these functions are equivalent to division with
respect to the Boolean circuit depth. This means that a circuit can output n digits
of a sine, cosine, or logarithm in a time proportional to log n. But for practical
implementations, it is quite different, and much care is necessary if we want fast
and accurate elementary functions.

There are many works devoted to the elementary function algorithms
[7,9,10]. But at times those functions were implemented in software only. Since
the Intel 8087 floating-point unit, elementary functions have sometimes been
implemented, at least partially, in hardware, a fact that induces serious
algorithmic changes. Furthermore, the emergence of high-quality arithmetic
standards, such as the IEEE-754 standard for floating-point arithmetic, have
accustomed users to very accurate results. So, the investigations of the elementary
function implementation in hardware is of great demand.

Current circuit designers must build algorithms and architectures that are
guaranteed to be much more accurate and effective. Among the various properties
that are desirable, when the function is implemented in FPGA, one can cite:

* speed;

¢ accuracy;

* reasonable amount of resource (ROM/RAM, LUTs, registers, power
consumptions);

* preservation of important mathematical properties such as monotonicity,
and symmetry; ;

e preservation of the direction of rounding;

* range limits, for example, 1.0 <sin(x) < 1.0. [6].

1.1.2 Algoritm classification

The hardware approximation algorithms can be classified into four broad
categories.

The first category is the polynomial approximation. This category is a
diverse category. The general description of this class is as follows: the interval of
the argument is divided into a number of sub-intervals. For each sub-interval the
elementary function is approximated by a polynomial of a suitable degree. The
coefficients of such polynomials are stored in a table [10].

The second category is called functional recurrence. Algorithms that
belong to this category employ addition, subtraction and full multiplication
operations as well as tables for the initial approximation. In this class of
algorithms the algorithm starts by a given initial approximation and it is feededt to
a polynomial in order to obtain a better approximation. This process ise repeated a
number of times until the desired precision is reached. These algorithms converge
quadratically or better. Examples from this category include Newton-Raphson for
square root [10].

The third category is called digit recurrence techniques, or shift-and-add
algorithms. The algorithms that belong to this category are linearly convergent
and they employ addition, subtraction, shift and single digit multiplication

operations. Example of such algorithms is CORDIC [11, 12]

The fourth category is the rational approximation algorithms. In this
category the given interval of the argument is divided into a number of sub-
intervals. For each sub-interval the given function is approximate by a rational
function. A rational function is y a polynomial divided by another polynomial. It
employs division operation in addition to tables, addition and multiplication
operations, which are used in the polynomial approximation. The rational
approximation is rather costly in hardware due to the fact that it uses division
[10].

Range reduction is the first step in elementary functions computation. It
aims to transform the argument into another argument that lies in a small interval.
This approachnis often used before the calculating the function according to one
of the general method mentioned above.

Let us consider the algorithms of these methods more precisely in order to

select among them the best candidates for the implementation in FPGA.

1.2 Polynomial approximation

The polynomial approximation is the representation of an algorithm of the
function calculation as a polynomial. A polynomial is an expression constructed
from one or more variables and constants using the operations addition,
subtraction, multiplication, and raising to the power of integer numbers. Examples
of polynomial functions are: x* —6x* + 10 and x’y* + 15x”y* — 6x. The first is a
univariate polynomial, while the second is a multivariate polynomial.

The problem of the polynomial approximation has two parts. The first one
is the finding out the coefficients, the second one is selection of the effective
algorithm and structure for the polynomial calculating.

Three base techniques for computing the coefficients of the approximating

polynomials are Taylor approximation, minimax approximation and interpolation.

10

Taylor approximation gives analytical formulas for the coefficients and
the approximation error. It is useful for some algorithms namely the Bipartite,
Multipartite, Powering algorithm and functional recurrence.

Minimax approximation is a numerical technique that gives the values of
the coefficients and the approximation error numerically. It has the advantage that
it gives the lowest polynomial order for the same maximum approximation error
[10].

Interpolation is a family of techniques. Some techniques use values of the
given function in order to compute the coefficients while others use values of the
function and its higher derivatives to compute the coefficients. Interpolation can
be useful to reduce the size of the coefficients table at the expense of more
complexity and delay and that is by storing the values of the function instead of
the coefficients and computing the coefficients in hardware on the fly [13].

Polynomial expressions are computational intensive as they contain a
number of additions and multiplications which are expensive operations. These
calculations take many clock cycles to compute on a processor. When
implemented in an ASIC, or FPGA they occupy a large area and consume a lot of
power in addition to increasing clock periods. It is, therefore, imperative to reduce
the number of operations in polynomial expressions as much as possible. These
reductions can be achieved by factoring these expressions and finding common
subexpressions among multiple-polynomial expressions. Unfortunately, not many
tools are available to perform this, especially for multiple-variable expressions.

The problem of optimization of polynomial expressions can be stated as
follows: given a set of polynomial expressions of any degree and consisting of
any number of variables, find an implementation that has the least number of
operations (additions, subtractions, and multiplications).

The Horner method is the default method of evaluating Taylor series

approximations to trigonometric functions in many libraries such as the GNU

11

CLibrary [14]. For example, consider the following expression for sin (x) which
has been approximated to four terms:

3 5 7
X X X

sin (x):x—§+§—ﬂ.

Assuming that the terms 1/3!, 1/5!, and 1/7! are precomputed, the naive
evaluation of this polynomial representation requires 3 additions/subtractions, 12
variable multiplications, and 3 constant multiplications.

The Horner form of this expression can be written as:

sin (x)=x(1 +xz(—3—1!+x2 (%—;—Z,DJ

Most algorithms hand-optimize the resulting Horner form to remove the

redundant computations of x*. The expression is then rewritten as:
2,

X=x
sin (x):x(l +X(—3—1,+X(%—%Dj (1.1)

The Horner form is a good representation for polynomials with single
variables, but does not provide good results for multivariate polynomials.
Furthermore, it cannot find common subexpressions automatically to further
reduce the number of operations.

Consider the terms 1/3!, 1/5!, and 1/7! are precomputed and denoted as S,

Ss, and S5, respectively. Then, the four-term Taylor expansion of sin (x):

d =x -x,

d,=S85-57-d,

d3 =d2 . dl —S3, (12)
d4=d3'd1+ 1,

sin (x) = x - dy.
Here, only three additions/subtractions, four variable multiplications, and

one constant multiplication are needed.
Traditional optimization methods have been designed for general purpose
applications and do not do a good job of optimizing polynomial expressions.

Some of the early work in code generation for arithmetic expressions [15, 16]

12

proposed algorithms to minimize the number of program steps and the number of
storage references given a fixed number of registers. In [17] these techniques
were extended to handle expressions with common subexpressions. Some work
was done to optimize code having arithmetic expressions using factorization
techniques [18]. The technique presented in [18] was very limited in that it could
only optimize expressions which contained one type of associative and/or
commutative operator at a time. As a result it could not optimize general
polynomial expressions which have multiplication, addition, and subtraction
operations.

In many times the elementary function argument is divided into a set of
intervals, and the function is approximated separately on each of them. Then, the
small order polynomial is fit for such approximation. A special kind of
approximation here is the table based approximation. A set of special algorithms
are found for it.

The powering algorithm [19] which is a first order algorithm that employs
a table, a multiplier and a special hardware for operand modification. This
algorithm can be used for single precision results or as an initial approximation
for the functional recurrence algorithms. Table and add algorithms can be
considered a polynomial based approximation. These algorithms are first order
polynomial approximation in which the multiplication is avoided by using tables.
Examples of table add techniques include the work in [20] Bipartite [21,22],
Tripartite [23] and Multipartite [24, 25, 26]. Examples of other work in
polynomial approximation include [27, 28]. The convergence rate of polynomial
approximation algorithms is function-dependent and it also depends to a great
extent on the range of the given argument and on the number of the sub-intervals
that we employ.

It is noteworthy that computing the polynomial expressions, even in their

optimized form, is expensive in terms of hardware, cycle time, and power

13

consumption. If the arguments to these functions are known beforehand, the
functions can be precomputed and stored in lookup tables in memory. However,
in cases where these arguments are not known or the memory size is limited,
these expressions must be computed during the execution of the application that
uses them.

1.3 Functional recurrence algorithms

As it is mentioned above, the functional recurrence algorithm starts by a
given initial approximation and it is feeded to a polynomial in order to obtain a
better approximation. This process ise repeated a number of times until the
desired precision is reached. The prominent example of such algorithm is the
Newton’s method, hich is a major tool in arbitrary-precision arithmetic.

Suppose that some function f has a zero x if f{x)= 0. Then, consider f(x,) is
an initial approximation of this point, and that f(x) has two continuous derivatives
in the region of interest. From the Taylor’s theorem:

(x —x0)°

S0 = o) + (x = x0) f (o) + 5 f “(xo),

for some point x in an interval including {C, xy}. Consider f{{) = 0, then we see

that
x1 = xo — fxo)lf “(xo)

1s an approximation to (. If xjis sufficiently close to {, we have
b= < o -2 <1.

This motivates the definition of Newton’s method as the iteration

L) o1,

Xl =Xj = perons) =
A EOR
The error of such approximation of x is e, = x, — x. The fact is, that the

error after the next iteration is
2
le.+1| < Kle,|",

1.e., the order of the algorithm convergention is 2.

14

Consider applying Newton’s method to the function
fy=y-x",
where m 1s a positive integer constant, and y is a positive constant. Since
£ (x) = mx™ ™", the Newton’s iteration is simplified to

Xi1 =X+ x; (1 =X y)im. (1.2)

This iteration converges to { = 1/”\1/;), which is provided by the initial
approximation x,. It is surprising that (1.2) does not involve divisions. In
particular, the reciprocal square roots (the case m = 2) can be computed by this
method. In this situation, the iteration is obtained:

Xis1 =X+ x; (1 — sz.y)/2, (1.3)
which converges to 1/\/5; if x, is a sufficiently good approximation. From (1.3)
the square root function is got as
y =y (A,

Here, the method does not involve any divisions. In contrast, if the other

the Newton’s method is applied to the function f(x) = x* — y, the Heron’s iteration

formula is obtained:

1
xj+1=§(1 + lj, (1.4)

X

This requires a division by x; at iteration j, so it is essentially different
from the iteration (1.3) [28].

There are a lot of algorithms of elementary function calculations, which
are based on the functional recurrence algorithms. Among them are log x, a*, and
others [10]. The disadvantage of all of them is the computational complexity in
the number of multiplications and divisions. However, this figure is proportional

to the log n, where n is the argument bit width.

15

1.4 Digit recurrence algorithms

1.4.1. Introduction

The digit recurrence techniques, or shift-and-add algorithms often are
named as the bti-by-bit algorithms because for each iteration, a single exact
resulting bit is achieved. This feature goes form the fact that these algorithms are
linearly convergent.

Among these algorithms the CORDIC algorithm is the well-known. The
CORDIC algorithm was introduced in 1959 by Volder [29]. In Volder’s version,
CORDIC makes it possible to perform rotations and to multiply or divide
numbers using only shift-and-add elementary steps. The results are sine, cosine,
and arctangent functions.

In 1971, this algorithm was generalized to compute logarithms,
exponentials, and square roots [30]. CORDIC is not the fastest way to perform
multiplications or to compute logarithms and exponentials but, since the same
algorithm allows the computation of most mathematical functions using very
simple basic operations, it is attractive for hardware implementations. CORDIC
has been implemented in many pocket calculators and in arithmetic coprocessors

such as the Intel 8087 [31].

1.4.2 CORDIC algorithm substantiatiation

The Volder’s CORDIC algorithm can be denoted in the C-like language as
Qo =Q;
xo=0,607252935;

Yo=0;
for(i = 0, i <1, i++) {
if (¢; 20)
{ Xi=x -3 %27

16

Vi =i+ 627
Qi1 = @y —atan(27) ;)
else
{ Xw=xi+y%27;
Vir1 =YX 27
@1 = @; + atan(27) ;)
}
The results are y,= sin @, x, = cos @, @, = 0. The terms atan’™ are

precomputed and stored in ROM. If

lpo| < Jatan 2* =1.783287...,

k=0
then
X, X0 COS Py — Yo SIn @y
lim, ,..| v, | =K| Xxpsin @y+ yycos Qg | ,
0 0

where the scale factor K is equal to [[\/1 + 273 = 1.64676... . Therefore, to
=1

compute the sine and the cosine of a number @, the initial data are @y = @;
xo=0,607252935; y,= 0, as shown above.

That algorithm is based on the decomposition of @y, = ¢ on the discrete
base w, = atan 27, using the nonrestoring algorithm. The nonrestoring

algorithm gives a decomposition of @ :

0= dewk, ,dk: + 1.
k=0

The basic idea of the rotation mode of CORDIC is to perform a rotation of

angle @ as a sequence of elementary rotations of angles d; w;. The algorithm starts

17

from (xo,y0), and obtains the point (xi,1,V+1) from the point (x,y;) by a rotation of

(xkﬂj ~ (cos(dk wy) — sin (dy wk)j (xj
Vet \sin (dewy) + cos(dew)) \y)

This can be simplified as:

xk+1 1 — dk 2-k .Xk
= cos(wy) & .
Vi+1 di2”+1) \y

Since, cos(wy) = 1A/1 + 2% s stable in each iteration, it is taken into

angle d, wy. This gives:

account as the common factor K. Then, the formula can be simplified to
X+ 1 1-d 2" (x
()’knj :(dkz"w 1] (yj

which is the basic CORDIC step, in the trigonometric type of iteration: it is no
longer a rotation of angle wy, but a similarity, or a “rotation-extension” of
angle wy and factor 1/cos wy.

