
2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). 2019/4/16. P.674-677.

1

Nano-Processor for the Small Tasks

Anatoliy Sergiyenko

Dept. of Computer Engineering

Igor Sikorsky Kyiv Polytechnic

Institute

Kyiv, Ukraine

aser@comsys.kpi.ua

Oleksii Molchanov

Dept. of System Programming and

Specialized Computer Systems

Igor Sikorsky Kyiv Polytechnic

Institute

Kyiv, Ukraine

oleksii.molchanov@gmail.com

Maria Orlova

Dept. of System Programming and

Specialized Computer Systems

Igor Sikorsky Kyiv Polytechnic

Institute

Kyiv, Ukraine

Abstract—The eight-bit stack processor architecture is

proposed, which is designed for the FPGA implementation.

The microprocessor with this architecture has small hardware

costs, reduced software amount, and ability to add up to

hundred new user instructions to its instruction set. The

microprocessor architecture is adapted for programming the

serial port communications and is able to perform the data

stream parsing. It is effectively used for the Internet of Things

applications.

Keywords—stack processor, Forth, FPGA, VHDL, IoT

I. INTRODUCTION

In recent years, the Internet of Things (IoT) technology is
expanded dramatically. The main feature of it is the transfer
of the data flows from far-end applied devices through the
communication channels in real time. These devices usually
have to provide both high speed and small energy
consumption, as well as low cost. They contain some
processor core which implements the proper communication
protocol, too. Many IoT solutions are worth being
implemented in the field programmable gate array (FPGA)
because of its high flexibility, minimized energy
consumption, and far distance upgrading possibility [1].

Many new FPGA series are intended for the IoT
implementation. The examples are Intel Max-10, Cyclone-5,
Xilinx Spartan-7, Lattice CrossLink, iCE40, MachXO3.
These FPGAs have small footprint and minimized energy
consumption. Some of them have built-in configuration
ROM. But the FPGA expanding at t he field of IoT market is
partially limited by the absence of the effective solutions
which provide the interface fulfilment. The usual solution is
to configure the 32-bit microprocessor soft core, arranging
the device by the proper DRAM, and EEPROM. These
DRAM and EEPROM provide storing and implementation
the linux-like OS, whith the usual IP protocol stack. But the
mentioned above FPGA series have the limited hardware
volume to implement this solution except of some high-end
chips. Besides, such a solution does not provide the
minimum cost and energy consumption, and needs some
period of time for the OS loading from EEPROM to DRAM,
which expands dramatically its ready-to-use time.

In the work, a microprocessor soft core is proposed,
which fits all the FPGA series mentioned above, and
provides the effective IoT device implementation. It has
well-known stack architecture, which is effectively
programmed by the Forth language [2]. It is distinguished in
small hardware volume, effective instruction set, possibility
of the custom instruction addition.

II. MICROPROCESSOR ARCHITECTURE FOR IOT

IMPLEMENTATION

The IoT device usually implements a set of serial
interfaces such as I2C, SPI, Ethernet and others. At the same
time, it is more rational to use the microprocessor core,
which has both small hardware costs, and simple
programming and debugging procedures. In addition, such a
core can replace the finite state machines, which are needed
for control of a designed system. Usually, the RISC
processors can be considered as those, which match the
described characteristics.

The FPGA manufacturers propose one or a set of the
RISC processor architectures which are configured in the
proper FPGAs. So, Xilinx proposes the Picoblaze and
Microblaze architectures. The first of them is the 8-bit
architecture with very small hardware volume but it has
limited possibilities, and it is not effective for the IoT
protocol implementation. The second of them is 32-bit
architecture, which is able to implement the linux OS, but
has the increased hardware volume and needs the outer
DRAM attachment. The Altera Nios-II core has the same
properties. Some clones of the common microcontrollers,
such as i8051, are effectively used for the IoT functions, but
they have the increased hardware volume because their
architecture properties does not fit effectively the FPGA
features [3-5].

