
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

VHDL Generation of Optimized IIR Filters

Anatoliy Sergiyenko
Computer Engineering Department

Igor Sikorsky Kyiv Polytechnic Institute
Kyiv, Ukraine

aser@comsys.kpi.ua

Anastasia Serhienko

Computer Engineering Department
Igor Sikorsky Kyiv Polytechnic Institute

Kyiv, Ukraine
a.serhienko@comsys.kpi.ua

Abstract — In this paper a method is proposed, which

consists in integer coefficient searching, forming the filter

structure and modeling it. The use of the VHDL language in all

steps of the filter design helps to speed-up the design process and

to improve the filter optimization. Examples of the multiplier-less
IIR filter design show the method effectiveness.

Keywords — VHDL, FPGA, IIR filter, allpass filter

I. INTRODUCTION

A traditional approach of the digital filter design for the
field programmable gate array (FPGA) consists in
performing the next steps. A set of filter coefficients is
searched, which satisfy the filter specification using the
proper CAD tool like Matlab. Then, the coefficients are
quantized accompanying by the filter frequency response
proving. The rounded coefficients are built in the filter IP
core, which is provided by the FPGA supplier or in the filter
model, described by VHDL or Verilog languages. Finally,
the filter model is tested using the proper testbench before
and after the netlist synthesis [1,2].

The special and not free program like Matlab is of
demand for this approach implementation. Another
disadvantage is checking the frequency response after each
coefficient quantization. Besides, both the filter structure and
the result rounding scheme infer this frequency response,
which has to be proven. Most of the issues of the filter design
for FPGA using Matlab are described in [3]. But the only
method of the filter testing which is proposed in this book is
the usual testbench modeling using the proper signal
generation like the step signal generator.

In this paper, the VHDL language is used both for the
filter structure description and coefficient searching, as well
as the frequency response calculating. This approach is
proven by the multiplierless infinite impulse response (IIR)
filter synthesis.

II. VHDL PROPERTIES FOR THE DIGITAL FILTER DESIGN

The VHDL language is usually used to describe the
application specific digital structure for its configuring into
FPGA. But its ability of the mathematical data processing is
undervalued. The IEEE library contains the MATH_REAL
and MATH_COMPLEX packages. They consist of floating
point types, constants, and functions, which are suitable for
the complex number processing. These packages are usually
used for the VHDL project testbench design. But they have
many undervalued features to explore the algorithms of the
digital signal processing. Also, the effective routines for the
linear equation system solving and discrete Fourier transform
are based on these packages. Thus, the possibilities of VHDL
language for the mathematical processing and simulation are
approaching to ones of the Matlab tool [2,4].

The complex variable Z = rej is usually used for the
digital filter analyzing and synthesis. To get this variable in
VHDL, the following function of the vector magnitude r and

its angle  can be used:

function Z(r,fi: real) return COMPLEX_POLAR is begin
 return r*exp(COMPLEX_TO_POLAR(MATH_CBASE_J)*fi);

 end Z;

Getting this function, the complex filter transfer function

can be described. For example, the low-pass filter transfer

function based on the allpass filter:

 H(z) = z1 +
a + a(1+b)z1+ z2

 1 + a(1+b)z1 + az2 ; (1)

is described by the function:

function LPF(a, b, r, fi: real) return COMPLEX_POLAR is
begin
 return Z(r,-fi) +

 (COMPLEX_TO_POLAR(COMPLEX'(a,0.0)) +
 a*(1+b)*Z(r,-1.0*fi) + Z(r,-2.0*fi))/

 (COMPLEX_TO_POLAR(COMPLEX'(1.0,0.0)) +
 a*(1+b)*Z(r,-1.0*fi) + a*Z(r,-2.0*fi)) ;
 end LPF;

The coefficients a, and b of the transfer function can be

calculated using the equations [5]:

a =
1  tg df

1 + tg df
 ; b =  cos fC (1 + a), (2)

where df is the transition band, fC is the passband. It is
possible to calculate the transfer function diagram in the
frequency space in the VHDL simulator using the following
process operator:

process(CLK)

 variable p, phas: real :=0.0;

 variable Hz: COMPLEX_POLAR;

begin

 a <= -0.5; b <= 0.64; -- filter coefficients

 if CLK='1' and CLK'event then
 phas := phas + 0.001; -- phase (frequency)counter

 p := phas * MATH_PI * 2.0; -- normalized phase

 m<= trunc(phas)*0.1+0.1; -- vector Z magnitude

 ph <= phas; -- frequency signal

 end if;

 Hz := LPF(a, b, m, p); -- H(z)

 mag <= abs(Hz); -- magnitude of H(z)