The choice of d; can be slightly simplified. If the angles are defined as
Qo= Q; Qi1 = Q;— dywyi; dy=11f @;> 0, and —1 otherwise. So, the algorithm is
got, which is mentioned above.

The feature of the algorithm is that it performs only shifts (multiplies
by 27" and additions (subtractions) [6].

1.4.3 CORDIC-like algorithms
Similarly, to the described above algorithm, the rest of the CORDIC-
like algorithms are got. Below some of them are represented, which are
selected in [7,10].
Algorithm for the functions ¢ = arctg(y/x) and M = k\/;zTyz by
—-T< Q<7 k=1.64676025812.
@1 =0; Xo=x, yo= .
for(i=0,1<n,i++) {

if (x; > 0)

18

{ X=X =y %27
Yirt = Yi+ %527
i1 = ¢ —atan(27) ;)
else
{ X=xi+y%27
Yir1 = Vi —Xi *Q)
Qi1 = @; + atan(27) ;}
}
The results are y,=0, x,= k\/;z+—y2 , 0, = arctg(y/x).
Algorithm for the functions sh @, ch .
Yo=Y, Xo = 1.2051366, @y = ©.

i=0;j=0;
while (i <=n){
if (¢; 2 0){

Vir1 = Vi + 627,
Xip1 = X+ yi¥27;

Qis1= Qi — arth(2_j) ;

}
else
{ Yiel = yi— %27
Xiv1 = X — yi*27,
Qi1 = @y + arth(27) ;
}
if(i=4)j=4;
elseif (i=13)j=13;
else j++;
I++;

}

19

The results are x, = ch @, y, = sh ¢, ¢,=0.
Algorithm for the functions ¢ = arth(y/x), M = k\/;z——y2 sk =
0.82978162.
Yo=Y, Xo =X, §g=0.
i =0;j=0;
while (i <=n){
if (@i 2 0){
Yie1 = Yi— X;%27,
Xie1 = Xi— Yi*27;

Qi1 = Qi + afth(z_j) ;

}

else

{ Yie1 = Vit x;%27;
Xie1 = X+ Y27
Qi1 = @;— arth(27);

}

if(i=4)j=4;

elseif (i =13)j =13;

else j++;

I++;

}
The results are x,, = \/;2——))2 , 0, = arth(y/x).
Algorithm for the function y = ¢". 0 < x<1.
yo=1, xo = x.
i=0;j=0;
while (i <=n){

if (x; =2 0){

Vir1 = Vi + %27,

20

}

Xia1 = xi— In(1 + 27);
}
else{ yi1=yi—x*27;

Xisp = X+ In(1 = 27);

}

if(i=4)j=4;

elseif (i =13)j =13;
else j++;

i++;

The results are y, = ¢', x, =0.

Algorithm for the function y = In(x). 0 < x<1.

vo=0, xo = x.
i =0;j=0;

while (i <=n){

i (1—x < 0)
Xig1 = Xi + x;%27;

Yier = yi— In(1 +27);

}
else{
Xie1 = Xi— X;%27,
Yier = yi+ In(1 +27);
}
if(i=4)j=4;
elseif (i=13)j=13;
else j++;
I++;

21

The results are y, = ¢', x, =0.
Algorithm for the function 2" by the Brigg’s method.
Xo=X.
fori=1,1<=n,i++) {
if (x; < logs (1 + 279Dy
{ X1 =x35
a;11=0; }
else
{ xi=x—logy(1+27);
a1 =1; }
}
yo=1;
forG=1,1i<=n,i++) {
if (= 1) yier =y (1 +27);
}
The result is y, = 2".

1.4.4 Square root algorithm

The well-known CORDIC algorithm of the \/;c calculations consists in the
following. It calculates the function atanh(x/y) as it is shown above. But the side
result is the function K \/;2—_))7 , and by the substitutionx =A + 0.25,y=A —
0.25, we get x, = K\JA [32].

The disadvantages of this algorithm are additional multiplication to the
coefficient 1/K = 1.207, and repeating some iterations (4-th and 13-th when n <

32) for the algorithm convergence.

22

1.5 Hardware implementation of the elementary functions

As it is shown above, both the polynomial expressions and rational
approximations are computational intensive as they contain a number of
additions, multiplications, and even divisions, which are expensive operations.
When implemented in an ASIC, or FPGA they occupy a large area and consume a
lot of power in addition to increasing clock periods.

When the function argument is divided into a set of intervals, and the
small order polynomial is fit for such approximation, then, such is approximation
often used in hardware [33]. A special kind of approximation here is the table
based approximation [34].

The CORDIC algorithms have got the most intensive use in the FPGA
implementation due to their simplicity. The problems and solutions of these

algorithm implementations are shown in the popular work [35].

1.6 Preliminary conclusions

In this section, the algorithms for the elementary function calculation are
reviewed. Among them are polynomial approximation, functional recurrence, and
digit recurrence algorithms.

It is found out that the hardware implementation of the elementary
function computations is not investigated at the proper level.

It is noted, that the algorithms, which utilize only additions, shifts, table
functions, and small number of multiplications are the best candidats for the
FPGA implementations. Among them the CORDIC like algorithms play the
leading role.

In the next section, the theoretical basics of the new methods are

developed, which satisfy the mentioned above features.

23

2 DESIGN OF THE PROCESSING UNITS FOR THE ELEMENTARY
FUNCTION CALCULATION

2.1 FPGA as the computing environment for elementary functions

2.1.1 FPGA architecture

Below, the properties of the Xilinx FPGAs are considered, because this
company is considered as the larger FPGA supplier. But the proposed reasons are
true for FPGAs of other companies as well.

In Xilinx FPGAs, the basic building blocks are Configurable Logic Blocks
(CLBs). In Spartan-6 devices, the CLBs are made up of two logic slices which are
independently connected to the general routing on the FPGA and to a carry chain
structure [36]. There are two types of logic slices in Spartan-6, SLICEL and
SLICEM. SLICEL can be seen as the basic logic slice type, and contains four 6-
input look-up-tables (LUTs), together with four D-type flip-flops(DFFs) and
multiplexers for routing purposes. The LUTs can implement any 6-input logic
function. SLICEM slices contain shift register functionality and provide the
option of using the LUTs as distributed user RAM, as well as the basic resources
described for SLICEL slices. When used as distributed RAM, LUTs are
configured as memories for user data storage.

Other resources on the FPGA include Digital Clock Managers (DCM),
Phase-Locked Loops (PLL), Block RAMs, DSP blocks, I/O blocks (IOBs) and
buffers for connecting package pins. The FPGA resources are connected together
by a configurable routing matrix. A common way of describing FPGAs is as
configurable logic “islands” connected together by a “sea” of configurable routing
paths.

When synthesising an FPGA design, the circuit function defined by the

designer is mapped to these resources by synthesis tools. This mapping makes up

24

the configuration of the device, and is stored in the SRAM-based configuration
memory.

The configuration memory defines the function and operation of all the
described resources as well as the routing and connections on the FPGA, and can
be seen as an underlying device definition layer.

SRAM-based FPGAs are programmed using a binary bit-stream, usually
stored offchip. For space applications, this off-chip configuration storage is
usually in the form of EEPROM or Flash. Since the SRAM-based configuration
memory is volatile, the bit stream has to be reprogrammed onto the FPGA on
startup and power-cycling. The programming logic is responsible for writing the
configuration memory via one of the configuration interfaces.

Xilinx Spartan-6 FPGAs contain dedicated DSP circuitry, in the form of
DSP48A slices. Fig. 2.1 shows a simplified view of a DSP48A slice, featuring a
25x18 multiplier, internal pipelining registers and an arithmetic unit. DSP blocks
are hard ASIC blocks embedded in the FPGAs array of programmable logic, and
are much more area efficient compared to soft logic implementations of the same
functionality [37]. As such, DSP blocks are not defined by an underlying
configuration layer. The DSP48A is well suited for common DSP operations such

as multiply-accumulate.

€ @©-4—°

O > WO
ARNE NN

Fig.2.1. Simplified view of a DSP48A slice

25

The configuration vectors can be synthesised as constants or as signals
originating from other parts of the system. DSP slices are arranged on the FPGA
so that they can be cascaded through the use of fixed carry and shift lines to create
wider operators than what would fit into a single DSP slice.

Block RAM, or BRAM, in Spartan-6 are made up of 36 kB SRAM
memory blocks. These blocks can be cascaded and divided into a number of
different configurations. For example, a single 36kB block can be used as a 36kx1
RAM, or as two functionally separate 18kx1 RAMs. It is also possible to create
wider or larger RAM blocks by cascading BRAMs together.

So, when choosing an elementary function algorithm, one should keep in
mind the features of an FPGA structure that has CLB resources, multipliers,
adders, multiplication blocks, but does not have divisions. For its rapid execution,
the elementary function should be implemented as a parallel structure that allows

the pipelinined operations, because this mode is effectively supported in FPGA.

2.1.2 FPGA project optimization critera

Mentioned above FPGA resources are valuable. Different projects for
FPGA, which perform the same task, can be distinguished in different folume of
these resources. Moreover, these projects can be of different throughput. To select
properly the best project, the effective effectiveness criteria must be selected.
Below, some considerations to these criteria selection are considered.

Hardware volume criterium

In advance, we consider, that the processing unit bit width is equal to n,
and its hardware is proportional to n in some limitations, and by other equal
conditions.

The adder is the main operational unit in FPGA project. Usually, one bit
of the adder is implemented in a single LUT, not taking into account the proper

carry propagation network. Besides, each LUT output can be stored to the

26

respective register (trigger), as in is shown in Fig. 2.2,a. Thus, the n-bit adder, and
the n-bit register have the same complexity, or cost. Then, such register, and
adder have the relative cost, which is equal to a 1.

Also it is important to consider that LUT has the mode SRL16, in which it
operates as a shift register with the programmable length of 1 to 16 bits
(Fig.2.2,b).

In the FPGA chip one DSP48 unit takes 60-300 CLB slices, averagely,
160 CLB slices. For reference, the hardwired 18x18 bit multiplier is implemented
as an equivalent circuit of 208 CLB slices. Consider a DSP processor configured
in FPGA with the hardware resources being used effectively. Then all multiplier
resources should be loaded by the useful computations, and other computations
are distributed among all adders and multiplexers implemented in FPGA. By this
condition, one multiplier takes 160 CLB slices. These CLBs are enough to
implement up to 20 adders and 20 registers of the same bit width. Thus, the
complexity of the multiplier unit is estimated as the complexity of 20 adders.

Similarly, the complexity of the Distributed RAM can be estimated.

COUT/]\
CLB t——> YB
> Y
G4 TT
G3 LUT| | ©Y > vQ SRL16

G1 / D
N —ﬁ
AO0...A3

— XB
F4 TT > X MUX
i k= i > XQ >\ /
F1
Qv
CIN

a)

Fig. 2.2. Structure of the Xilinx FPGA elements: CLBS (a), SRL16 (b)

27

Table 2.1 shows the complexity of the different elements of the same bit
width configured in FPGA, which is expressed in the complexity of a single

register.

Table 2.1.

Complexity of elements, configured in FPGA

Type Complexity
Register 1
Adder 1
Adder-subtractor 1
2-input multiplexor 1
3,4 -input multiplexor 2
5,6-input multiplexor 3
7,8-input multiplexor 4
Registered delay to 2-16 registers (FIFO) 1-2
Multiplier unit 20
16 word RAM 1
1024 word RAM 20

Its analysis shows, that multiplying units should be minimized primarly.
Since in the actual application specific processors the 2—5 input multiplexers
frequently are used, then the complexity of the multiplexer, which takes to a
single input, is equal approximately to 0.27. This means that it is necessary to
mimimize not only the number of registers and adders, but also number of
multiplexot inputs.

According to the arguments above, the following complexity criterion of

the FPGA project is proposed:

28

Os=ng+ns+20ny,+ 0.27n,, (2.1)
Where np is the register number, including the FIFO number, which are
mapped into SRL16 primitive, excluding the registers in the DSP48 modules;
ny 1s the adder number, due to the CLB construction, up to three input
adder is implemented in a single CLB column, therefore, n, considers 2- or 3-
input adders;
ny1s the multiply unit number;

n,1s the number of the multiplexor inputs [38].

Performance criterion

The signal delay in the multiplier blocks is approximately equal to 4.5 ns
for Spartan-6 FPGA. In the two-staged pipelined multiplier the minimum
multiplication period is equal to 2-2.5 ns. The adder delay is derived from the
carry signal propagation and therefore, it is proportional to the bit width. Since the
adder is formed as a line of the locally coupled DLB slices, then its delay is
stable, and for 16-bit adder is equal to 1.4-2.5 ns.

