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Abstract — In this paper a method is proposed, which 

consists in integer coefficient searching, forming the filter 

structure and modeling it. The use of the VHDL language in all 

steps of the filter design helps to speed-up the design process and 

to improve the filter optimization. Examples of the multiplier-less 
IIR filter design show the method effectiveness. 
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I. INTRODUCTION 

A traditional approach of the digital filter design for the 
field programmable gate array (FPGA) consists in 
performing the next steps. A set of filter coefficients is 
searched, which satisfy the filter specification using the 
proper CAD tool like Matlab. Then, the coefficients are 
quantized accompanying by the filter frequency response 
proving. The rounded coefficients are built in the filter IP 
core, which is provided by the FPGA supplier or in the filter 
model, described by VHDL or Verilog languages. Finally, 
the filter model is tested using the proper testbench before 
and after the netlist synthesis [1,2]. 

The special and not free program like Matlab is of 
demand for this approach implementation. Another 
disadvantage is checking the frequency response after each 
coefficient quantization. Besides, both the filter structure and 
the result rounding scheme infer this frequency response, 
which has to be proven. Most of the issues of the filter design 
for FPGA using Matlab are described in [3]. But the only 
method of the filter testing which is proposed in this book is 
the usual testbench modeling using the proper signal 
generation like the step signal generator. 

In this paper, the VHDL language is used both for the 
filter structure description and coefficient searching, as well 
as the frequency response calculating. This approach is 
proven by the multiplierless infinite impulse response (IIR) 
filter synthesis. 

II. VHDL PROPERTIES FOR THE DIGITAL FILTER DESIGN  

The VHDL language is usually used to describe the 
application specific digital structure for its configuring into 
FPGA. But its ability of the mathematical data processing is 
undervalued. The IEEE library contains the MATH_REAL 
and MATH_COMPLEX packages. They consist of floating 
point types, constants, and functions, which are suitable for 
the complex number processing. These packages are usually 
used for the VHDL project testbench design. But they have 
many undervalued features to explore the algorithms of the 
digital signal processing. Also, the effective routines for the 
linear equation system solving and discrete Fourier transform 
are based on these packages. Thus, the possibilities of VHDL 
language for the mathematical processing and simulation are 
approaching to ones of the Matlab tool [2,4]. 

The complex variable Z = rej is usually used for the 
digital filter analyzing and synthesis. To get this variable in 
VHDL, the following function of the vector magnitude r and 

its angle  can be used: 

function Z(r,fi: real) return COMPLEX_POLAR is begin 
    return r*exp(COMPLEX_TO_POLAR(MATH_CBASE_J)*fi); 

 end Z; 

Getting this function, the complex filter transfer function 

can be described. For example, the low-pass filter transfer 

function based on the allpass filter:   

  H(z) = z1 + 
a + a(1+b)z1+ z2

 1 + a(1+b)z1 + az2 ;  (1) 

is described by the function: 

function LPF(a, b, r, fi: real) return COMPLEX_POLAR is  
begin 
 return Z(r,-fi) +  

 (COMPLEX_TO_POLAR(COMPLEX'(a,0.0)) +  
    a*(1+b)*Z(r,-1.0*fi) + Z(r,-2.0*fi))/ 

  (COMPLEX_TO_POLAR(COMPLEX'(1.0,0.0)) +  
                  a*(1+b)*Z(r,-1.0*fi) + a*Z(r,-2.0*fi)) ; 
 end LPF; 

The coefficients a, and b of the transfer function can be 

calculated using the equations [5]:   

a = 
1   tg df

1 + tg df 
 ;  b =  cos fC (1 + a), (2) 

where df is the transition band, fC is the passband. It is 
possible to calculate the transfer function diagram in the 
frequency space in the VHDL simulator using the following 
process operator: 

process(CLK) 

       variable p, phas: real :=0.0; 

       variable Hz: COMPLEX_POLAR; 

begin  

        a <= -0.5;  b <= 0.64;                -- filter coefficients 

        if CLK='1' and CLK'event then 
              phas := phas + 0.001; -- phase (frequency)counter  

              p := phas * MATH_PI * 2.0;  -- normalized phase 

              m<= trunc(phas)*0.1+0.1; -- vector Z magnitude  

              ph <= phas;                      -- frequency signal 

        end if;  

        Hz := LPF(a, b, m, p);                      --  H(z) 

        mag <= abs(Hz);               -- magnitude of H(z)  

        Phase <= Hz.ARG;               -- phase of  H(z) 



        Logm <= 20.0*log10(abs(Hz));    -- H(z) in decibels  

end process; 

This process generates the waveforms of the magnitude, 
logarithm magnitude, and phase frequency responses on the 
screen of the VHDL simulator for a thousand clock cycles.  
It helps to investigate the pole-zero chart as well. Consider 
the transfer function of the all pass filter  

 H(z) =  
b + a(b + 1)z–1 + z–2

 1+ a(b + 1)z–1 + bz–2 
.  (3) 

The values of a and b are derived in (2). The respective 
pole-zero chart is shown in Fig. 1. The experimental finding 
of the pole and zero positions consists in sequential 

exchanging the length r of the vector Z, rotating the angle , 
and calculating the filter response for these values.  