 Phase <= Hz.ARG; -- phase of H(z)

 Logm <= 20.0*log10(abs(Hz)); -- H(z) in decibels

end process;

This process generates the waveforms of the magnitude,
logarithm magnitude, and phase frequency responses on the
screen of the VHDL simulator for a thousand clock cycles.
It helps to investigate the pole-zero chart as well. Consider
the transfer function of the all pass filter

 H(z) =
b + a(b + 1)z–1 + z–2

 1+ a(b + 1)z–1 + bz–2
. (3)

The values of a and b are derived in (2). The respective
pole-zero chart is shown in Fig. 1. The experimental finding
of the pole and zero positions consists in sequential

exchanging the length r of the vector Z, rotating the angle ,
and calculating the filter response for these values.

Consider b = 0.64, а = –0.5. The magnitude response of
the function (3) derived by this method using the Active
HDL simulator is shown in Fig.2.

The analysis of waveforms in Fig. 2 shows that the poles

of the function Hi(z) have a phase  2ph =  20.1645 =

= 1.0336 and are at the points r1 = 0.81.0336,

r2 = 0.8 –1.0336. The zeros of the Hi(z) function have the

same phase and are equal to q1 = 1.31.0336,

q2 = 1.3–1.0336. It should be noted that –cos(1.0336) =

= –0.512  а; 1/0.8 = 1.25  1.3 and 0.82 = 0.64 = b, that is,
the relation (2) is valid. Besides, one can see that by the
magnitude m =1.0 the resulting magnitude |Hi(z)| = 1.0 for
any frequency, which is true for the all-pass filter.

During the digital filter synthesis, the filter coefficients in
the floating point representation are derived using Matlab,
Scilab, or any other tool. Then these coefficients have to be
quantized. The above VHDL process provides the filter
characteristics estimation for any bit width of the quantized
coefficients. Moreover, these coefficients can be optimized
selecting their least significant bits.

At this process, for example, for the function (1), the
quantized coefficient values a, b are adjusted by iterating
their values in some convergence circles of а and b. Then,
the optimum rounded filter coefficients are selected, which
optimize the difference of the calculated function (1) and the
frequency response in the filter specification.

The derived filter coefficients are put in the filter model
described by VHDL. This model can be tested before and
after the synthesis using the testbench, which is available at
[6]. By this testing, the inphase REO, and quadrature IMO
components of the analytical signal are fed to the inputs of
two instances of the same filter (see Fig.3).

Fig. 1. Pole-zero chart of the all-pass filter

Fig. 2. Testbench for the computation of the all-pass filter response

The response signals RERSP, IMRSP of the filter
instances are sampled in the FilterTB_r component after the
given delay TG, which is higher than the estimated group
delay of the filter. Then, the value of the frequency response
is calculated in the FilterTB_r component as the magnitude
and phase of the complex vector.

The frequency of the analytical signal (REO, j*IMO) is
exchanged linearly with the period TG. The results of the
modeling are the magnitude and phase responses, which are
outputted in the waveform window of the VHDL simulator.
This testbench is a very effective one because it not only
proves the filter model correctness but generates the
frequency response charts, which take into account all the
data truncations, roundings, overflows, and saturations.

III. MULTIPLIER-LESS IIR FILTERS

IIR filters provide less complexity and higher filtering
effectiveness comparing to the finite impulse response (FIR)
filters. But they have less use in the FPGA systems because
of the increased data bit width and the limited throughput.
The speed of IIR filters is limited by the critical path length,
which is usually estimated by the delay in the filter feedback.
This delay could not be minimized by the pipelining
technique, which is traditionally used for the FIR filter
structures [1,3].

One of the effective methods to speed-up the IIR filter in
FPGA is to simplify the multiplication by the substituting the
hardware multiplier to a set of adders, which add the shifted
multiplicand [1,3,7].

Fig. 3. Testbench for the filter response computation

The modern FPGAs contain the 6-input LUTs, which
provide a one-stage network of the three-input adder [8]. In
this situation, it is preferable to represent the filter
coefficients as the rational numbers in the canonical binary
number system:

 c = k2p +l2q + m2r, (4)

where p, q, r are integers, k,l,m  {0, 1, 1}.

Due to the usual method, the real coefficient values are
derived. Then their truncated values, which are represented
in a form (4), are searched near the solution point, which
provides the optimum transfer function. This search process
is performed by the scanning method [9], or by the
evaluation optimization method [7, 10, 11]. In both
situations, the searching for the optimum coefficients is
performed by the VHDL program.

