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Abstract—The eight-bit stack processor architecture is 

proposed, which is designed for the FPGA implementation. 

The microprocessor with this architecture has small hardware 

costs, reduced software amount, and ability to add up to 

hundred new user instructions to its instruction set. The 

microprocessor architecture is adapted for programming the 

serial port communications and is able to perform the data 

stream parsing. It is effectively used for the Internet of Things 

applications. 
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I. INTRODUCTION 

In recent years, the Internet of Things (IoT) technology is 
expanded dramatically. The main feature of it is the transfer 
of the data flows from far-end applied devices through the 
communication channels in real time. These devices usually 
have to provide both high speed and small energy 
consumption, as well as low cost. They contain some 
processor core which implements the proper communication 
protocol, too. Many IoT solutions are worth being 
implemented in the field programmable gate array (FPGA) 
because of its high flexibility, minimized energy 
consumption, and far distance upgrading possibility [1]. 

Many new FPGA series are intended for the IoT 
implementation. The examples are Intel Max-10, Cyclone-5, 
Xilinx Spartan-7, Lattice CrossLink, iCE40, MachXO3. 
These FPGAs have small footprint and minimized energy 
consumption. Some of them have built-in configuration 
ROM. But the FPGA expanding at t he field of IoT market is 
partially limited by the absence of the effective solutions 
which provide the interface fulfilment. The usual solution is 
to configure the 32-bit microprocessor soft core, arranging 
the device by the proper DRAM, and EEPROM. These 
DRAM and EEPROM provide storing and implementation  
the linux-like OS, whith the usual IP protocol stack. But the 
mentioned above FPGA series have the limited hardware 
volume to implement this solution except of some high-end 
chips. Besides, such a solution does not provide the 
minimum cost and energy consumption, and needs some 
period of time for the OS loading from EEPROM to DRAM, 
which expands dramatically its ready-to-use time. 

In the work, a microprocessor soft core is proposed, 
which fits all the FPGA series mentioned above, and 
provides the effective IoT device implementation. It has  
well-known stack architecture, which is effectively 
programmed by the Forth language [2]. It is distinguished in 
small hardware volume, effective instruction set, possibility 
of the custom instruction addition. 

II. MICROPROCESSOR ARCHITECTURE FOR IOT 

IMPLEMENTATION 

The IoT device usually implements a set of serial 
interfaces such as I2C, SPI, Ethernet and others. At the same 
time, it is more rational to use the microprocessor core, 
which has both small hardware costs, and simple 
programming and debugging procedures. In addition, such a 
core can replace the finite state machines, which are needed 
for control of a designed system. Usually, the RISC 
processors can be considered as those, which match the 
described characteristics. 

The FPGA manufacturers propose one or a set of the 
RISC processor architectures which are configured in the 
proper FPGAs. So, Xilinx proposes the Picoblaze and 
Microblaze architectures. The first of them is the 8-bit 
architecture with very small hardware volume but it has 
limited possibilities, and it is not effective for the IoT 
protocol implementation. The second of them is 32-bit 
architecture, which is able to implement the linux OS, but 
has the increased hardware volume and needs the outer 
DRAM attachment. The Altera Nios-II core has the same 
properties. Some clones of the common microcontrollers, 
such as i8051, are effectively used for the IoT functions, but 
they have the increased hardware volume because their 
architecture properties does not fit effectively the FPGA 
features [3-5]. 

The architecture is proposed in [5], which is named as 
Nanoblaze. Due to its characteristics of speed and hardware 
volume, it occupies the place between Picoblaze and 
Microblaze architectures. Probably, it is fit well to the IoT 
purposes. But it had not achieved the proper expanding due 
to the fact that its name falls in the infringement of the Xilinx 
copyright. Nevertheless, the prefix Nano effectively 
characterizes the processor architecture name standing for 
the small footprint but high-speed architecture. 

For the implementation of the IoT system in FPGA, it is 
important to have a configurable microcontroller with both 
minimized hardware and software. This is dictated by the 
fact that the memory blocks, which are embedded in FPGA, 
have significantly limited volume. It is desirable to have such 
a microcontroller which instruction set can be manually 
adjusted by the programmer to the needs of the project, to 
simplify programming, allow the program subroutines to be 
reused and, as a result, to minimize the program length. Its 
instruction set has to be adapted for scheduling the data 
transfer through the interfaces. The architecture of such a 
microprocessor is proposed in this work. 