It has to taken into considerations, that the proportion of the delay in the
logic elements is 35-85% of the clock period depending on the degree of the
placing and routing optimization, and on the complexity of the structure.

In the practice, the multiplier delay is about twice te adder delay, taking
into account the interconnection delays.

The multiplexer network has far less latency then the adder has. It is not
depended on the word length, and is nearly independed on the input number., but
depends on the quality of the wiring of the lines, which connect it to the
neighboring elements. As a result, the connection of the additional multiplexor to
the adder adds a delay of 0.4—1.6 ns depending on the multiplexor number (1 or 2)
and routing quality.

Thus, the proposed performance criterion is:

29

Or=n'a+cmyn’'y+crxn’y, (2.2)
where cry , c7x are the ratios of the multiplier and multiplexor delay to the
adder delay, cyy, = 2.2, crx = 0.5;

n’41s the adder number;

n’y1s the number multipliers;

n’.1s the number of multiplexers,
staying in the critical path, which connects the output of one register and the input
of another one. Here, a single unit delay is estimated as the delay of the adder
with the average delays in the communication lines.

Really, QOr is equal to the minimum clock period, derived for the current
placed and routed project, when the results are outputted in each clock cycle. It is
hold on when the processing unit is implemented as a whole combinational
network, which performs the elementary function, or if it is wholly pipelined
network.

The real processing unit projects can calculate the algorithm for L > 1
clock cycles not in the pipelined mode. Thus, the expression (2.2) must be
multiplied by the value of L:

Or=L(n's+cryn’y+ crx n'y). (2.3)

The integral criterium has to take into account both hardware volume and
performance criteria. Then, it can be selected as:

Q=0s-0Or (2.4)

This criterium shows, how many adders are needed to calculate, say, one
million of results per second. The better solution has the smaller value of Q,
because it has smaller hardware volume and/or higher clock frequency, which is

proportional to the processor performance.

30

2.2 Synchronous dataflow graph for the elementary function calculations

The processing module for the elementary function calculation belongs to
the datapaths. The modern high-performance computers operate with high clock
frequencies, thanks to the pipelined mode of data processing and transmission.
There are various methods for the design and optimization of the pipelined
datapaths. These methods are based on the structural synthesis of the datapath,
describing it at the register transfer level and further conversion to the gate level.
The basis of many methods is a representation of the algorithm as a synchronous
dataflow graph (SDF) and its transformation [39].

Such SDF optimization techniques as retiming, folding, unfolding and
pipelining, are widely used in microelectronics, and design of digital signal
processing (DSP) devices [40].

SDF is isomorphic to the graph of the computer structure, which performs
a predetermined algorithm. The nodes of such a graph correspond to the
computing resources like adders, multipliers, processing units (PUs). The edges
correspond to the communication lines, and the labels on them are mapped to the
registers. Consequently, SDF is a directed graph G = (V, E), representing the

computer structure, where v € V represent some logic network with delay of d

time units. The edge e € E corresponds to a link and is loaded by wl[e] labels,
which is equal to the depth of the FIFO buffer.

The minimum duration of the clock cycle 7¢ is equal to the maximum
delay of the signal from one register output to the input of another register, i.e., to
the critical path through the adjacent nodes with delays d, for which w[e] = 0. It
should be noted, that with such a one-to-one mapping of SDF, the duration of the
algorithm cycle 74 coincides with the duration of a clock period, i.e., T4 = T, that

in the other algorithm mapping is not respected.

31

The retiming 1s such a exchange of the labels in SDF edges, which does
not affect the algorithm results. Usually it is realized as a sequence of elementary
retimings, each of them consists of a transferring a group of labels (i.e., registers)
from the input edges of some node v to its outputs.

In most cases, it is allowed to increase the latent delay of the algorithm
and to insert the additional registers on the inputs or outputs of SDF. After
retiming such modified SDF, the pipelined network with low value of T¢ is
achieved. This technique is called as SDF pipelining.

A cut-set retiming is an effective metod, which implements the pipelining,
and therefore, is widely used for the pipelined datapath design. The cut-set in an
SFG 1s a minimal set of edges, which partitions the SFG into two parts. The
procedure is based upon two simple rules [1].

Rule 1: Delay scaling. All delays D presented on the edges of an original
SFG may be scaled, i.e., D’ — aD, by a single positive integer o, which is also
known as the pipelining period of the SFG. Correspondingly, the input and output

rates also have to be scaled by a factor of a (with respect to the new time unit D’).

Time scaling does not alter the overall timing of the SFG.

Rule 2: Delay transfer. Given any cut-set of the SFG, which partitions the
graph into two components, we can group the edges of the cut-set into inbound
and outbound, depending upon the direction assigned to the edges. The delay
transfer rule states that a number of delay registers, say k, may be transferred from
outbound to inbound edges, or vice versa, without affecting the global system
timing.

These rules provide a method of systematically adding, removing and
distributing delays in a SFG and therefore adding, removing and distributing
registers throughout a circuit, without changing the function. The cut-set retiming

procedure is then employed, to cause sufficient delays to appear on the

32

appropriate SFG edges, so that a number of delays can be removed from the graph
edges and incorporated into the processing blocks, in order to model pipelining
within the processors; if the delays are left on the edges, then this represents
pipelining between the processors.

SDF has the properties that it can be described by VHDL, and then, be
translated into the FPGA bit stream [38].

2.3 Example of the processing module synthesis

Consider the design of the processing module, which implements the
equations (1.2). The initial SDF is illustrated by the Fig.2.3,a. After implementing
a set of cut-set retimings, the SDF becomes balanced, as in Fig.2.3,b, where the
black bars represent the delay marks.

The balanced SDF is acyclic SDF, in each route of it the same number of
delay marks stays. Each delay mark is mapped to a single pipeline register. So,
the balanced SDF can be described directly in VHDL as follows.

process(CLK) begin
if RISING_EDGE(CLK) then

if RESET ='1" then
d11<=0; d12<=0; d13<=0; d14<=0;
d15<=0;d16<=0;d17<=0;
d1s7<=0; d1d2<=0;d1d3<=0;
d2<=0; d3<= 0; d4<= 0; y<=0; xd<=0;

else
xd <= X;
d11<=xd*xd;
d12<=dl11; d13<=d12; d14<=d13;
d15<=dl14; d16<=d15; d17<=d16;
d1s7<=d11*S7,
d2<=d1s7 + S5;

33

d1d2<=d13*d2;
d3<=d1d2 + S3;
d1d3<=d15*d3;
d4<=d1d3 + S1;
y<=d17*d4;
end if;
end if;

end process;

Fig.2.3. SDF for equations (1.2) (a), and SDF after pipelining (b)

34

Here, di means the signal, which is delayed to i clock cycles. All the
signals and constants except clock signal CLK and reset signal RESET are
considered to be integers, which have scaled properly. Due to the balanced SDF,
the derived processing unit operates in the pipelined mode. Its critical path goes
only through a single multiplier unit. Therefore, according to (2.2) its
performance is Qr = 2.2. The hardware volume (2.1) is OQs=8 + 3 + 20:5 = 111,
taking into account that the registers d11, d1s7, d1d2, d1d3, y are considered as
the registers of the DSP48 modules, couples of adjacent registers are implemented
in SRL16 units.

The resulting criterium (2.4) is Q = Qs - O = 111-2,2 = 2442 adders per
bln. results per second. This figure is rather high, and the most fraction in it (90%)
1s the multiplier costs. This proves the fact that the polynomial approximation is

bad solution for the elementary function approximation.

2.4. Development of the square root computing module

2.4.1 Introduction

The function of the square root is the very popular elementary function in
the science computations, DSP, and image processing, and pattern recognition
[1,41]. Most often it is computed in a floating-point coprocessor, which has a
certain delay. But the common low-cost microprocessors do not have such
COProcessors.

In our time, FPGAs are used to solve the same problems, which require
the use of the function \/;c There are IP cores for the function \/;c, which are
offered by FPGA manufacturers, and other firms that supply the licenses to such
modules for their configuration in FPGAs [42]. Such a module is able to calculate

the function of the square root in hardware in a pipelined mode with high speed.

35

These modules have been developed one to two decades ago, and generally, they
do not take into account the features of new FPGAs that appeared on the market a
few years ago. So, such modules need to be improved.

Next, we will consider the square root extraction algorithms with an
evaluation of their efficiency for 24-bit input data and fixed-point results that can
be claimed for implementation in the FPGA. This level is acceptable for most
signal processing algorithms and for the implementation of floating point

calculations of single accuracy.

2.4.2 Base algorithm selection
Polynomial approximation
The traditional solution for calculating an elementary function is a

polynomial calculation, which is, for example, a Taylor series, as the next [43]:

\/m=1+%x—% >+ 1_16)63—.

It is impossible to achieve a calculation error less than 0,2% if x € (0; 1).
In addition, the algorithm requires the implementation of many multiples.
Therefore, it is inappropriate for implementation in the FPGA, though, it may be
agreed on a piecewise polynomial approximation.

Functional recurrence algorithm

The following iterative algorithm is based on the Newton-Raffson formula
(1.3), which does not require dividing operations. Here x;= 1/\/7 is the

approximate value of the function, \/7 =~ Xy,. Each subsequent iteration of the
algorithm approximately doubles the number of correct result bits. Therefore, in
order to calculate the correct 24-bit result, it is necessary to perform n = 2
iteration of the algorithm and obtain the value of x, from the table with a seven-
digit input of the address, that is, volume 2’. The algorithm can be executed in one

iteration, if the table has a 13-bit input, that is, it has a volume of 213 words.

36

The performance Ot and hardware Qg costs of this algorithm an previous
one are given in Table 2.2. When calculating Qs, it was considered that the
mentioned tables are implemented in the FPGA as a ROM, which has an
approximate complexity as the complexity of two and sixty adders, respectively.

Digit recurrence algorithm

A well-known CORDIC algorithm for calculating \/7 1s based on the
following. In the calculation of the arctgh(x/y) function, the \E function 1s the
by-result of the function x,= K\[x’*—y* , with substitution x = A + 1,y = A — 1,
we obtain x, = K\/X [44,45]. This algorithm has been successfully implemented
in many FPGA projects, such as in [46].

The disadvantages of this algorithm are the need for additional
multiplication by the factor 1/K = 1,204, as well as the repetition of some
iterations for the convergence of the algorithm.

A more constructive algorithm is the Digit recurrence algorithm, which
aims to obtain the function x [44,47]. It is based on the following relations. For
each number x € [0,25; 1.0] we can choose the following coefficients a; € [0, 1]

that

[1(1 +a27) =1.0. 2.5)
i=1
Therefore,

INx =[]0 +a27)
i=1

or

Vx o= [J(1+a27). (2.6)

The implementation of the algorithm consists in repeating a series of

iterations. During the m-th iteration, the coefficient a,, is chosen to ensure equality

37

(2.5) and the found coefficient is substituted in (2.6). In order to handle the
numbers x € [0; 1.0), they can be normalized if (2.6) and (2.7) initially accept i =
0 and @; = 1 until the first overflow of the product in (2.5). As a result, we get the
following algorithm [44].

Yo=X; Xo=x;m=0;f=0;

for =0;1<n;i++)

{
t =X;+ 2_m*xi;
u =t +27 %t ;
if (uz1.0) {
f=1;
Xi+1 = X5
Yis1 = Yis
}
else {
Xi+1 = U,
Vi =V + 27y
}
if (f==1) m++;
}

When performing the algorithm initially, when m = 0, the normalization of
the operand x; 1s performed with the correction of the partial result y;, Then
m =1, 2,..., n and in the process of convergence, x; goes to one, and y; goes to \/;
, where n is the number of binary digits of the result.

To implement the algorithm in FPGA, it is desirable to perform the
normalization of x;, and the corresponding correction y, in the normalization block

based on the shift unit.

38

Table 2.2

Costs to calculate the function\/;

Algorithm DSP48 modules Os Or
Polynomial algorithm 5 111 |8
Functional recurrence algorithm, 1 iteration 2 102 |7
Functional recurrence algorithm, 2 iterations 4 86 13
Digit recurrence algorithm — 52 50
Modified digit recurrence algorithm 1 35 17

Then, the algorithm receives an acceleration in the worst case by one
third. The experience of building a normalization unit shows that its complexity,
together with the complexity of the denormalization block for 24-bit data, is
evaluated as the complexity of four adders. In addition, 2n adders for the parallel
calculation (2.5) and (2.6). Then the algorithm is executed for 2n = 48 clock
cycles for obtaining the resulting digits (two cycles of calculating ¢ and u for n
cycles) and two cycles for normalization and denormalization. Thus, the
algorithm has the complexity of Os= 52 and Q1 = 50 (in the non-pipelined mode).

So, the digit recurrence algorithm for calculating \E is preferable for its

FPGA implementation.