Consider b = 0.64, а = –0.5. The magnitude response of 
the function (3) derived by this method using the Active 
HDL simulator is shown in Fig.2.  

The analysis of waveforms in Fig. 2 shows that the poles 

of the function Hi(z) have a phase  2ph =  20.1645 = 

= 1.0336     and are at the points   r1 = 0.81.0336,     

r2 = 0.8 –1.0336. The zeros of the Hi(z) function have the 

same phase and are equal to          q1 = 1.31.0336,  

q2 = 1.3–1.0336.     It should be noted that –cos(1.0336) = 

= –0.512  а; 1/0.8 = 1.25  1.3 and 0.82 = 0.64 = b, that is, 
the relation (2) is valid. Besides, one can see that by the 
magnitude m =1.0 the resulting magnitude |Hi(z)| = 1.0 for 
any frequency, which is true for the all-pass filter. 

During the digital filter synthesis, the filter coefficients in 
the floating point representation are derived using Matlab, 
Scilab, or any other tool. Then these coefficients have to be 
quantized. The above VHDL process provides the filter 
characteristics estimation for any bit width of the quantized 
coefficients. Moreover, these coefficients can be optimized 
selecting their least significant bits.  

At this process, for example, for the function (1), the 
quantized coefficient values a, b are adjusted by iterating 
their values in some convergence circles of а and b. Then, 
the optimum rounded filter coefficients are selected, which 
optimize the difference of the calculated function (1) and the 
frequency response in the filter specification. 

The derived filter coefficients are put in the filter model 
described by VHDL. This model can be tested before and 
after the synthesis using the testbench, which is available at 
[6]. By this testing, the inphase REO, and quadrature IMO 
components of the analytical signal are fed to the inputs of 
two instances of the same filter (see Fig.3). 

 

Fig. 1. Pole-zero chart of the all-pass filter 

 

Fig. 2. Testbench for the computation of the all-pass filter response 

The response signals RERSP, IMRSP of the filter 
instances are sampled in the FilterTB_r component after the 
given delay TG, which is higher than the estimated group 
delay of the filter. Then, the value of the frequency response 
is calculated in the FilterTB_r component as the magnitude 
and phase of the complex vector. 

The frequency of the analytical signal (REO, j*IMO) is 
exchanged linearly with the period TG. The results of the 
modeling are the magnitude and phase responses, which are 
outputted in the waveform window of the VHDL simulator. 
This testbench is a very effective one because it not only 
proves the filter model correctness but generates the 
frequency response charts, which take into account all the 
data truncations, roundings, overflows, and saturations. 

III. MULTIPLIER-LESS IIR FILTERS 

IIR filters provide less complexity and higher filtering 
effectiveness comparing to the finite impulse response (FIR) 
filters. But they have less use in the FPGA systems because 
of the increased data bit width and the limited throughput. 
The speed of IIR filters is limited by the critical path length, 
which is usually estimated by the delay in the filter feedback. 
This delay could not be minimized by the pipelining 
technique, which is traditionally used for the FIR filter 
structures [1,3].  

One of the effective methods to speed-up the IIR filter in 
FPGA is to simplify the multiplication by the substituting the 
hardware multiplier to a set of adders, which add the shifted 
multiplicand [1,3,7].  

 

 
Fig. 3.  Testbench for the filter response computation 



The modern FPGAs contain the 6-input LUTs, which 
provide a one-stage network of the three-input adder [8]. In 
this situation, it is preferable to represent the filter 
coefficients as the rational numbers in the canonical binary 
number system: 

 c = k2p  +l2q  + m2r,   (4) 

where p, q, r are integers, k,l,m  {0, 1, 1}.  

Due to the usual method, the real coefficient values are 
derived. Then their truncated values, which are represented 
in a form (4), are searched near the solution point, which 
provides the optimum transfer function. This search process 
is performed by the scanning method [9], or by the 
evaluation optimization method [7, 10, 11]. In both 
situations, the searching for the optimum coefficients is 
performed by the VHDL program.  

Because the number of different combinations of values 
p, q, r, k, l, m in (4) is comparatively small, all the possible 
coefficients c can be stored in a table or ROM, and these 
variables form the address word of this ROM. This simplifies 
the searching process.   

The multiplier-less IIR filters, based on the allpass filter 
like (1), have the minimized number of the coefficients. This 
filter has the transfer function 

  H(z) = (A1(z) + A2(z))/2,   (5) 

where A1(z), A2(z) are transfer functions of the allpass 
filters. These filters are composed of the sections described 
by the function 

 Hi(z) =  
bi + ciz

1+ z2

1 + ciz
1 + biz

2 .  (6) 

which originates from (3). 

Such filters are stable and immune to small variations of 
the coefficients [3]. The last feature provides successful 
searching for the coefficients in the form (4). Moreover, in 
[11] a Stoyanov-Kawamata filter structure is utilized, which 
provides the minimum number of elements in the 
representation (4). 