The stack processor architecture is distinguished among 
all microprocessor architectures. Its instruction set differs in 



that the operands have implicit addressing because they are 
usually placed in a few fixed stack registers. Such 
instructions have a short length because they have the 
implicit register addressing. Since these instructions support 
the algorithms that actively use the stack addressing, the 
programs that are composed for this processor occupy very 
small memory volume [6]. 

Various authors have developed several projects of stack 
processors, which are implemented in the FPGA and which 
are available for the reproduction [7-9]. All of them have the 
16-bit instructions and process the 16-bit data. It is shown in 
[9], that the stack processor has approximately 2.5 times less 
program length than the program for the Xilinx MicroBlaze 
processor when the IoT project is designed. Here, the stack 
processor implements the data exchange protocol through the 
Ethernet interface. Additionally, all stack processors allow 
the designer to extend the instruction set. To do so, the 
appropriate changes should be made to the description of the 
processor at the register transfer level. 

Consequently, the architecture of the stack processor 
provides both the firmware amount and the hardware costs 
minimization. In addition, it is easy to develop the compiler 
for such an architecture, because, as a rule, its instruction set 
is a subset of the Forth language commands [10]. It is known 
that this language is convenient for both grammatical parsing 
of lines and for the interpretation of high-level language 
operators. The stack processor assembly language has the 
same syntax as the Forth language as well [6]. Therefore, it is 
attractive to develop the stack processor architecture, which 
gives not only the minimized hardware costs but also the 
simplified implementation of the user instructions, which are 
adapted to the serial port communications. 

III. NANO-PROCESSOR ARCHITECTURE 

The nano-processor architecture SM8 was designed, 
which satisfies the stack processor properties. The structure 
of the developed SM8 microprocessor is shown in Fig. 1. 
This 8-bit processor has the well-known two-stack 
architecture [6]. It consists of a program counter PC, Data 
RAM, Program ROM, instruction register IR, user 
instruction encoder UIE, return address stack RS, data stack 
DS, ALU and peripheral registers R0,..., Rn, n < 32. The 
registers T, N are the top registers of the D-stack and are 
designed to store the operands and the ALU results. The 
Program ROM has the volume up to 7936 bytes, and the 
Data RAM has up to 256 bytes, and both of them have a 
common address space. 

The main SM8 microprocessor instructions are sampled 
in Table 1. All instructions, except CALL, LIT, and IF, have 
the length of 8 bits. The branch and input-output instructions 
are executed in two cycles, and the rest of the instructions are 
single cycle instructions. Due to the frequent use of the 
CALL, LIT, and IF instructions, the average duration of one 
instruction execution is equal to 1.5 clock cycles. 

The user-defined instructions are implemented as 
follows. First, the instruction code is associated with the 
specified address in the user subroutine library, where the 
user-defined subroutine is located. Second, when the control-
flow approaches this instruction, the instruction code is 
written to the IR register. Then, the code is encoded by UIE 
to the address of the subroutine, associated with it. The 

return address (address of the next instruction) is saved in the 
R stack.  

 

Fig. 1. Structure of the SM8 microprocessor 

After that, the control-flow is passed to the first 
instruction of the subroutine (i.e., the subroutine is ‘called’) 
and all instructions in it are executed.  

TABLE I.  INSTRUCTIONS SET OF THE SM8 MICROPROCESSOR 

Name Instruction Description 

CALL 001 Addr PC+1 -> R, PC = Addr, subroutine call 

INR 010    n Rn -> T, data receiving 

OUTR 011    n Rn = T, data sending 

NOP 0000 0000 No operation 

LIT 0000 0001 B B -> T, constant input 

IF 0000 0010 D PC = PC + D by T = 0, else PC = PC + 1 

DUP 0000 0110 N = T 

SWAP 0000 1001 X = T, T = N, N = X 

@ 0000 1010 T = RAM[T], memory reading 

! 0000 1011 RAM[T] = N, memory writing, T -> 

R> 0000 1100 R -> T 

>R 0000 1110 T -> R 

RET 0000 1101 R -> PC, return from the subroutine 

DROP 0000 1111 T ->, stack purge 

NOT 0001 0000 T = not T 

OR 0001 0001 T = T or N 

AND 0001 0010 T = T and N 

XOR 0001 0011 T = T xor N 

ADD 0001 1000 T = T + N 

INC 0001 1001 T = T + 1 

SUB 0001 1010 T = T – N 

DEC 0001 1011 T = T - 1 

 1xxx xxxx User instruction 



 