2.4.3 Modernization of the digit recurrence algorithm
The largest delay in the digit recurrence algorithm, discussed above, gives
a double addition of a shifted datum that distinguishes this algorithm from other

algorithms of this type:
t=x+2 x;
u=t+2t.

These two steps of addition can be reduced to one:

39

—m —m —m —m+1 —2m
u=x+2 x; +2 (x+2 x)=x+2 x; +2 x.

Since in modern FPGA the three-input adder is implemented in a single
layer of six-input LUTSs, then such calculation can be performed in one cycle
without additional time and hardware costs. Considering this feature, for even n

the algorithm looks like the following.

k = FLO(x);

yo = SHR(x,k/2);
Xo = SHR(x,k/2%2);
m=1;

for 1=0;1<n;1++)

{
u =x;+ 2_m+1*xi + 2_2m*Xi;
if (uz1.0) {
Xi+1 = Xj5
Yit1 = Yis
}
else {
Xi+1 = U,
Vi =V + 27y
}
m++;
}

Y = SHL(y, k/2);

Here, the FLO function determines the number of digits before the most

significant bit, and the SHL, and SHR functions perform a shift the data to the left

40

and to the right for a given number of bits. Consequently, the number of
equivalent adders for this algorithm is the same, but the delay of calculations
decreases to Ot = 26 cycles.

When analyzing the execution of this algorithm, it can be seen that when
reaching i the limit n/2, then the most significant i — 1 bits of the data x; become
equal to a one for any xy. Consequently, the most significant bits of y; are the exact
bits of the result. One can put forward the hypothesis that the least significant bits
of the result can be calculated by analyzing and processing the difference 1 — x..
For example, this could be determined using the table function.

Lete;=1—-x;and €, = \/; — y; or\(x =¢€,+ Y. Thatis, in order to obtain
the refined value of the result, the value of the correction €, should be calculated
and added to the approximate result, and the correction should be calculated
taking into account the difference €.

Due to (2.5) and (2.6),
e =1 [(1+a27),
i=1
Sx:\/; - xH(l +a?27).
i=1

m
Letz =[x [J(1+a27)), then
i=1

er=1-2=1+2)(1-2);
and g,= \x (1-2).
Since z = 1, then € =2(1 -2);

And g=\x &2 =y;(1-x)2.

So, in order to obtain a refined result, y; (1 — x;)/2 should be added to the

approximate result y;. To do this, you need to perform an additional subtraction

41

and one multiplication. Moreover, because of the difference in € and the
corrections €, half of the highest bits are zero, then multiplication can be
performed at twice the smaller bit. That is, the hardware complexity of such
multiplication can be estimated by five adders. The resulting modified algorithm

looks like the following.

k = FLO(x);
yo = SHR(x,k/2); xo=SHR(x,k/2%2);

for 1=0;1<n/2;i++)

{
u =x;+ 2_i*xi + 2_21_2*);1;
if (uz1.0) {
Xi+1 = Xj;
Yis1 = Yis
}
else {
Xi+1 = U,
Y=y +27 Fy;
}
}

Y =Yin t Yi+l*(1-0 - Xir1)/2;
y = SHL(yx, k/2);

Thus, the costs for this algorithm for n = 24 are Qs = 35 and Q7 = 17.
Thus, due to the modification, the algorithm received an acceleration about 50/17
=~ 3 times and has a minimal latent delay among all considered algorithms.

SDF of a single iteration of this algorithm is shown in Fig. 2.4.

42

Xit+1

Fig.2.4. SDF of a single iteration of the \E calculating

The arrow “—” in it means arithmetical shift right to the given bit number
of the data in the respective edge, the white bar represents a multiplexor, which
throughputs left or right edge data depending on the Boolean operand, which
enters the multiplexor side. Here, this Boolean operand is the sign bit u(n) of the
intermediate result u.

This SDF is the base for the IP core description in VHDL, Which is
shown in Appendix. The development and investigation of this IP core are shown
in [4,5].

As a result, the modernized digit recurrence algorithm is the best of
considered algorithms for the function \E calculating for implementing in

FPGA.

43

2.5 Method of the multifunction processor module design

2.5.1 Background of the method

A set of algorithms of calculating the elementary function are considered
above. Among them, the digit recurrence algorithms have the features of the
minimum hardware volume for their FPGA implementation. And really, such
algorithms are often implemented in FPGA. But they usually implemented as a
single function in the separate IP core.

The multifunction processing modules are often needed for design of
complex computer systems. Such processing module serves as the mathematical
coprocessor for the general purpose microprocessor, is used for implementing
complex algorithms of the parallel-sequential nature.

But the multifunction processor modules are not proposed by the provi-
ders. Some experimental multifunction processors are found very rarely. The po-
lynomial approximation fits the most of elementary function calculation because
the processor structure remains the same, but only the coefficient set is exchan-
ged. But as it is shown above, the hardware volume of such processor is too high.

The most of multifunction processors for the FPGA implementation are
based on the CORDIC algorithm [48] because they utilize the similarity of the

equations for the different functions [35]. For example, to calculate the functions

like sin, cos, atan, sinh, cosh, \/x2 - y2 , \/x2 + y2 the same structure is used, but
only the control of signs of adders is exchanged.

The traditional method of the multifunction processor design consists in
selection of the set of hardware resources, finding out the schedules for each
algorithm, and in forming the structure, which implements each of given algo-
rithms in a sequence [49]. But the resulting structures can be far from the opti-
mum because each of the steps of tsuch structure synthesis has different criteria.

Therfore, it is valuable to develop a method for the multifunction

processor designing.

44

2.5.2 SDF of the combined algorithm

In the subsection 2.2 and 2.3 it was shown that SDF is mapped by the one-
to-one mapping to the pipelined datapath. So, if SDF represents a set of
algorithms, then the respective datapath implements each of the algorithms
belonging to this set.

The example of the SDF in Fig. 2.4 shows that SDF can express the
algorithm, in which the data streams are dynamically interchanged.

Consider two algorithms, each of them implement the same operation set
{V}1 = {V}, = {V}, but they are distinguished in the algorithm graphs. Then the
combined SDF is possible, which contains the node set {V}, to some nodes V; €
{V} are connected the multiplexor nodes. So, when these multiplexers are
switched in one position, then SDF performs the first algorithm, and when they
are swithed in another position, then SDF performs the second algorithm. As a
result, such combined SDF is mapped into the multifunction datapath structure,
which performs both algorithms.

Definition. Combined SDF is SDF, which contains a set of multiplexor
nodes, due to that it performs a set of different algorithms.

2.5.3 Formulation of the method

Using the features of the combined SDF a method of the multifunction
processor design can be formed. The method is formulated as follows.

The method of the multifunction processor module design consists in
forming the combined SDF, which performs a set of algorithms of the elementary
function calculation, in balancing this SDF, and in mapping it into the pipelined
datapath.

Comparing to other methods, this method is simpler because the steps of
resource selection, task scheduling and resource allocation, and structure forming

are combined, and it provides better hardware and performance effectiveness.

45

2.5.4. Example of the multifunctional processor unit design

Consider the design of the multifunctional processing module, which
calculates the functions of \/;c, sin x, and cos x. The first function 1s calculated
using the algorithm, described in the paradraph 2.4.3, and the rest of functions are
calculated by the CORDIC algorithm.

SDF of the first algorithm is based on the cycle SDF shown in Fig. 2.4.
The respective SDF of the CORDIC cycle is shown in Fig. 2.5, which is built on
the base of the algorithm, described in the paragraph 1.4.2.

Atan(2™) ¢,

Fig.2.5. SDF of a single iteration of the CORDIC algorithm

Atan(27)

— —— —
4

Xix1 ® YVist x

S
k
[25

Fig.2.6. SDF of a single iteration of the CORDIC algorithm

46

After performing the combining the SDFs in Fig 2.4 and 2.5, we have got
SDF, which is illustrated by Fig. 2.6.

The resulting combined SDF in Fig.2.6 forms the n-staged pipelined SDF,
which is described as a GENERATE operator in VHDL.:

STAGES: foriin O to n-1 generate
process(CLK)
variable u:STD_LOGIC_VECTOR(n+1 downto 0);
variable 11:STD_LOGIC_VECTOR(5 downto 0);
begin
1i:=conv_std_logic_vector(i,6);
if rising_edge(CLK) then
if F='0" then
u:=x(i)+SHR(x(1),i1) +SHR(x(1), (1i&'0")+2);
if (u(n) ='0" or u(n+1) ='0") then
x(i+1)<=u;
y(i+1)<=y(i) + SHR(y(i), ii+1) ;
else
x(1+1)<=x(1);
yi+D<=y(@) ;
end if;
else
if (fi(i)(n) ='0") then
u :=x(1) - SHR(y(1), i1);
y(i+1)<=y(1) + SHR(x(1), ii);
fii+1)<=fi(i) - atan(i);
else
u :=x(i) + SHR(y(i), ii);
y(i+1)<=y(1) - SHR(x(i), ii);
fi(i+1)<=fi(i) + atan(i);
end if;

x(i+1)<=u;

47

end if;
end if;
end process;
end generate;

The whole IP core description is presented in the Appendix 1.

2.6 Preliminary conclusions

In this section, the FPGA architecture is investigated to select its features,
which infer the selection of the elementary function algorithm implementation.
This investigation helped to select the hardware cost and performance criteria for
the processor module optimization.

It was proven, that the digit recurrence algorithms are best fitted for the
FPGA implementation.

A new modification of the digit recurrence algorithm for the function \E
calculating is proposed, which provides the decreasing the latent delay up to three
times.

The method of SDF mapping into the pipelined structure of the processor
module was studied, which helps to derive the effective structures for the
elementary function calculations.

A new method of the multifunction processor module design is proposed,
which consists in forming the combined SDF, which performs a set of algorithms
of the elementary function calculation, in balancing this SDF, and in mapping it
into the pipelined datapath, which is simpler and provides better hardware and
performance effectiveness comparing to the other similar methods.

The method was used in the design of the processor module for the \E ,
sine, and cosine function calculations.

The effectiveness of the proposed method and algorithms is proven in the

next section.

48

3 IMPLEMENTATION OF THE ELEMENTARY FUNCTION PROCESSOR
MODULES IN FPGA

3.1 Synthesis of the processor module for the \E function calculation

The project o the processor module for the \/7 function calculation is
described in VHDL as the entity SQRT_CS5, and implements the algorithm,
described in the paragraph 2.4.3. Its text is shown in Appendix 1.

The module is tunable by the generic constants:

generic(ni:natural:=24; -- input bit width

no:natural:=24; -- output bit width

norm:natural:=0; --0- unnormalized input data, 1 - normalized

pipe:natural:=1);-- 1 —fully pipelined , 0 — combinatorial
network

The module has the following ports:

port(

CLK :in STD_LOGIC;
DI : in STD_LOGIC_VECTOR(ni-1 downto 0); --initial data
DO : out STD_LOGIC_VECTOR(no-1 downto 0)-- result
);
By testing this IP core, the signal of the linear form was feeded its inpit

port, and the output signal was investigated. The output signal represents the

function \E with the error, which is not sucseed a single least significant bit. For
the purposes to preserve such precision, the IP core has the inner data bit width,
which is to 5 bits higher than the input data bit width. The resulting modeled

diagrams are shown in Fig.3.1.

49

DI

DO

Fig.3.1. Input and output signals of the processor module for computing \/?

Then, the processor module was synthesized, mapped, placed and routed
in the Xilinx FPGA xc6lx-16 (Spartan-6) by the CAD system ISE ver. 13.3. The
results of mapping for the input and output bit width of 24 bits are shown in

Fig.3.2. The timing result message table for this core is the following:

Constraint | check | worst Case | Best Case | Timing | Timing
| | Slack | Achievable | Errors | Score

Autotimespec constraint for clock net AK | SETUP | N/A| 5.428ns| N/A| 0
_BUFGP | HOLD | 0.46%s | | 0| 0

In fig. 3.3, the graphs of the dependences of hardware volume in the
number of LUTs on the bitwidth of input data are shown. Note, that this bitwidth
is equal to the one results, the modules have the conventional and pipelined
structure. It should be noted that the modules with a bitwidth up to 32 inclusive
additionally have a multiplication unit DSP48, and the rest of then four such

blocks have.

50

Device Uiliration Summary

Slice Logic Utilization Used | Available | Utilization
Mumber of Slice Registers 88 18,224 1%
Mumber used as Flip Flops 80
MNumber used as Latches 0
MNumber used as Latch-thrus 0
Mumber used as AND/OR logics a8
Mumber of Slice LUTs 1,591 9,112 17%
Mumber used as logic 1,591 9,112 17%
Mumber using 06 output only 1,012
Mumber using OF output only o9
MNumber using 05 and 06 520
Mumber used as ROM 0
Mumber used as Memary] 2,176 0%
Mumber of nccupied Slices 515 2,278 22%
Mummber of MUXCYs used 652 4, 556 14%
Mumber of LUT Flip Flop pairs used 1,616
Mumber with an unused Flip Flop 1,528 1,616 Q4%
Mumber with an unused LUT 25 1,616 1%
Mumber of fully used LUT-FF pairs 63 1,616 3%
Mumber of unique control sets 1
Mumber of slice register sites lost] 158,224 0%
to control set restricions
Number of bonded [CBs 49 232 21%

Fig.3.2. Results of mapping the square root processor for the input and output bit

width of 24 bits

51

5000 -

4500 '/
4000 / /

3500
/ / —&— Combinatorial
3000 / / /’ network
2500 —— Pipelined
/ / / network
2000 —— Xilinx Corelib

o
500 Z?///

16 18 24 32 48 54

Fig.3.3. Hardware volume of the processor \/; depending on the bitwidth n

According to Fig. 3.3, the hardware volume of the module with the
combinatorial network significantly outperform the volume of the pipelined
module. This can be interpreted in that the compiler-synthesizer is better able to
optimize the pipelined network because the parts of the network to be optimized,
that is, the gates and LUTs located between the two layers of registers have much
less complexity.