The architecture is proposed in [5], which is named as
Nanoblaze. Due to its characteristics of speed and hardware
volume, it occupies the place between Picoblaze and
Microblaze architectures. Probably, it is fit well to the IoT
purposes. But it had not achieved the proper expanding due
to the fact that its name falls in the infringement of the Xilinx
copyright. Nevertheless, the prefix Nano effectively
characterizes the processor architecture name standing for
the small footprint but high-speed architecture.

For the implementation of the IoT system in FPGA, it is
important to have a configurable microcontroller with both
minimized hardware and software. This is dictated by the
fact that the memory blocks, which are embedded in FPGA,
have significantly limited volume. It is desirable to have such
a microcontroller which instruction set can be manually
adjusted by the programmer to the needs of the project, to
simplify programming, allow the program subroutines to be
reused and, as a result, to minimize the program length. Its
instruction set has to be adapted for scheduling the data
transfer through the interfaces. The architecture of such a
microprocessor is proposed in this work.

The stack processor architecture is distinguished among
all microprocessor architectures. Its instruction set differs in

that the operands have implicit addressing because they are
usually placed in a few fixed stack registers. Such
instructions have a short length because they have the
implicit register addressing. Since these instructions support
the algorithms that actively use the stack addressing, the
programs that are composed for this processor occupy very
small memory volume [6].

Various authors have developed several projects of stack
processors, which are implemented in the FPGA and which
are available for the reproduction [7-9]. All of them have the
16-bit instructions and process the 16-bit data. It is shown in
[9], that the stack processor has approximately 2.5 times less
program length than the program for the Xilinx MicroBlaze
processor when the IoT project is designed. Here, the stack
processor implements the data exchange protocol through the
Ethernet interface. Additionally, all stack processors allow
the designer to extend the instruction set. To do so, the
appropriate changes should be made to the description of the
processor at the register transfer level.

Consequently, the architecture of the stack processor
provides both the firmware amount and the hardware costs
minimization. In addition, it is easy to develop the compiler
for such an architecture, because, as a rule, its instruction set
is a subset of the Forth language commands [10]. It is known
that this language is convenient for both grammatical parsing
of lines and for the interpretation of high-level language
operators. The stack processor assembly language has the
same syntax as the Forth language as well [6]. Therefore, it is
attractive to develop the stack processor architecture, which
gives not only the minimized hardware costs but also the
simplified implementation of the user instructions, which are
adapted to the serial port communications.

III. NANO-PROCESSOR ARCHITECTURE

The nano-processor architecture SM8 was designed,
which satisfies the stack processor properties. The structure
of the developed SM8 microprocessor is shown in Fig. 1.
This 8-bit processor has the well-known two-stack
architecture [6]. It consists of a program counter PC, Data
RAM, Program ROM, instruction register IR, user
instruction encoder UIE, return address stack RS, data stack
DS, ALU and peripheral registers R0,..., Rn, n < 32. The
registers T, N are the top registers of the D-stack and are
designed to store the operands and the ALU results. The
Program ROM has the volume up to 7936 bytes, and the
Data RAM has up to 256 bytes, and both of them have a
common address space.

The main SM8 microprocessor instructions are sampled
in Table 1. All instructions, except CALL, LIT, and IF, have
the length of 8 bits. The branch and input-output instructions
are executed in two cycles, and the rest of the instructions are
single cycle instructions. Due to the frequent use of the
CALL, LIT, and IF instructions, the average duration of one
instruction execution is equal to 1.5 clock cycles.

The user-defined instructions are implemented as
follows. First, the instruction code is associated with the
specified address in the user subroutine library, where the
user-defined subroutine is located. Second, when the control-
flow approaches this instruction, the instruction code is
written to the IR register. Then, the code is encoded by UIE
to the address of the subroutine, associated with it. The

return address (address of the next instruction) is saved in the
R stack.