The return of the control flow from the subroutine to the 
next instruction is performed by the RET instruction. This 
subroutine can also read and process the operand fields that 
follow the byte of the opcode. But the return address in the R 
register must be properly corrected. 

The user-defined instruction is coded by a single byte 
comparing to the two-byte CALL instruction. Therefore, 
these instructions can save the software memory volume 
comparing to the equivalent instruction implementation 
using the CALL instruction. 

The user-defined instructions can be stored in both 
Program ROM and Data RAM. Thus, a microprocessor can 
store a certain dynamic data processing script, which is 
formed by the user instructions and respective data bytes for 
them. It can perform a line parsing as well. For example, this 
line can be a string of decimal calculator operations and 
digits. 

A common problem for many FPGA-based architectures 
is the reconfiguration process. Usually, the need for the 
reconfiguration leads to the recompilation of the hardware 
netlist, which is a very CPU-intensive and time-consuming 
task (it can last from minutes to hours). The solution to this 
problem is presented in several works [11], [12] as an 
implementation of task-specific architectures that can be 
reconfigured ‘on-the-fly’. For example, in [12] the authors 
propose the segment-based architecture for the XML 
filtering. The sequence of configured segments implements 
the XPath pattern of the interesting part of the whole XML. 
This pattern can be changed ‘on-the-fly’, and the hardware 
reconfiguration takes from nano- to microseconds. 

Another approach is implemented in SM8. The 
processing script, which is saved in RAM, can be rewritten 
or loaded from the other memory, for example, from ROM. 
Such a simple rewriting allows for the user the system 
exchanging in terms of microseconds. As far as such action 
is performed in a synchronization point, neither data loss nor 
wrong behavior happens. In such a way, the segments in [12] 
are reconfigured without stop of the input data processing 
with preserving all the currently processed XML node tree 
parts. 

An assembler was developed for programming the SM8 
microprocessor. The assembler is written in Java and is 
called from the command line. Below, an example of a 
program in the SM8 assembly language is shown, which 
performs a single-byte transfer to the I2C port. 

DEFINE nap 9        \ memory address width 
DEFINE WAITRDY 82h  \ user instruction – wait for                  
                    \ port is ready 
DEFINE DELAYN  83h  \ user instruction – delay for  
                    \ N cycles 
EQU START  2  
EQU A_SEND 4  
EQU D_SEND 5 
EQU STOP  12  
EQU PAUSE  15  
ORG 256             \ program segment begin  
\Write byte to I2C 
: WR2I2C (r1 - I2C addr, r2 - inner addr, 
          r3 - byte, r8 - I2C data, 
          r9 - I2C control) 
 lit START outr r9  

inr r1 outr r8 lit A_SEND outr r9 WAITRDY  
inr r2 outr r8 lit D_SEND outr r9 WAITRDY  
inr r3 outr r8 lit D_SEND outr r9 WAITRDY 

 lit STOP   outr r9 
 lit PAUSE  outr r9  

 lit 100    DELAYN  xor if END 
; 
: DELAYN           (N --  - N cycles) 
 dec dup ifn  DELAYN  
; 
: WAITRDY           (do while rdy=1) 
   inr r10           \ 0-th bit = rdy 
   lit 1 and if WAITRDY 
; 
: END 

The assembly language of the SM8 core uses the syntax 
of the Forth language. Therefore, the comments here are 
enclosed in parentheses or followed after a backslash. 

The label follows a colon. Operators and literals are 
separated by spaces. A semicolon indicates the subroutine 
return instruction. Some special operators, called the 
pragmas, are used in the script for the special purpose. They 
define the association between identifiers and literals, 
macros, initial addresses of the memory segments. 