Fig. 3.4 shows the maximum clock frequency of the synthesized modules.
When implementing the bitwidth 48 or more, the maximum clock frequency

significantly decreases because the compiler-synthesizer builds a multiplication

52

unit with a bitwidth, which i1s more than 24, and at the same time, it manifests

itself unable to build a pipelined network of the multiplication block.

350 ~
300 AN
250 4~ \S\ —— Combinatorial
)

\ network
200 \ —— Pipelined
150 network

\ —— Xilinx Corelib
100 \
0 1 1 1 1 1 1

16 18 24 32 48 54

Fig.3.4. Maximum clock frequency of the processor \/; depending on

the bitwidth n

For comparison, Fig. 3.3 and Fig. 3.4 show the characteristics of the
licensed modules offered by Xilinx company. Consequently, the proposed module
approximates the hardware costs to the "firm" module at n = 32, but in general, it
loses to him including the speed. Its advantages are that it is free and can be
configured for arbitrary input and output bit width. In addition, the proposed
module has a lower latency delay.

For example, if the input data is normalized, then for bitwidth 24, the
latent delay 1s only 15 cycles versus 24 cycles per competitor. If the circuit is not
pipelined, then the delay from the input to the output is 7, = 40.3 ns and 71.9 ns,
respectively. This means, that when implementing the floating-point calculations,

the proposed module provides the greater performance.

53

As a result, the gesigned processing module has the very high
effectiveness. Comparing to the CORDIC processor (see below), it has in 1.6
times less hardware volume in LUT number. It has in 2 times less latent delay due
to the fact, that the modernized algorithm is calculated for n/2 clock cycles, and in

1.6 times higher clock frequency by the same bit width n.

3.2 Synthesis of the multifunction processor module

The project o the processor module for the \E , sine and cosine function
calculations is described in VHDL as the entity SQRT_SIN, and implements the
algorithm, described in the paragraph 2.5.4. Its text is shown in Appendix 1.

The module is tunable by the generic constant:

generic (n : natural := 12);
which gives the input and output bit width.
The module has the following ports:

port(
CLK : in STD_LOGIC;
RESET : in STD_LOGIC;
F:in STD_LOGIC; -- function select F=0 when SQRT
XIN :in STD_LOGIC_VECTOR(n-1 downto 0);
YOUT : out STD_LOGIC_VECTOR(n-1 downto 0);
XOUT : out STD_LOGIC_VECTOR(n-1 downto 0)
);
The processor module was synthesized, mapped, placed and routed in the
Xilinx FPGA xc6lx-16 (Spartan-6) by the CAD system ISE ver. 13.3. The results
of mapping for the input and output bit width of 24 bits are shown in Fig.3.5. The

timing result message table for this core is the following:

Constraint | Check | Worst Case | Best Case | Timing | Timing

| Slack | Achievable | Errors | Score
Autotimespec constraint for clock net CLK | SETUP | N/A| 7.206ns | N/A| 0
_BUFGP | HOLD | 0.426ns | | (0] 0

54

Device Utilization Summary
Slice Logic Utilization Used | Available | Utilization
Mumber of Slice Registers 1,875 158,224 10%
Murnber used as Flip Flops 1,855
Mumber used as Latches 0
Number used as Latch-thrus 0
Mumber used as AND/OR. logics 20
Mumber of Slice LUTs 3,251 9,112 35%
Mumber used as logic 3,215 9,112 35%
Mumber using 06 output only 2,797
Mumber using 05 output only 4
Mumber using 05 and 06 414
Mumber used as ROM 0
Mumber used as Memory 0 2,176 0%6
Mumber used exdusively as route-thrus 36
Mumber with same-slice register load 12
Mumber with same-slice carry load 24
Mumber with other load 0
Mumber of occupied Slices aa0 2,278 42%
Mummber of MUXCYs used 2,564 4, 556 56%
Mumber of LUT Flip Flop pairs used 3,321
Mumber with an unused Flip Flop 1,477 3,321 445
Mumber with an unused LUT 70 3,321 2%
Mumber of fully used LUTFF pairs 1,774 3,321 53%

Fig.3.52. Results of mapping the square root processor for the input and output bit
width of 24 bits
In fig. 3.6, the graphs of the dependences of hardware volume in the

number of LUTs on the bitwidth of input data are shown. Note, that this bitwidth

55

1s equal to the one results, the modules have the conventional and pipelined

structure..

14000 -
13000
12000
11000
10000
9000

/

8000 —— Combinatorial
7000 / néhN?ﬂi
/ —— Pipelined

6000 network
5000
4000 /7
3000 /
2000 /

7
1000

O I I I I I |
12 16 24 32 48

\\\D\

—

Fig.3.3. Hardware volume of the multifunction processor module

depending on the bitwidth n

According to Fig. 3.6, the hardware volume of the module with the
combinatorial network significantly outperform the volume of the pipelined
module. This can be interpreted in that the compiler-synthesizer is better able to

optimize the pipelined network because the parts of the network to be optimized,

56

that is, the gates and LUTs located between the two layers of registers have much
less complexity.

Fig. 3.7 shows the maximum clock frequency of the synthesized modules.
When implementing the bitwidth 48 or more, the maximum clock frequency
significantly decreases because the compiler-synthesizer builds a multiplication
unit with a bitwidth, which 1s more than 24, and at the same time, 1t manifests

itself unable to build a pipelined network of the multiplication block.

200 -
180

160
140 A . —— Combinatorial

120 7}/\ network

100 T~ —— Pipelined
%0 network

60
40 T ———
20

12 16 24 32 48

e

Fig.3.7. Maximum clock frequency of the multifunction processor module

depending on the bitwidth »

Additionally, the module of the multifunction processor was synthesized

with the fixed input F = 0 and F =1. This means that the synthesized network

performs only either the function \/; or functions sin(x), cos(x), as the genuine

CORDIC processor. The results of this synthesis are shown in Table 3.1.

57

Table 3.1

Parameters of different processor structures

Processor Structure | Hardware volume, LUTSs Maximum clock frequency,
MHz

\/; 2402 145

CORDIC 1665 156

Combined 3251 139

The Table 3.1 analysis shows that the combined structure has the
hardware volume 3251 LUTs, which is smaller in 1.25 times than the overall
hardware volume of 4067 LUTs of the processor computing \/; , and the
CORDIC processor. This means that really, the combined processor has the effect
of the minimized hardware volume. Besides, its hardware volume 1is less than one
of the analogous processor, which performs the function \/; but using the
CORDIC algorithm [46].

But the speed of the combined processor (139 MHz) is slightly less than
the speed of the processors, which perform the separate functions (145 and 156
MHz). This is explained, that the combined processor has the network, in which
the critical path delay is expanded to the multiplexor delay.

As a conclusion, this example shows the rather good effectiveness of the
prposed method of design the multifunction processors for calculating the

elementary functions.

58

3.3 Preliminary conclusions

In this section, a set of processors for the elementary function
implementation, which are designed according to the proposed method and
algorithms are tested and probed. The results are the following.

The designed processing module for the square root function has the very
high effectiveness. Comparing to the CORDIC processor, it has in 1.6 times less
hardware volume in LUT number, has in 1.6 times higher clock frequency by the
same bit width n. and has in 1.6-2 = 3.2 times less latent delay due to the fact, that
the modernized algorithm is calculated for n/2 clock cycles.

The designed multifunction processing module has in 1.25 times less
hardware volume than the processors, which perform the same algorithms but
separately, by decreasing the clock performance only to 4 — 12%. This shows the
rather good effectiveness of the prposed method of design the multifunction

processors for calculating the elementary functions.

59

CONCLUSIONS

This thesis has presented a detailed description and analysis of the
algorithm selection and design of the high-speed processing modules for the
elementary function computing, and development of a new method for such
modules design. On the base of the thesis materials the following conclusions are
made.

1) The algorithms for the elementary function calculation, like polynomial
approximation, functional recurrence, and digit recurrence algorithms are
reviewed. It is found out that the algorithms, which utilize only additions, shifts,
table functions, and small number of multiplications are the best candidates for
the FPGA implementations. Among them the CORDIC-like algorithms play the
leading role.

2) The FPGA architecture is investigated to select its features, which infer
the selection of the elementary function algorithm implementation. This
investigation helps to select the hardware cost and performance criteria for the
processor module optimization.

3) It was proven, that the digit recurrence algorithms are best fitted for the
FPGA implementation.

4) A new modification of the digit recurrence algorithm for the function
\E calculating is proposed, which provides the decreasing the latent delay up to
three times.

5) The method of the synchronous dataflow graph (SDF) mapping into the
pipelined structure of the processor module was studied, which helps to derive the
effective structures for the elementary function calculations.

6) A method of the multifunction processor module design is proposed,
which consists in forming the combined SDF, which performs a set of algorithms

of the elementary function calculation, in balancing this SDF, and in mapping it

60

into the pipelined datapath, which is simpler and provides better hardware and
performance effectiveness comparing to the other similar methods.

7) The proposed method of the multifunction processor module design

was used in the design of the processor module for+/ x , sine, and cosine function

calculations. Their configuring in FPGA and testing has shown that the designed

processing module for the \/7 function has the very high effectiveness.
Comparing to the CORDIC processor, it has in 1.6 times less hardware volume in
LUT number, has in 1.6 times higher clock frequency by the same bit width n.
and has in 3.2 times less latent delay.

8) The designed multifunction processing module has in 1.25 times less
hardware volume than the processors, which perform the same algorithms but
separately, by decreasing the clock performance only to 4 — 12%. This shows the
rather good effectiveness of the proposed method of design the multifunction
processors for calculating the elementary functions.

9) The future works at this theme can be directed to the selection of the
effective algorithms for the elementary function calculation and implementing
them in the multifunction processors using the proposed method with the goals of

the method improvement and proving its effectiveness.

61

REFERENCES

Woods R. FPGA-based Implementation of Signal Processing Systems / J.
McAllister, G. Lightbody, and Y. Yi. / J. Wiley and Sons, Ltd., Pub. 2008.
364 p.

FPGA Implementations of Neural Networks. A. R. Omondi, and J. C.
Rajapakse, Eds. Springer. 2006. 360 p.

Yoshikawaa K. Development of Fixed-point Square Root Operation for
High-level Synthesis / N. Iwanagaa, and A.Yamawaki // Proc. 2nd Int. Conf.
on Industrial Application Engineering. 2014. pp. 16 — 20.

Sergiyenko A.M. Square root calculations in FPGA / H.M.Jamal., P.A.
Sergiyenko // System analysis and information technology: 20-th
International conference SAIT 2018, Kyiv, Ukraine, May 21 — 24, 2018.
Proceedings. — ESC “IASA” NTUU “Igor Sikorsky Kyiv Polytechnic
Institute”, 2018. — P. 163—-164.,

Jiokaman X. M. Anaroput™M 1 CTpyKTypa MOAYJAS Aisi OOYHUCIEHHS
kBagpatHoro kopeHs y IIJIIC / A.Ceprienko, II. Ceprienko // Ilpari
MDKHapoaHoi koHpepeHili "besneka, BigmoBocriiikicts, IHTenext", 10-11
tpaBusa 2018. — C. 74—77.

Muller J.M. Elementary functions. Algorithms and implementation. 2-nd ed.
Springer. 2006. — 265 P.

Tecnep I'.C. Bpluncnenue »snemeHtapHsix ¢yHkmuii Ha OBM /
bnarosemenckuii F0.B. / Kues: Texnika 208 c.—1977.

Alt H. Comparison of arithmetic functions with respect to Boolean circuits //
In Proceedings of the 16th ACM STOC, 1984. — P. 466-470.

Cody W. Software Manual for the Elementary Functions /W. Waite /
Prentice-Hall, Englewood Cliffs, NJ, 1980.

62

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ITorioB B.A., Tecnep I'.C. Breruucnenue pyukiuit Ha 9BM / Tecnep I'.C. /
Kuen: HaykoBa nqymka. 1984. — 600 c.

Volder J. E. The CORDIC trignometric computing technique // IRE
Transactions on electronic Computers, pp. 330-334, Sept. 1959.

Walther J. S. A unified algorithm for elementary functions // in Proceedings
of the AFIPS Spring Joint Computer Conference. 1971, P. 379-385.