Fig. 1. Structure of the SM8 microprocessor

After that, the control-flow is passed to the first
instruction of the subroutine (i.e., the subroutine is ‘called’)
and all instructions in it are executed.

TABLE I. INSTRUCTIONS SET OF THE SM8 MICROPROCESSOR

Name Instruction Description

CALL 001 Addr PC+1 -> R, PC = Addr, subroutine call

INR 010 n Rn -> T, data receiving

OUTR 011 n Rn = T, data sending

NOP 0000 0000 No operation

LIT 0000 0001 B B -> T, constant input

IF 0000 0010 D PC = PC + D by T = 0, else PC = PC + 1

DUP 0000 0110 N = T

SWAP 0000 1001 X = T, T = N, N = X

@ 0000 1010 T = RAM[T], memory reading

! 0000 1011 RAM[T] = N, memory writing, T ->

R> 0000 1100 R -> T

>R 0000 1110 T -> R

RET 0000 1101 R -> PC, return from the subroutine

DROP 0000 1111 T ->, stack purge

NOT 0001 0000 T = not T

OR 0001 0001 T = T or N

AND 0001 0010 T = T and N

XOR 0001 0011 T = T xor N

ADD 0001 1000 T = T + N

INC 0001 1001 T = T + 1

SUB 0001 1010 T = T – N

DEC 0001 1011 T = T - 1

 1xxx xxxx User instruction

The return of the control flow from the subroutine to the
next instruction is performed by the RET instruction. This
subroutine can also read and process the operand fields that
follow the byte of the opcode. But the return address in the R
register must be properly corrected.

The user-defined instruction is coded by a single byte
comparing to the two-byte CALL instruction. Therefore,
these instructions can save the software memory volume
comparing to the equivalent instruction implementation
using the CALL instruction.

The user-defined instructions can be stored in both
Program ROM and Data RAM. Thus, a microprocessor can
store a certain dynamic data processing script, which is
formed by the user instructions and respective data bytes for
them. It can perform a line parsing as well. For example, this
line can be a string of decimal calculator operations and
digits.

A common problem for many FPGA-based architectures
is the reconfiguration process. Usually, the need for the
reconfiguration leads to the recompilation of the hardware
netlist, which is a very CPU-intensive and time-consuming
task (it can last from minutes to hours). The solution to this
problem is presented in several works [11], [12] as an
implementation of task-specific architectures that can be
reconfigured ‘on-the-fly’. For example, in [12] the authors
propose the segment-based architecture for the XML
filtering. The sequence of configured segments implements
the XPath pattern of the interesting part of the whole XML.
This pattern can be changed ‘on-the-fly’, and the hardware
reconfiguration takes from nano- to microseconds.

Another approach is implemented in SM8. The
processing script, which is saved in RAM, can be rewritten
or loaded from the other memory, for example, from ROM.
Such a simple rewriting allows for the user the system
exchanging in terms of microseconds. As far as such action
is performed in a synchronization point, neither data loss nor
wrong behavior happens. In such a way, the segments in [12]
are reconfigured without stop of the input data processing
with preserving all the currently processed XML node tree
parts.

An assembler was developed for programming the SM8
microprocessor. The assembler is written in Java and is
called from the command line. Below, an example of a
program in the SM8 assembly language is shown, which
performs a single-byte transfer to the I2C port.