A section which calculates the function (6) with the 
maximum speed is described by the signal flow graph, which 
is illustrated by the Fig. 4. Here, the bars represent the 
register delays, circles represent the adders and coefficient 
multipliers, truncated circles are input and output of the 
filter. This graph is derived due to the retiming method 
described in [1,12,13].   

 

 

  

  

 

 

 

 

Fig. 4.  Signal flow graph for the function (4) 

The Fig.4 analysis shows that the respective network has 
only two multiplication units, it is fully pipelined, the critical 
path goes through an adder and a multiplier to the coefficient 
bi. Therefore, the most performance is achieved when the 
coefficient bi has the minimum of terms in its representation 
(4) or even is equal to zero. 

The coefficients in the form (2) can be searched using the 
VHDL program as well. The iteration of such a program 
consists in the implementation of the following steps.  

Firstly, a set of the coefficients bi, ci is selected from a 
table of coefficients, which are equal to (4). Then, these 
coefficients are put in the formulas (5) and (6), which are 
evaluated using the process operator shown in chapter II. The 
found effective coefficients are put in the respective adder 
tree, which calculates (4). Finally, the derived filter model is 
tested by the testbench in Fig. 3. The testing results are 
compared with the filter specification, and the found effecti-
ve coefficient set is stored. After several iterations of this 
algorithm, the optimum set of the filter coefficients is selec-
ted. The resulting VHDL filter description and pipelining are 
performed using the pipelining method shown in [13]. 

IV. EXPERIMENTAL RESULTS  

The method described above was used to build a set of 
IIR filters of the order from 5 to 9. These filters were put in 
the database of the Web tool IIR Filter Generator [13].  

This application generates the synthesizable VHDL 
model of a filter with the given input and output bit width, 
and stop band frequency. This filter can be the low pass (LP), 
high pass or half band (HB) filter. Up to 27 models of HB 
filters with different frequency responses can be generated 
by this Web tool. Combining them, the filter with excellent 
characteristics can be built.  

In Fig. 5 the frequency responses H1, H2 of two HB filters 
and their sequential connection HP = H1H2 are shown. Here, f 

is the relative frequency, f  [0, 1]. These charts are derived 
by the testbench shown in Fig.3. The parameters of the 
synthesized HB filter are shown in Table 1. Here, the 
hardware volume is given in the configurable logic block 
slices (CLBS). 

The high clock frequency of this filter is derived due to 
the fact, that for this filter the coefficients ci = 0. As a result, 
the structure becomes highly pipelined and has small 
hardware volume. 

In Table 1, the results of the synthesis of another HB 
filter are given. This filter, as well as another filter for 
comparison, are designed and synthesized on the base of 
their signal flow graphs and coefficients, given in the 
references. This filter is one-staged, but it has up to 6 
summands in the coefficient representation (2). As a result, 
the critical path becomes too long, and the maximum 
frequency is in 6.4 times lower than one for the proposed 
filter. 

Another example is the synthesis of an LP filter with the 
cut frequency of 0.025fS, where fS is the sampling frequency. 
The filter structure corresponds to (3), where A1(z) and A2(z) 
are transfer functions of 3-d and 4-th order, respectively. The 
coefficients found by the VHDL program in the canonical 
binary number system are equal to 
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Fig. 5. Frequency response characteristics of the synthesized filters 

c0 = 1.001̄01;   

b1 = 1.001̄01;      c1 =  10.00001̄; 

b2 = 1.001̄01̄;      c2 =  10.001̄;       

b3 = 1.00001̄01;  c3 =  10.00001̄001̄. 

The resulting filter transfer function HLP is shown in Fig. 
5, and its characteristics are given in Table1. This filter has 
less hardware volume, much higher frequency, and the 
approximately equal suppression level, comparing to the 
analogous filter shown in [11]. This is explained by the fact, 
that the signal flow graph of the analogous filter has much 
longer critical path due to the complex Stoyanov-Kawamata 
scheme implemented in. 

TABLE I.  PARAMETERS OF FILTERS CONFIGURED IN XILINX KINTEX 

FPGA  

Filter Hardware, 

CLBS 

Max. clock 

frequency, MHz 

Suppres-

sion, dB 

Refe-

rence 

HB 203 690 120 — 

HB 441 107 106 [15] 

LP 179 310 54 — 

LP 203 189 57 [11] 

V. CONCLUSION 

In this paper, it is shown that the VHDL language allows 
the designer to develop the digital filters without going 
beyond the editor and simulator. Thus, the possibility of 
rapid modeling of complex optimization process provides an 
effective search for optimal structural filter solutions.  

Unlike the use of common design tools like Matlab, the 
VHDL simulator provides the operation control of the filter, 
taking into account both coefficient and data bit width and 
method of arithmetic operation implementation, as well as 
features of its configuring in FPGA.  

A very effective VHDL testbench is proposed which not 
only proves the filter model correctness but generates the 
frequency response charts, which take into account all the 
data truncations, roundings, overflows, and saturations. 

It was proven, that if the coefficients of the multiplier-
less filter have no more than three summands in their 
representation, then its pipelined implementation in FPGA 
has both the highest clock frequency and small hardware 
volume. The examples of the IIR multiplierless filter design 
show the effectiveness of the VHDL language use. 
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