Jun Cao J. C. High-performance architectures for elementary function
generation / B. W. Y. Wei, // in Proceedings of the 13" IEEE Symposium on
Computer Arithmetic, July 6-9, 1997. — P.184-188.

GNU C Library, [electronic resource]. Available at
http://www.gnu.org/software/libc

Aho A. V. Optimal code generation for expression trees / S. C. Johnson //
Journal of the ACM, N.23, 1976. —P. 488-501.

Sethi R. The generation of optimal code for arithmetic expressions / J. D.
Ullman // Journal of the ACM, Nol7, 1970. — P. 715-728.

Aho A. V. Code generation for expressions with common subexpressions / .,
S. C. Johnson, and J. D. Ullman // Journal of the ACM, No. 24, 1977. —P.
146-160.

Breuer M. A. Generation of optimal code for expressions via factorization //
Communication of the ACM, No.12, 1969. — P. 333-340.

Takagi N. Generating a power of an operand by a table look-up and a
multiplication //Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, Asilomar, California, USA, July 1997. — P. 126-131.

Hassler H. Function evaluation by table look-up and addition / N. Takagi //
Proceedings of the 12th IEEE Symposium on Computer Arithmetic, Bath,
England, July 1995. — P. 10-16.

63

21.

22.

23

24.

25.

26.

27.

28.

29.

30.

Sarma D. D. Faithful bipartite ROM reciprocal tables / D. W. Matula //
Proceedings of the 12th IEEE Symposium on Computer Arithmetic, Bath,
England, July 1995. — P. 17-28.

Stine J. E. Symmetric bipartite tables for accurate function approximation /
M. J. Schulte // Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, Asilomar, California, USA, July 1997. — P. 175-183.

. Muller J.-M. A few results on table-based methods / Muller J.-M. // Research

Report, V. 5, Oct. 1998.

Schulte M. J. The symmetric table addition for accurate function
approximation / J. E. Stine // Journal of VLSI Signal Processing, V. 21, No.
2,1999. -P. 167-1717.

Florent de Dinechin A. T. Some improvements on multipartite table methods
/ A. T. Florent de Dinechin // Proceedings of the 15th IEEE Symposium on
Computer Arithmetic, Vail, June 2001.Colorado, USA, 2001. — P. 128-135.
Tang P. T. P. Table-lookup algorithms for elementary functions and their
error analysis // Proceedings of the 10th IEEE Symposium on Computer
Arithmetic, Grenoble, France, June 1991. — P. 232-236,

Muller J.-M. Partially rounded small-order approximation for accurate,
hardware-oriented, table-based methods / J.-M. Muller // Proceedings of the
16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela,
Spain, June 2003.

Brent R. Modern Computer Arithmetic /P. Zimmermann / Cambridge
University Press. 2011. — 221 P.

Volder J. E.. The birth of CORDIC // Journal of VLSI Signal Processing
Systems, Vol. 25, No. 2. 2000. -P.101-105.

Walther J.S. The story of unified CORDIC // Journal of VLSI Signal
Processing Systems, Vol. 25, No. 2. 2000. —P.107-112.

64

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

R. Nave. Implementation of transcendental functions on a numerics
processor // Microprocessing and Microprogramming, 1983. No.11. — P.
221-225.

Yoshikawaa K. Development of Fixed-point Square Root Operation for
High-level Synthesis / N. Iwanagaa, A.Yamawaki // Proc. 2nd Int. Conf. on
Industrial Application Engineering. 2014. — P. 16 — 20.

Parhami B. Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, 2010 - 641 P.

Muller J.-M, Handbook of Floating-Point Arithmetic / N. Brisebarre, F.
Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond, N.Revol, D.
Stehlé,Serge Torres / Springer. 2010. — 571.

Andraka R. A survey of CORDIC algorithms for FPGA based computers //
FPGA '98 Proceedings of the 1998 ACM/SIGDA sixth international
symposium on Field programmable gate arrays. — P. 191-200.

Series FPGAs CLB User Guide. UG474 (v1.7). November 17, 2014. — 74 P.
[Electronic resource]. Available at www.xilinx.com

Spartan-6 FPGA DSP48A1 User Guide. UG389 (v1.2). May 29, 2014. — 46

P. [Electronic resource]. Available at www.xilinx.com

Cepruenko A.M. OrobOpaxeHue MEPUOJUYECKHX AITOPUTMOB B
MporpaMMupyemMbie Jorudeckue uHTerpaibubie cxemol / B.I1. Cumonenko //
DnektpoHHoe moaenupoBanue. T. 29. No.2. 2007. — C.49-61.

Edwards S. Design of Embedded Systems: Formal Models, Validation, and
Synthesis / L. Lavagno, E.A. Lee, A. Sangiovanny-Vincentelli // Proc. IEEE,
vol.85, pp.366—390, March 1997.

Khan S. A, Digital Design of Signal Processing Systems. John Wiley &
Sons. 2011.

FPGA Implementations of Neural Networks / A. R. Omondi, J. C.
Rajapakse, eds. — Springer. — 2006. — 360 p.

65

42.

43.

44.

45.

46.

47.

48.

49.

7 Series FPGAs CLB User Guide. UG474 (v1.7). // Xilinx com. —2014. — 58
P. [Electronic resource } Available at: www.xilinx.com
/support/documentation/user_guides/ug474_7Series_CLB.pdf

JIroctepuuk JI.LA. Marematnueckuil aHanu3. BberuuciieHHE 37€MEHTapHbBIX
¢byuxuiit /., UepBonenkuc O.A., SAunonsckuit A.P. / — M.: TU3 ¢us.-mar.
aut. — 1963. — 247 c.

bnarosemenckuii FO.B., Tecnep I'.C. Boruncnenue sneMeHTapHbIX QyHKINN
Ha OBM. — Kues: Texnika. —1977. — 208 c.

CmonoB B. b. CoeumnanusupoBanHble mnpoueccopbl: MTepannoHHbie
anroputMmbl U cTpykTypsl / B. /1. balikos, B. JI. CmosioB / M.: Paguo u cB43b.
— 1985. —288 c.

bikramesa C.P. CORDIC-meton oGuucieHHs kBajapatHoro kopens / C.P.
bikramesa, JI.B. Mopo3, M.IO. CraxiB // Bica. Han. Yu-Ty "JIbBiBCBKa
nomTtexHika". Cep.: Enexrponika : [30. Hayk. nip.] — JIbBiB : Bua-so Hair.
yH-Ty "JIbBiB. momitexHika", — 2006. — C. 152-155.

Chen T.C. Automatic computations of exponentials, logarithms, ratios
and square roots. IBM J. Res. and Develop. — 1972. — Ne4. — P. 380-388.
Szyzaki M. FPGA computation of magnitude of complex numbers using
modified CORDIC algorithm / Smyk R. // Zeszyty Naukowe Wydzialu
Elektrotechniki 1 Automatyki Politechniki Gdanskiej Nr 47. 2015. — P. 35—
38.

OBM u teopus pacnucanuii . Pen. I.I'. Kopdman. M.: Mup. — 1985. — 400

C.

66

APPENDICES

APPENDIX 1
Processor for calculating the square root function

-- Title : SQRT_C
-- Design : SQRT_C
-- Author : Jamal
-- Company : KK

-- File : SQRT_C.vhd

-- Generated : Thu Nov 9 20:09:16 2017
-- From : interface description file

-- By : Itf2vhdl ver. 1.20

-- Description :
-y0=x; X0=x;m=0; f=0;
—for(i=1;i<nji=i+1){

-- t =xi +2-mxi;

-- u=t+2mt;

- if (uil) {

-- f=1,

- Xi+1 =Xi;

-- yi+1l =vyi;

- }

- else {

-- Xi+1 =u;

-- yi+l =vyi +2-myj,
- }

- if(f==1)m=m+ 1,
-}

- correction of result:

-- yi(m+1) = yi(m) + yi(m)*(1-u(m))= yi(m)(2 - u(m))
-- by n/2 = 8, max(1-u(m))= 1012
--u =t +2-mt=xi+ 2-m-1xi + 2-2m xi --zgodom;

--Spartan6é
-- 3-input adders

-- fully pipelined, control Y is delayed

-- 16 496 LUT 160 cLb 1DSP - 4.63 ns

-- 18 601 LUT 220 cLb 1DSP - 4.453ns

-- 24 1040 LUT 329 cLb 1DSP - 4.507ns

-- 24 960 LUT 299 cLb 1DSP - 4.79 ns --unnorm.

-- 32 1865 LUT 561 cLb 1DSP - 5.662ns

-- 48 4158 LUT 1203cLb 4DSP - 14.308ns

-- 48 4171 LUT 1252cLb 4DSP - 14.104ns -- retiming
-- 54 5229 LUT 1604cLb 4DSP - 14.43ns -- unnorm
-- 54 5229 LUT 1604cLb 4DSP - 14.43ns -- unnorm

-- not pipelined normalized
-- 24 1040 LUT 329 cLb 1DSP - 4.507ns

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_STD.all;

entity SQRT_C5S is

generic(ni:natural:=24;

no:natural:=24;
norm:natural:=1; --0- unnormalized input data
pipe:natural:=0); -- 1 - fully pipelined

port(
CLK : in STD_LOGIC;
DI : in STD_LOGIC_VECTOR(ni-1 downto 0); -- NCXOAHOE AaHHoe
DO : out STD_LOGIC_VECTOR(no-1 downto 0) -- pe3ynbTaT
)

end SQRT_CS5;
architecture synt of SQRT_C5 is

function flo(x:std_logic_vector) return natural is
variable n:natural;
begin
n:=0;
foriin x'left downto 1 loop
if x(i)="1" then exit;
else
n:=n+1;
end if;
end loop;
return n;
end ;

signal xn:unsigned(ni-1 downto 0);
signal n:natural;
type Tstage is array (1 to no+1) of unsigned(ni+2 downto 0);

68

type Tstagel is array (1 to no+1) of unsigned(ni+3 downto 0);
signal yi,xi,t: Tstage:=(others=>(others=>'0"));

signal u: Tstagel:=(others=>(others=>'0"));

signal doi:unsigned(ni+1 downto 0);

signal el,r,xx,em:unsigned(ni downto 0);

signal ex:unsigned(ni/2+1 downto 0);

signal yc:unsigned(ni+1 downto 0);

signal p,pd:unsigned(ni+1 downto 0);

constant a0:unsigned(ni-1 downto 0):=(others=>'0");

constant al:unsigned(ni downto 0):= '1'&a0;

begin
n<= flo(DI);

process(clk,di,doi) begin
if rising_edge(clk) then
if norm = 0 then
xn<= SHIFT_LEFT(unsigned(DI),n/2*2);
else
xn<=unsigned(DI);
end if;

DO< = std_logic_vector(doi(ni downto ni-no+1));
end if;
end process;

yi(1)<='0'&xn&"00";
xi(1)<='0'&xn&"00";

NR: if pipe=0 generate
STAGES: for m in 1 to ni/2+4 generate
u(m)<="0'&xi(m) + SHIFT_RIGHT(xi(m),m+1)+ SHIFT_RIGHT(xi(m),2*m);

xi(m+1)<= u(m)(ni+2 downto 0) when u(m)(ni+3 downto ni+2)="00" else
xi(m);
yi(m+1)<=yi(m)+ SHIFT_RIGHT(yi(m),m) when u(m)(ni+3 downto ni+2)="00" else
yi(m);
end generate;
xx<=xi(ni/2)(ni+2 downto 2);
r<=yi(ni/2)(ni+2 downto 2);

el<=al - xx; --xi(ni/2+1)(ni+4 downto 4);
p<= r(ni downto ni/2+1)* el(ni/2+1 downto 0);

69

ex<= p(ni downto ni/2-1);
yc <= yi(ni/2)(ni+2 downto 1) + ex;

end generate;

RR: if pipe=1 generate
STAGES: for m in 1 to ni/2 generate
process(CLK, xi,t)
variable ut:unsigned(ni+3 downto 0);
begin
ut:= '0'&xi(m) + SHIFT_RIGHT(xi(m),m+1)+ SHIFT_RIGHT(xi(m),2*m);
if rising_edge(CLK) then
u(m)<= ut;
if u(m)(ni+3 downto ni+2)="00" then
yi(m+1)<= yi(m)+ SHIFT_RIGHT(yi(m),m);
else
yi(m+1)<=yi(m);
end if;

if ut(ni+3 downto ni+2)="00" then

xi(m+1)<= ut(ni+2 downto 0);
else
xi(m+1)<=xi(m);
end if;
end if;
end process;

end generate;
process(CLK, xi,yi,p) begin
xx<=xi(ni/2)(ni+2 downto 2);
ex<= p(ni+1 downto ni/2);
if rising_edge(CLK) then
r<=yi(ni/2)(ni+2 downto 2); --+1st
el<=al - xx;
p<= r(ni downto ni/2-1)* el(ni/2-1 downto 0); --2st
pd<=p;
yc <= yi(ni/2)(ni+2 downto 1) + ex/2; --+3st
end if;
end process;
end generate;
doi<=SHIFT_RIGHT(yc,n/2) when norm = 0 else yc;

end synt;