DEFINE nap 9 \ memory address width
DEFINE WAITRDY 82h \ user instruction – wait for
 \ port is ready
DEFINE DELAYN 83h \ user instruction – delay for
 \ N cycles
EQU START 2
EQU A_SEND 4
EQU D_SEND 5
EQU STOP 12
EQU PAUSE 15
ORG 256 \ program segment begin
\Write byte to I2C
: WR2I2C (r1 - I2C addr, r2 - inner addr,
 r3 - byte, r8 - I2C data,
 r9 - I2C control)
 lit START outr r9

inr r1 outr r8 lit A_SEND outr r9 WAITRDY
inr r2 outr r8 lit D_SEND outr r9 WAITRDY
inr r3 outr r8 lit D_SEND outr r9 WAITRDY

 lit STOP outr r9
 lit PAUSE outr r9

 lit 100 DELAYN xor if END
;
: DELAYN (N -- - N cycles)
 dec dup ifn DELAYN
;
: WAITRDY (do while rdy=1)
 inr r10 \ 0-th bit = rdy
 lit 1 and if WAITRDY
;
: END

The assembly language of the SM8 core uses the syntax
of the Forth language. Therefore, the comments here are
enclosed in parentheses or followed after a backslash.

The label follows a colon. Operators and literals are
separated by spaces. A semicolon indicates the subroutine
return instruction. Some special operators, called the
pragmas, are used in the script for the special purpose. They
define the association between identifiers and literals,
macros, initial addresses of the memory segments.

As it is seen from the example above, none of the
subroutines contain the RET instruction. It is explained by
the fact that the semicolon sign represents the RET
instruction in the Forth language. The user also can specify
its own RETs in his subroutine if needed.

The assembler generates two VHDL files, which contain
the data and programs in the memory and the user instruction
encoder content. When the processor is configured in the
Intel FPGA, the memory loading file is generated. As a
result, this assembly language by its user properties occupies
an intermediate position between the usual assembly
language and the high-level language. Thanks to this, the
writing and debugging of programs are significantly
accelerated. Besides, the VHDL model of the SM8
microprocessor core is equipped by a disassembler. Such a
feature significantly simplifies the program debugging in the
VHDL simulator.

After two VHDL files are generated, they become part of
VHDL project of developed system with SM8
microprocessor core. Peripheral devices and connections
between them and registers in microprocessor are described
in that project as well.

IV. EXPERIMENTAL RESULTS

The SM8 microprocessor core is described in VHDL and
has synthesized for different FPGA circuits. Table II presents
the results of the SM8 microcontroller synthesis in the Xilinx
Spartan-6 FPGA while setting the optimization parameters
for hardware costs. Also, the parameters of the
microprocessors, which were synthesized in the same
conditions, are presented in this table for a comparison.

The analysis of the table shows that the SM8
microprocessor has the lowest hardware costs in the look-up
tables (LUTs), and the highest speed in millions of
instructions per second (MIPS) among the stack processors.
This is explained by the fact that the reduction of the data bit
width up to eight digits reduces both hardware costs and
delay in ALU.

Table III shows the results of the configuration of this
core in the Intel-Altera FPGAs. They are compared to the
results of the Nios II processor configurations, which are
available from the open resources, not taking into account its
peripheral and memory management units. This comparison
shows that the SM8 core provides much less hardware

volume by the approximately same clock frequency. The
estimated power consumption of this core is equal to 50 mW,
which dynamic ratio by the highest clock frequency is equal
to only 13 mW when configuring in the MAX10 device.
Such nano-processor architecture helps to implement the IoT
system in the smallest FPGAs providing both the small cost
and minimized power consumption.

At present, this core is utilized in the FM radio station
exciter as a communication processor, which provides the
control and data transfers through the serial interfaces like
I2C, SPI, RS232, Ethernet. Its use showed its high
effectiveness especially in the firmware development and
debugging.