Because the number of different combinations of values
p, q, r, k, l, m in (4) is comparatively small, all the possible
coefficients c can be stored in a table or ROM, and these
variables form the address word of this ROM. This simplifies
the searching process.

The multiplier-less IIR filters, based on the allpass filter
like (1), have the minimized number of the coefficients. This
filter has the transfer function

 H(z) = (A1(z) + A2(z))/2, (5)

where A1(z), A2(z) are transfer functions of the allpass
filters. These filters are composed of the sections described
by the function

 Hi(z) =
bi + ciz

1+ z2

1 + ciz
1 + biz

2 . (6)

which originates from (3).

Such filters are stable and immune to small variations of
the coefficients [3]. The last feature provides successful
searching for the coefficients in the form (4). Moreover, in
[11] a Stoyanov-Kawamata filter structure is utilized, which
provides the minimum number of elements in the
representation (4).

A section which calculates the function (6) with the
maximum speed is described by the signal flow graph, which
is illustrated by the Fig. 4. Here, the bars represent the
register delays, circles represent the adders and coefficient
multipliers, truncated circles are input and output of the
filter. This graph is derived due to the retiming method
described in [1,12,13].

Fig. 4. Signal flow graph for the function (4)

The Fig.4 analysis shows that the respective network has
only two multiplication units, it is fully pipelined, the critical
path goes through an adder and a multiplier to the coefficient
bi. Therefore, the most performance is achieved when the
coefficient bi has the minimum of terms in its representation
(4) or even is equal to zero.

The coefficients in the form (2) can be searched using the
VHDL program as well. The iteration of such a program
consists in the implementation of the following steps.

Firstly, a set of the coefficients bi, ci is selected from a
table of coefficients, which are equal to (4). Then, these
coefficients are put in the formulas (5) and (6), which are
evaluated using the process operator shown in chapter II. The
found effective coefficients are put in the respective adder
tree, which calculates (4). Finally, the derived filter model is
tested by the testbench in Fig. 3. The testing results are
compared with the filter specification, and the found effecti-
ve coefficient set is stored. After several iterations of this
algorithm, the optimum set of the filter coefficients is selec-
ted. The resulting VHDL filter description and pipelining are
performed using the pipelining method shown in [13].

IV. EXPERIMENTAL RESULTS

The method described above was used to build a set of
IIR filters of the order from 5 to 9. These filters were put in
the database of the Web tool IIR Filter Generator [13].

This application generates the synthesizable VHDL
model of a filter with the given input and output bit width,
and stop band frequency. This filter can be the low pass (LP),
high pass or half band (HB) filter. Up to 27 models of HB
filters with different frequency responses can be generated
by this Web tool. Combining them, the filter with excellent
characteristics can be built.

In Fig. 5 the frequency responses H1, H2 of two HB filters
and their sequential connection HP = H1H2 are shown. Here, f

is the relative frequency, f  [0, 1]. These charts are derived
by the testbench shown in Fig.3. The parameters of the
synthesized HB filter are shown in Table 1. Here, the
hardware volume is given in the configurable logic block
slices (CLBS).

The high clock frequency of this filter is derived due to
the fact, that for this filter the coefficients ci = 0. As a result,
the structure becomes highly pipelined and has small
hardware volume.

In Table 1, the results of the synthesis of another HB
filter are given. This filter, as well as another filter for
comparison, are designed and synthesized on the base of
their signal flow graphs and coefficients, given in the
references. This filter is one-staged, but it has up to 6
summands in the coefficient representation (2). As a result,
the critical path becomes too long, and the maximum
frequency is in 6.4 times lower than one for the proposed
filter.

Another example is the synthesis of an LP filter with the
cut frequency of 0.025fS, where fS is the sampling frequency.
The filter structure corresponds to (3), where A1(z) and A2(z)
are transfer functions of 3-d and 4-th order, respectively. The
coefficients found by the VHDL program in the canonical
binary number system are equal to

ci

bi





Fig. 5. Frequency response characteristics of the synthesized filters

c0 = 1.001̄01;

b1 = 1.001̄01; c1 =  10.00001̄;

b2 = 1.001̄01̄; c2 =  10.001̄;

b3 = 1.00001̄01; c3 =  10.00001̄001̄.

The resulting filter transfer function HLP is shown in Fig.
5, and its characteristics are given in Table1. This filter has
less hardware volume, much higher frequency, and the
approximately equal suppression level, comparing to the
analogous filter shown in [11]. This is explained by the fact,
that the signal flow graph of the analogous filter has much
longer critical path due to the complex Stoyanov-Kawamata
scheme implemented in.