70

Processor for calculating square root, sine and cosine functions

-- Title : SQRT_SIN
-- Design : sine

-- Author : Aser

-- Company : KPI

-- File : ¢:\MY_Designs\Sine_approx\sine\src\SQRT_SIN.vhd
-- Generated : Sun May 6 17:24:50 2018

-- From : interface description file

-- By : Itf2vhdl ver. 1.22

-- Description :

--Spartan6é

-- 3-input adders

-- fully pipelined, control Y is delayed

-- 24 1875 tt 3251 LUT 960 cLb - 7.206 ns

-- 24 1270 tt 2402 LUT 653 cLb - 6.894ns ns F=0
-- 24 1688 tt 1665 LUT 462 cLb - 6.394ns ns F=1
--12 506 tt 1117 LUT 345 cLb - 6.957 ns

--16 875 tt 1983 LUT 605 cLb - 7.328 ns

-- 32 3284 tt 5735 LUT 1674cLb - 8.608 ns

-- 48 7302 tt12785 LUT 3779cLb - 9.429 ns

library IEEE;

use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_signed.all;
use IEEE.STD_LOGIC_arith.all;
use IEEE.Math_real.all;

entity SQRT_SIN is
generic (n : natural := 8);
port(
CLK : in STD_LOGIC;
RESET : in STD_LOGIC;
F:in STD_LOGIC; -- function select
XIN : in STD_LOGIC_VECTOR(n-1 downto 0);

F=0 when SQRT

71

YOUT : out STD_LOGIC_VECTOR(n-1 downto 0);
XOUT : out STD_LOGIC_VECTOR(n-1 downto 0)

)

end SQRT_SIN;

architecture synt of SQRT_SIN is

begin

type Tarr is array (0 to n) of STD_LOGIC_VECTOR(n downto 0);
signal x,y,fi,atan : Tarr;

constant Ki: integer:= integer(0.607252935%2.0**(n-2));
constant K: STD_LOGIC_VECTOR(n downto 0):=conv_std_logic_vector(Ki,n) ;

ARCS: foriin 0 to n generate
atan(i)<= conv_std_logic_vector(integer(ARCTAN(2.0**(-i)*2.0**(n-2))), n);
end generate;

process(CLK) begin
if rising_edge(CLK) then
fi(0)<= SXT(XIN,n);
if F="0' then
X(0)<=SXT(XIN,n) ;
y(0)<=SXT(XIN,n) ;
else
x(0)<=K;
y(0)<= (others=>'0");
end if;
YOUT<= y(n)(n-1 downto 0);
XOUT<= x(n)(n-1 downto 0);
end if;
end process;

STAGES: for i in 0 to n-1 generate
process(CLK)
variable u:STD_LOGIC_VECTOR(n+1 downto 0);
variable ii:STD_LOGIC_VECTOR(5 downto 0);
begin
iiz=conv_std_logic_vector(i,6);
if rising_edge(CLK) then
if F="0' then
u := x(i) + SHR(x(i), ii) + SHR(x(i), (ii&'0")+2);
if (u(n) ='0" or u(n+1) ='0") then

72

end if;
end process;
end generate;

end synt;

else

end if;

x(i+1)<=u;

y(i+1)<=y(i) + SHR(y(i), ii+1) ;
else

x(i+1)<= x(i);

y(i+1)<=y(i) ;
end if;

if (fi(i)(n) ='0") then
u = x(i) - SHR(y(i), ii);
y(i+1)<= y(i) + SHR(x(i), ii);
fi(i+1)<= fi(i) - atan(i);

else
u = Xx(i) + SHR(y(i), ii);
y(i+1)<=y(i) - SHR(x(i), ii);
fi(i+1)<= fi(i) + atan(i);

end if;

x(i+1)<=u;

73

APPENDIX 2

Copies of publications
YK 004.383
Amnarouiit Ceprienko, Xacan Myxamen /J:xkamau, IlaBao Ceprienko
AJITOPUTM I CTPYKTYPA MOJVYJIA U1 OBUMCIIEHHA KBAJIPATHOI'O KOPEHA
Y IUIC

Anatoliy Sergiyenko, Hasan Muhammad Jamal, Pavlo Serhienko

ALGORITHM AND STRUCTURE OF THE SQUARE ROOT
CALCULATOR IMPLEMENTED IN FPGA

Posrnsmaerscst po3poOka amapaTHUX NPUCTPOIB Isl oOYMCIeHHs (QyHKIIii
KBaJ[PAaTHOTO KOPEHS 3a iTepaliiHuM aJrOpUTMOM. 3alpONOHOBAHUN aITOPUTM
Ja€ 3MOTY TIPUCKOPUTH OOYHUCIICHHS (QYHKIIiT KBaJpPAaTHOTO KOPEHS Ta 3MEHIITUTH
amapaTHi BUTpATH 3a PaxXyHOK OOYHMCICHHS KIJTBKOX ITepalii TaOIMIHUM
METOJOM. 3ampOTNOHOBAHHWM aNTOPUTM pO3PaXOBaHWK Ha peali3aiiio y
MPOrpaMOBaHUX JOTIYHUX IHTETPATIbHUX CXeMaX.

Kurouogi caosa: [UIIC, kBagpaTHuii KOpiHb, KOHBEED.

Puc.: 3. Tabn.:1. bi6mn.: 4.

The development of the hardware units for the square root (SQRT) function
calculations 1s considered, which i1s based on the CORDIC-like iterative
algorithm. The proposed algorithm helps both to speed-up the SQRT function
calculations and to minimize the hardware volume due to substituting some
iterations by the look-up tables. The algorithm is intended for the SQRT function
implementation in FPGA.

Key words: FPGA, SQRT, CORDIC, pipeline.

Fig.: 3. Tabl.:1. Bibl.: 4.

Beryn. OyHKIisi KBaIpaTHOTO KOPEHs \/;c— BaXKJIMBA €JIEeMEHTapHa (PYHKIIIS B
HAyKOBHX pO3paxyHKax, 00poO1il nudpoBUX CUTHAIIB Ta 00poO1il 300paxkeHs [1].
Hanpukiiag, BoHa BUKOPHUCTOBYETBCS Y HEMPOHHHUX Mepexax [2]. B nmanwmii yac
OaraTo 3ama4 BUPIIMIYIOTHCS Y MPOrpaMOBaHUX JIOTIYHUX 1HTETPAJIbHUX CXeMaxX
(TIIC), ne Takok HEOOXITHO pO3PaxOBYBATH (PYHKITIFO \/;c

IcHytoTh pi3H1 BipTyaslbHI MOAYM Uit OOYMCIEHHA (YHKIIT \/;c, AK1
npononyioThes BupoOoHUKamu [IJIIC Ta croponnimMu xommnaismu [3]. Ane i
MOYJI1 OyIu po3po0JICH] JECATHIITTS TOMY, 1 BOHH, SIK NMPABUJIO, HE BPaXOBYIOTh
ocobmuBocti HoBMX TokoiiHb IIJIIC. Tomy Taki ™momyni mMmoTpeOyrOTh
MozepHizamii. Y pobori [4] 3amporoHOBaHO BIOCKOHAJICHHM alTOPUTM
obuucieHHs QpyHKIii \/;c, SKUU opieHTOBaHWU Ha peam3auito y [IJIIC. ¥V naniit
poOOTI MPOMOHYETHCS 1€ OJWH AJITOPUTM, SIKUH €(EKTUBHO peali3yeTbCs y
TUTIC.

74

Aaroputvu “mudppa 3a uudpor”. BukoHaHHS anropuTMy pPO3paxyHKY
enemMeHTapHoi QyHKIli tumy “nudpa 3a U@Ppor” 3BOAUTHCS A0 MOBTOPEHHS
OJIHOMAaHITHHUX 1Tepalliil, pe3yibTaTaMU KX € YEProBl TOUHI ITU(PpU pe3yybTaTy.
Bigomuit anroputm CORDIC, sikuit mpu3HadyeHuil 1Ji1 po3paxyHKiB \/;c MOJIATAE
B HacTynHoMy. Bin o6unciioe ¢yHkiio atanh(x/y). Ayne nmoGiyHUM pe3yabTaToM
€ dynkiis K \/xz+y2 , a3a paxyHok 3aMiHu x = A + 0.25, y = A — 0.25, oTpUMYyI0ThH
K \/Z [3,5]. Hemonikamu 11,010 ajqropuTMy € J0JaTKOBE MHOXKEHHS Pe3ysbTaTy
Ha koediuieHT 1/K = 1.207 1 MOBTOpeHHs ACSKHX I1Tepariii s 301KHOCTI
ANTOPUTMY.

Binbml KOHCTPYKTHMBHUM ajirOPUTMOM € airoput™ ‘“‘mudpa 3a uudppor”
obuucieHHs QyHKIii \/;c [4], sixkuii 6a3yeThCs HAa HACTYIHUX CITIBBITHOIICHHSX.
Jlns koxHoro uucia x € [0.25; 1.0] 3naxoasates koeditientu a; € [0; 1], Taki mo

[T + a2 =1.0. 1)
i=1
3BiacHu
m m
IA[x =[] +a27) a6o \[x = x[J(1 +a27).)
i=1 i=1

Otxe, oOuucineHHs QyHKIIIT \/;c MOJIsiTa€ 'y BUKOHAHHI KOHBEPTeHTHOIO
npolecy, 3riAHO 3 sKUM Bupa3 (1) HabmuxKaeThCs O OAMHUII, B TOM Yac sIK BUpa3
(2) HaOmmKaeTbCAd M0 IIYKAHOTO 3HAYEHHSA. AJTOPUTM IBOTO IPOIECY
BUPAXKAETHCS HACTYITHUM YUHOM:

x[0] = x; y[0] = x;
for(i = 0, i < n, i++) {
t = x[1i] + 27 (-1)*x[1i];

g =t + 2°(-1)*t;
if (q < 1) {

x[1i+1l] = qg;

y[i+l] = y[i] + 2~ (-1)*yl[il;}// alil=1
else {

x[1i+1l] = x[i];

y[i+l] = y[il;}// alil=0

}
PesynbraTtom € y[n] = \/;c

MojaepHizoBanuii ajgroputM. HaiiGineiry 3aTpuMKy — pO3IJISTHYTOTO
AIrOpUTMY Ja€ MOJABINHE J0JaBaHHS 3CYHYTHX JaHUX 3 pe3yibTaTamu f 1a q. L
OOYHCIIEHHSI MOXKYTh OyTH 3aMiHEH1 OJJTHUM €TaIllOM:

—m — —m —m+1 -2
qg= x;i+2 x +2m(xl-+2 X)=x+2 x; +2 mxl—.

75

Ockinbku y cydacHux [1JIIC TpbOXBXOJOBUN CyMaTOp peali3yeThCs SIK OJUH
CTYMiHb, IKHUI OyAy€ThCS HA OCHOBI MIECTUBXOA0BUX JoriyHux tadmuus (JIT), To
Takl 00YMCICHHS MOXKYTh OYTH BUKOHAHI1 32 OJIMH TaKT 0€3 J0IaTKOBUX 3aTPUMOK
1 BUTpAT Ha OO0JaJHaHHA. AHaTI3 AITOPUTMY TOKA3ye, 10 KOJH i JTOCATAE MEXI
n/2, To cTapiIl po3psau YUCa X; CTAlOTh OJUHUYHUMHU a [CTApUIUX PO3PAJIIB Y; €
TOYHHMHU CTapIIMMU po3psaaMu pe3ynabraTy. OTxe, pelmTy OTpUMAaHUX OITiB
MOKHA OOYHCIIUTH TICIIS aHATI3Y Ta PO3paxyHKy pizHHII 1 — X;.

Hexaite; =1—x,p, € = \/;c — Y. i Bemmamam 311180 3 (1) 1 (2) 10piBHIOIOTH

n/2 n/2
e =1-x[J(1+a2*; e=~x — x[]J(1 +a27).
i=1 i=1
n/2
[IpeacraBumo z = \/; [1(1 +a27), Toni
i=1

e =1-2=1+21-2; &=x 1-2).

Ockinbknz ~1, 10 & ~2(1 —2); i &= \x €/2 =yun(1-x,2)/2. Toxi
pe3yJabTaT A0PIBHIOE Y, =Y.+ Vun(l = X,)/2 Ta MOAEepHI30BAHUI AJITOPUTM
€ HACTYIIHUI:

x[0] = x; y[0] = %x;
for (1 = 0; 1 <‘n/2; i++){
q = x; + 2_l+1*xi + 2_21*xi;
if (g < 1.0){
Xi+1 = Uy .
Vier = Vit 2_1_1*Yi;}
else {
Xiv1 T Xi g
Vist = Vi 7}

}
V = Viaa t Via* (1.0 - xi441)/2;

ExcnepumentanbHi pe3yiabraTH. OTpUMaHuii anroputM OyB ONUCAHHI
moBoto VHDL sk BipTyansauit Moaynb. Lleit Mmogysns Oyno 3Kk0H(IrypoBaHO IS
[UIIC Xilinx Spartan-6 st pi3HOT pO3PSAAHOCTI BXIAHUX 1 BUXIAHUX HaHuX. Ha
pucyHkax 1 Ta 2 HaBeIE€HO 3aJIEKHICTh amapaTHUX BUTpar B KuibkocTi JIT, a
TaKOX MAaKCUMaJIbHOT TaKTOBOBOi YAaCTOTH BiJ PO3PAIHOCTI 7 BXIJHUX JaHUX 1
pe3yabTaTIiB JiJI1 KOMOIHAIINHOT 1 KOHBEEPHOT CXEM I[bOI0 MOJYJIS, BiJIMOBIIHO.
Cni BiA3HAYUTH, IO MOJIYJI 3 PO3PSAHICTIO 32 10JATKOBO MarOTh OJUH OJIOK
MHOxkeHHsT DSP48, a pemra — 4otupu Takux OJIOKH.