TABLE II. MICROPROCESSOR CORE PARAMETERS IN XILINX FPGA

Micro-

processor

Instruction

bit width

Hardware,

LUTs

Max. clock

frequency,

MHz

Speed,

MIPS

FS8051 [13] 8, 16, 24 1293 89 30

KCPSM6 [4] 18 87 140 70

MSL16 [6] 16 235 100 67

b16-small [7] 16 280 100 50

J1 [8] 16 342 106 70

SM8 8, 16 181 140 94

TABLE III. MICROPROCESSOR CORE PARAMETERS IN INTEL FPGA

Micro-

processor
FPGA

Hardware

volume

Max. clock

frequency,

MHz

Speed,

MIPS

Nios II/f [14] MAX10 2268 LE 150 135

Nios II/f [14] Cyclone 5 867 ALM 170 150

SM8 MAX10 1164 LE 150 100

SM8 Cyclone 5 210 ALM 205 140

V. CONCLUSION

The proposed SM8 microprocessor core has small
hardware costs at high performance and reduced hardware
volume. It is designed to implement the communication
functions of the IoT devices. The core is described in VHDL
and can be implemented in an FPGA of any series. The
programmer has the ability to add his own instructions to the

instruction set without changing the core description. The
developed assembler provides to develop and compile the
programs written in the Forth language style. This simplifies
the design of devices that implement the protocols for the
serial port communications through interfaces such as
RS232, I2C, SPI, Ethernet.

REFERENCES

[1] A. Engel and A. Koch, “Heterogeneous Wireless Sensor Nodes that
Target the Internet of Things,” IEEE Micro, vol. 36, no. 6, pp. 8-15,
2016.

[2] P. Koopman, “Stack Computers: The New Wave”, Elis Horwood,
1989.

[3] J. Kylliainen, T. Ahonen, and J. Nurmi, “General-Purpose Embedded
Processor Cores - The COFFEE RISC Example” in Processor
Design. System-on-Chip Computing for ASICs and FPGAs, J. Nurmi,
Ed., Kluwer Academic Publishers / Springer Publishers, 2007, pp. 83-
100.

[4] K. Chapman, “PicoBlaze for Spartan-6, Virtex-6, and 7-Series
(KCPSM6)”, 2013, Accessed: Dec. 14, 2018. [Online]. Available:
http://bcf.usc.edu/~franzke/courses/ee209/2017-
03/tools/KCPSM6_User_Guide_30Sept13.pdf

[5] U. Meyer-Baese, Digital Signal Processing with Field Programmable
Gate Arrays, 4th ed. Berlin, Germany: Springer-Verlag, 2014.

[6] P. Koopman, Stack computers: the new wave. Hemel Hempstead,
UK: Ellis Horwood, 1989.

[7] P. H. W. Leong and P. K. Tsang, “A FPGA Based Forth
Microprocessor,” in Proc. of the IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), 1998, pp. 254-255.

[8] B. Paysan. (Jul. 9, 2016). b16-small — Less is More. Presented at
EuroForth 2004. [Online]. Available: https://bernd-paysan.de/b16-
small.pdf

[9] J. Bowman and W. Garage, “J1: a small Forth CPU Core for FPGAs,”
in Proc. of the EuroForth’2010, Jan. 2010, pp. 43-46.

[10] M. Kelly and N. Spies, Forth: A Text and Reference. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1986.

[11] M. Najafi, M. Sadoghi, and H.-A. Jacobsen, “Configurable Hardware-
based Streaming Architecture using Online Programmable-Block,” in
2015 IEEE 31st International Conference on Data Engineering
(ICDE 2015), Seoul, South Korea, Apr. 13-17, 2005, pp. 819-830.

[12] J. Teubner, L. Woods, and C. Nie, “XLynx — An FPGA-based XML
Filter for Hybrid XQuery Processing”, ACM Transactions on
Database Systems (TODS), vol. 38, no. 4, Nov. 2013, Art. no. 23.

[13] O. Maslennikov, J. Shevtshenko, and A. Segyienko, “Configurable
microcontroller array,” in Proc. of the Parallel Computing in
Electrical Engineering (PARELEC’02), Warsaw, Poland, Sep. 25,
2002, pp. 47-49.

[14] Intel, Santa Clara, CA, USA. Nios II Performance Benchmarks. DS-
N28162004. (2018). Accessed: Dec. 15, 2018. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/li
terature/ds/ds_nios2_perf.pdf