As it is seen from the example above, none of the 
subroutines contain the RET instruction. It is explained by 
the fact that the semicolon sign represents the RET 
instruction in the Forth language. The user also can specify 
its own RETs in his subroutine if needed. 

The assembler generates two VHDL files, which contain 
the data and programs in the memory and the user instruction 
encoder content. When the processor is configured in the 
Intel FPGA, the memory loading file is generated. As a 
result, this assembly language by its user properties occupies 
an intermediate position between the usual assembly 
language and the high-level language. Thanks to this, the 
writing and debugging of programs are significantly 
accelerated. Besides, the VHDL model of the SM8 
microprocessor core is equipped by a disassembler. Such a 
feature significantly simplifies the program debugging in the 
VHDL simulator. 

After two VHDL files are generated, they become part of 
VHDL project of developed system with SM8 
microprocessor core. Peripheral devices and connections 
between them and registers in microprocessor are described 
in that project as well. 

IV. EXPERIMENTAL RESULTS 

The SM8 microprocessor core is described in VHDL and 
has synthesized for different FPGA circuits. Table II presents 
the results of the SM8 microcontroller synthesis in the Xilinx 
Spartan-6 FPGA while setting the optimization parameters 
for hardware costs. Also, the parameters of the 
microprocessors, which were synthesized in the same 
conditions, are presented in this table for a comparison. 

The analysis of the table shows that the SM8 
microprocessor has the lowest hardware costs in the look-up 
tables (LUTs), and the highest speed in millions of 
instructions per second (MIPS) among the stack processors. 
This is explained by the fact that the reduction of the data bit 
width up to eight digits reduces both hardware costs and 
delay in ALU. 

Table III shows the results of the configuration of this 
core in the Intel-Altera FPGAs. They are compared to the 
results of the Nios II processor configurations, which are 
available from the open resources, not taking into account its 
peripheral and memory management units. This comparison 
shows that the SM8 core provides much less hardware 



volume by the approximately same clock frequency. The 
estimated power consumption of this core is equal to 50 mW, 
which dynamic ratio by the highest clock frequency is equal 
to only 13 mW when configuring in the MAX10 device. 
Such nano-processor architecture helps to implement the IoT 
system in the smallest FPGAs providing both the small cost 
and minimized power consumption. 

At present, this core is utilized in the FM radio station 
exciter as a communication processor, which provides the 
control and data transfers through the serial interfaces like 
I2C, SPI, RS232, Ethernet. Its use showed its high 
effectiveness especially in the firmware development and 
debugging. 

TABLE II.  MICROPROCESSOR CORE PARAMETERS IN XILINX FPGA 

Micro- 

processor 

Instruction 

bit width 

Hardware, 

LUTs 

Max. clock 

frequency, 

MHz 

Speed, 

MIPS 

FS8051 [13] 8, 16, 24 1293 89 30 

KCPSM6 [4] 18 87 140 70 

MSL16 [6] 16 235 100 67 

b16-small [7] 16 280 100 50 

J1 [8] 16 342 106 70 

SM8 8, 16 181 140 94 

TABLE III.  MICROPROCESSOR CORE PARAMETERS IN INTEL FPGA 

Micro- 

processor 
FPGA 

Hardware 

volume 

Max. clock 

frequency, 

MHz 

Speed, 

MIPS 

Nios II/f [14] MAX10 2268 LE 150 135 

Nios II/f [14] Cyclone 5 867 ALM 170 150 

SM8 MAX10 1164 LE 150 100 

SM8 Cyclone 5 210 ALM 205 140 

 

V. CONCLUSION 

The proposed SM8 microprocessor core has small 
hardware costs at high performance and reduced hardware 
volume. It is designed to implement the communication 
functions of the IoT devices. The core is described in VHDL 
and can be implemented in an FPGA of any series. The 
programmer has the ability to add his own instructions to the 

instruction set without changing the core description. The 
developed assembler provides to develop and compile the 
programs written in the Forth language style. This simplifies 
the design of devices that implement the protocols for the 
serial port communications through interfaces such as 
RS232, I2C, SPI, Ethernet. 
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