Jlis mopiBHSHHS, Ha puc. 1, 2 moKa3zaHI XapaKTEPUCTHKU BIPTyadbHUX
MOMYJIB, SIKI MPOMOHYIOThCS komnaHiero Xilinx Inc. 3aranom, 3amponoHOBaHMMA

76

MOAYyJb Ma€ OUIbII amapaTHl BUTpaTH 1 MEHIIy TaKTOBYy dYacToTy. lLle
MOSICHIOETBCA THM, IO MOJYJb, SIKUH reHepyeThes 3acobom Xilinx Coregen,
onucanuii Ha piBH1 JIT 1 TpurepiB 1 Tomy amantoBanuii o apxitekrypu ITJIIC
KOHKPETHOTO TUIY. A 3alpONOHOBaHUI MOJYyJb, X04a 1 HE MOTPEOy€e TPUBAIOIO
reHepyBaHHsI, MOBUHEH OYTHM 3KOMITUIBOBAHUM CHUHTE3aTOPOM, SKUU BUKOHYE
e(eKTUBHY, aje He ONTHUMAJIbHY ONTHUMI3aIliIo.

[lepeBarm 3ampoNOHOBAHOTO MOMAYJS TMOJSATAlOTh B TOMY, IO BIH €
OE3KOIITOBHUM 1 MOXe OyTH HAJAIITOBAHWNA HA JOBUIbHY PO3PSAHICTD BXITHUX
Ta BUXIIHUX JaHUX, a Takoxk mis1 Oyab-skoro Tumy IIJIIC. Kpim Toro,
3aMpPONOHOBAHUI MOAYJIh MAa€ HIDKUY JIATCHTHY 3aTPUMKY, IO € BaXJIMBHUM,
HAIPUKIIAJ, IPY BUKOHAHHI Ha HOTO OCHOBI OMEpallii 3 MIaBal0y0r0 KOMOIO.

5000 1 /
4500 -
4000 / /
3500 / /

/ / —&— Kombinauiiin
3000 acxema 350 4 O\
2500 ///) —&— KouBeepHa 300 \G\
; // cxema 250 Y — —— Kombinamiiina
2000 —O— Xilinx Corelib "\ S cxeMa
/ ! 200 —A— Konseepra
1500 \

/ //' 150 cxema
1000 '4// 100 \ —O— Xilinx Corelib
500 7%) 50 4

0 0 T T T T

16 18 24 32 48 54 16 18 24 32 48 54

Puc.1. Anapatsi BUTpaTH 670Ky A [x , Puc.2. MakcuMaspHa TaKTOBA 4acToTa,
JIT, B 3a)1€KHOCTI BifJ n MTI 1, 610Ky \/X B 3aJI€XKHOCTI BiJ 7

Hanpuxknan, nis po3psaHocTi 24 01T, JaTeHTHA 3aTpUMKa CTaHOBUTH JuIie 15
TaKTIB MPOTHU 25 TaKTiB y KOHKYPEHTHOTrO sipa. Lle o3Haudae, 1m0 mpu BUKOHAHHI
PO3paxyHKIB 3 MJIaBAIOUOI0 KOMOIO 3aIPOIIOHOBAHUN MOJYJIb 3a0e3meuye OlIbIry
MPOAYKTUBHICTD.

BucnoBku. 3anponoHoBaHo MoaudikoBaHUN anropuT™M “‘mudpa 3a 1mudporo”
mia oOuucieHHs (yHKUIl KBaApaTHOI KOpPEHSA. AJNTOPUTM BIIPI3HAETHCS
MIHIMI30BaHOIO KUIBKICTIO IT€pallii, sika MpuUOIM3HO yJBIUl MEHIIA 3a KUIbKICTb
pPO3psAIB pe3ysbTary. AnroputMm onucanuii MoBoro VHDL 1 npusnauenuii s
peanizamii y IIJIIC Gyap-sikoi cepii. Haitbinbin edexTuBHA HOro peasnizailis nIpu
obuucnenHi GyHKIiT \/; 3 IUIABAOYOK0 KOMOIO.

77

CnucoK BUKOPHCTAHUX JIKepPeJT
. Woods R. FPGA-based Implementation of Signal Processing Systems / J.

McAllister, G. Lightbody, Y. Yi/J. Wiley and Sons, Ltd., Pub. 2008. 364 p.

. FPGA Implementations of Neural Networks". A. R. Omondi, and J. C.
Rajapakse, Eds. Springer. 2006. 360 p.

. Yoshikawaa K. Development of Fixed-point Square Root Operation for High-
level Synthesis / N. Iwanagaa, A. Yamawaki // Proc. 2nd Int. Conf. on
Industrial Application Engineering. 2014. P. 16 — 20.

. Ceprienko A. M. Peamzamis ¢yukiii kBaaparHoro kopens y IIJIIC / T1. A.
Ceprienko // Bicauk HTYY «KIll»: [ndhopmaTtuka, ynpasmiHHS Ta 00YUCITIO-
BaJibHA TeXHiKa: [30. Hayk. mp.] Kuis. 2014. T.60, C. 40 — 45.

. bikramesa C. P. CORDIC-meton obGuucnenss kBaapatHoro kopens / C. P.
bikramera, JI.B. Mopo3, M. 0. CraxiB // Bica. Hamn. YH-Ty "JIbBiBCHKa
nomTtexHika". Cep.: Enexrponika : [30. Hayk. mip.] JIeBiB : Bua-so Hail. yH-Ty
"JIpBiB. momTexHika", 2006. C. 152—155.

. Chen T.C. Automatic computations of exponentials, logarithms, ratios and
square roots. // IBM J. Res. and Develop. 1972. Ne4. P. 380 — 388.

78

Sergiyenko A. M.! Hasan M. J.! Sergiyenko P. A.’
Computer Engineering Department of NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

Square root calculations in FPGA

Introduction. The square root function +/z is important elementary function in the scientific
calculations, digital signal and image processing [1]. The artificial neural nets need this function
as well [2]. At present, the field programmable gate arrays (FPGAs) are expanded for solving the
problems, where the function /& calculations are of demand. There are different IP cores of the
function y/x, which are proposed by the FPGA manufacturers and third-party companies [3]. But
these IP cores were designed decades ago and they usually don’t take into account the features of
the new FPGA generations. Therefore, they need improvements. In the presentation, an improved
algorithm of the function \/z is proposed, which is suitable for the FPGA implementation.

CORDIC-type algorithms. The CORDIC-type algorithm of the elementary function calculation
derives a single exact digit of the result in each computation step. The well-known CORDIC
algorithm of the \/x calculations consists in the following. It calculates the function atanh(z/y).
But the side result is the function K +/x% — %2, and by the substitution z = A +0.25,y = A — 0.25,
we get z, = KVA [3]. The disadvantages of this algorithm are additional multiplication to the
coefficient 1/K ~1.207, and repeating some iterations for the algorithm convergence.

More constructive algorithm is the CORDIC-like algorithm of the function \/z calculation [4],
which is based on the following relations. For each number x € [0.25; 1.0] the coefficients a; € [0; 1]
are found so

r[JA+a27) = 10> 1/Ver [JQ+a27) = Var 2z [J(1+a:27). (1)
i=1 i=1 i=1
The algorithm is the following;:

x[0] = x; y[0] = x;

for(i = 0, i < m, i++) {t = x[i] + 27 (-1)*x[i];
q =t + 2°(-i)*t;
if (q < 1) {x[i+1] = q; y[i+1] = y[i] + 2" (-1)*y[i];}// alil=1
else {x[i+1] = x[i]l; yl[i+1] = y[il;}// alil=0

The result is v/z =~ y[n].

Modernized algorithm. The most delay in the considered algorithm gives the twofold addition of
the shifted data.These stages of addition can be substituted by a single stage:

q=(z; +27%x;) + 274z + 27%x;) = z; + 27y + 272,

Because modern FPGAs perform the three input adder as a single stage of the six input look-
up tables (LUTSs), then such computations can be implemented for a single clock cycle without
additional time and hardware overheads.

The algorithm analysis shows that when 7 reaches the limit n/2, then the most i-1 significant
bits of x; become equal to a one by any x;, and ¢ most significant bits of y; are exact digits of the
result. Therefore, the rest of resulting bits can be calculated after analysis and computation the
difference 1-x;.

Consider 1 = -, /9, and Vr=ce, + Yny2. Then, to get the exact result, the correction £, is
derived from the value 1, and it is added to the approximated result. Due to (1),

n/2 n/2
er=1-z][(1+a2 e, =va—a][0 +a27).
i=1 i=1

Then

n/2

z = \/?H(l +a2 e =122 = (14 2)(1 — 2);6, = V(1 - 2).
i=1

~
~

Consider z 1, then g1 = 2(1 — 2);e, = xe /2 = Yns2(1-p 2) /2. The result is y, =
Ynj2 + Yns2(1 — 2 2)/2. So, in order to obtain a refined result, the correction is added to the
approximate result y, /2. To do this, a subtraction and a multiplication should be taken. Moreover,
due to the fact that £; and ¢, have the zeroed most significant bits, then the multiplication is

performed at half bit width. The resulting algorithm looks like the following:

x[0] = x; y[0] = x;

for (i = 0; i < n/2; i++) {
q = xi + 2°(-i+D)*x[i] + 27 (-2i)*x[il;
if (g < 1.0) A{x[i+1] = q; yli+1] = y[i] + 27 [-il*y[il; }
else {x[i+1] = x[i]; y[i+1] = y[il;}

}

y = y[n/2] + y[n/21%(1.0 - x[n/2]1)/2;

In modern FPGA the two and three input adders have the
same hardware volume and speed. So, the modified algorithm
provides the speed-up approximately in four times comparing
to the initial algorithm.

5000 -

4500

/ /
7/
4000 / -

3500

Experimental results. The derived algorithm was described
by VHDL as the IP core. It was compiled for Xilinx Spartan-6

—e— Combinational
3000

FPGA for various input and output data bit widths. Fig. 550 ——Pipelined
1 and Fig.2 show the relatlor} of the hardware costs in th-e 2000 ; e xiinx
number of LUTSs, and the maximum clock frequency on the hit - LogiCORE

width for the combinatorial and pipelined networks of this IP
core, respectively. It should be noted that the modules with
a bit width up to 32 additionally have a single multiplication
block DSP48, and the rest of them have four such blocks. 0+

For comparison, Fig. 1, 2 show the characteristics of the IP 16 18 24 32 <8 54

1000

500

cores offered by Xilinx Inc. In general, the proposed IP core
loses to the branded one. But its advantages are that it is free
and it can be configured for arbitrary input and output bit
width, and for any FPGA type. In addition, the proposed IP

Figure 1. Hardware volume of the
vz IP core

core has a lower latent delay.

For example, for 24 bits, its latent delay is only 15

cycles versus 24 cycles of the competitor. This means il 6%
that when implementing the floating-point calculations, izz e \\ o R
the proposed module provides greater performance. T

200 i P
Conclusion. The modified CORDIC-like algorithm for w0 Pipelined
deriving the square root function is proposed. The al- 100 g
gorithm is distinguished by the minimized number of S— LogiCORE
steps, which is proportional to the given data and result 28 N
bit width. The algorithm is described in VHDL and is 0 % ' & ' o ' = ' " ' ” '

intended for the FPGA implementation. It is the most
effective during its implementation in the floating point
square root module.

References. 1. R. Woods, J. McAllister, G. Lightbody, and Y. Yi "FPGA-based Implementation of
Signal Processing Systems"J. Wiley and Sons, Ltd., Pub. 2008. 364 p. 2. "FPGA Implementations
of Neural Networks". A. R. Omondi, and J. C. Rajapakse, Eds. Springer. 2006. 360 p. 3. K.
Yoshikawaa, N. Iwanagaa, and A.Yamawaki "Development of Fixed-point Square Root Operation
for High-level Synthesis". Proc. 2nd Int. Conf. on Industrial Application Engineering. 2014. pp. 16 -
20. 4. T.C. Chen "Automatic computations of exponentials, logarithms, ratios and square roots".

IBM J. Res. and Develop. 1972. Ne4. pp. 380-388.

Figure 2. Clock frequency, MHz, of the
vz IP core depending on the bit width

81