TABLE I. PARAMETERS OF FILTERS CONFIGURED IN XILINX KINTEX

FPGA

Filter Hardware,

CLBS

Max. clock

frequency, MHz

Suppres-

sion, dB

Refe-

rence

HB 203 690 120 —

HB 441 107 106 [15]

LP 179 310 54 —

LP 203 189 57 [11]

V. CONCLUSION

In this paper, it is shown that the VHDL language allows
the designer to develop the digital filters without going
beyond the editor and simulator. Thus, the possibility of
rapid modeling of complex optimization process provides an
effective search for optimal structural filter solutions.

Unlike the use of common design tools like Matlab, the
VHDL simulator provides the operation control of the filter,
taking into account both coefficient and data bit width and
method of arithmetic operation implementation, as well as
features of its configuring in FPGA.

A very effective VHDL testbench is proposed which not
only proves the filter model correctness but generates the
frequency response charts, which take into account all the
data truncations, roundings, overflows, and saturations.

It was proven, that if the coefficients of the multiplier-
less filter have no more than three summands in their
representation, then its pipelined implementation in FPGA
has both the highest clock frequency and small hardware
volume. The examples of the IIR multiplierless filter design
show the effectiveness of the VHDL language use.

REFERENCES

[1] S. A. Khan, “Digital Design of Signal Processing Systems. A Practical

Approach,” UK, Wiley, 2011.

[2] F. F. Daitx, V. S. Rosa, E. Costa, P. Flores, S. Bampi, “VHDL

Generation of Optimized FIR Filters”, 2-nd Int. Conf. on Signals,

Circuits and Systems, 7-9 Nov. 2008, pp.1-5.

[3] U. Meyer-Baese, “Digital Signal Processing with Field Programmable

Gate Arrays”, 4-th Ed., Springer, 2014.

[4] P. J. Ashenden and J. Lewis, “The Designer’s Guide to VHDL”.

Morgan Kaufmann, 2008.

[5] P. P. Vaidyanathan, P. Regalia and S.K. Mitra, “The Digital All-Pass

Filter: A Versatile Signal Processing Building Block” Proc. IEEE. vol.

76. no. 1. pp. 1937. Jan. 1988.

[6] A. Sergiyenko, “Testbench for the filter testing” Kiev: I. Sikorsky’s

KPI, 2012. [Online]. Available: http://kanyevsky.kpi.ua/en/useful-ip-

cores/testbench-for-the-filter-testing/

[7] L. D. Milic and M. D. Lutovac, “Design of multiplierless elliptic IIR

filters with a small quantization error” IEEE Trans. on signal

processing. vol. 47, no. 2, pp. 469479. Feb. 1999.

[8] S. Churiwala, Ed. Designing with Xilinx FPGAs Using Vivado,

Springer. 2017.

[9] A. T. Mingasin, “Digital filter synthesis for the high speed system on

the chip” Digital Signal Processing. no. 2. pp. 14  23. 2004, in

Russian.

[10] S.-T. Pan, “CSD-Coded Genetic Algorithm on Robustly Stable

Multiplierless IIR Filter Design” Mathematical Problems in

Engineering, Hindawi Publ, vol. 2012, Article ID560650, 15 P.

[11] V. I. Anzova, J. Yli-Kaakinen, T. Saramaeki, “An Algorithm for the

Design of Multiplierless IIR Filters as a Parallel Connection of Two

All-Pass Filters”. IEEE Asia Pacific Conf. on Circuits and Systems,

APCCAS. 2006. pp. 744-747.

[12] M. Potkonjak, J. M. Rabaey “Maximally and Arbitrarily Fast

Implementation of Linear and Feedback Linear Computations”, IEEE

Trans. On Computer Aided Design of Integrated Circuits and Systems,

vol. 19, pp. 30-43, Jan. 2000

[13] A. Sergiyenko, A. Serhiyenko, A. Simonenko, “A method for synchro-

nous dataflow retiming”, 1-st IEEE Ukraine Conference on Electrical

and Computer Engineering (UKRCON), pp. 1015-1018, 2017.

[14] A. Sergiyenko, “VHDL design of multiplier-free IIR filters“, Kiev: I.

Sikorsky’s KPI, 2016. [Online]. Available: http://kanyevsky.kpi.ua/

GEN_MODUL/APgen/APMF_help.php

[15] K. S. Yeung, S.C. Chan, “The Design and Multiplier-Less Realization

of Software Radio Receivers With Reduced System Delay”. IEEE

Trans. On Circuits and Systems  Regular Papers, vol. 51, pp.

24442449. Dec. 2004.

|H|,

dB

0

30

60

90

120

0 0.1 0.2 0.3 0.4

0.5

f

H1

H2

HP

HLP

