Сергиенко Анатолий Михайлович¹⁾, д.т.н. Сергиенко Анастасия Анатольевна¹⁾, аспирант ¹⁾Киевский политехнический институт им. И. Сикорского, (37, просп. Перемоги, 03056, Киев-56, Украина Тел. (044) 2049337, e-mail aser@comsys.kpi.ua)

Моделирование волновых процессов с помощью волновых фильтров

Рассмотрено моделирование распространения ультразвука, заключающееся в представлении среды в виде системы волновых фильтров. Благодаря реализации многоканальных фильтров с программируемой задержкой, уменьшается погрешность моделирования дисперсионной распространения звука. Алгоритм при реализации в ПЛИС позволяет выполнять моделирование в реальном времени.

Ключевые слова: GIF, ПЛИС, волновой фильтр, дисперсия звука

Введение. Метод цифровых волноводов, или метод DWG (digital waveguide) позволяет существенно упростить моделирование волновых процессов по сравнению с методом конечных элементов [1]. Моделирование струнных, духовых и других музыкальных инструментов, а также телефонный вокодер — это примеры успешного внедрения метода DWG [1,2,3]. Для моделирования распространения звука в объектах сложной формы DWG-модель представляет собой двух- или трехмерную решетку из элементарных волноводов и тем самым приближается к модели по методу конечных элементов [2]. Но модель DWG не учитывает рассеивание (дисперсию) волн. В данной работе предлагается модификация метода DWG, которая обеспечивает моделирование звуковой дисперсии в твердом теле и реализацию такой модели в программируемой логической интегральной схеме (ПЛИС).

Основы модели DWG. DWG — это цифровая модель распространения волн в идеальном волноводе. Она базируется на принципах, описанных в работе [4], но адаптированных к моделированию звуковых волн [1,3]. При этом в *i*-й точке волновода рассматриваются прямые $f_i = Rv_f$ и обратные волны $b_i = -Rv_b$, где f_i и b_i —давление прямых и обратных (отраженных) волн, соответственно, v_f , v_b — скорости частиц вещества, R — волновой импеданс, пропорциональный скорости продольных волн C_o , плотности материала и зависящий от сечения тела — волновода. Реальное значение давления равно сумме давлений прямой и обратной волн: $u = f_i + b_i$.

В цифровой модели DWG сигналы квантуются с частотой дискретизации F_s , которая, по меньшей мере, в два раза превышает максимальную частоту исследуемых волн. Тогда *i*-й сегмент волновода длиной *L* выглядит как две линии задержки на $n = L/(c_oF_s)$ тактов сигнала дискретизации. Несколько однородных волноводов соединяются между собой в одной точке с помощью узла адаптера, называемого узлом рассеяния. Функционирование адаптера подчиняется закону Кирхгофа. При соединении двух волноводов это означает выполнение уравнений:

$$v_{b1} = rv_{f1} + (1 - r) v_{f2};$$
(1)
$$v_{b2} = (1 + r) v_{f1} - rv_{f2};$$

где $r = (R_2 - R_1)/(R_2 + R_1)$ — коэффициент отражения. Если соединены три волновода, то в узле адаптера рассчитываются следующие формулы:

$$v_{b1} = (2g_1 - 1) v_{f1} + 2g_2 v_{f2} + 2g_3 v_{f3};$$

$$v_{b2} = 2g_1 v_{f1} + (2g_2 - 1) v_{f2} + 2g_3 v_{f3};$$

$$v_{b3} = 2g_1 v_{f1} + 2g_2 v_{f2} + (2g_3 - 1) v_{f3};$$
(2)

где v_{fi} , v_{bi} , — скорости волн, входящих в узел и выходящих из него, g_i — удельный импеданс *i*-го волновода, $g_1 + g_2 + g_3 = 1$, $g_i = R_i/(R_1 + R_2 + R_3)$, i = 1, 2, 3.

Усовершенствованная модель DWG. При изучении волновых процессов в упругом теле с ограниченными размерами, например, в стержнях, рассматривают основные — продольные волны с фазовой скоростью c_p и вторичные — поперечные волны со скоростью c_s , $c_s < c_p$ [5]. При взаимодействии этих волн они могут превращаться друг в друга. Это можно промоделировать при соединении в узле адаптера волноводов, в которых распространяются такие волны.

Кроме того, продольные волны обладают дисперсией, то есть, их скорость c_p зависит от длины волны λ . Например, скорость продольных волн в цилиндре оценивается формулой [5]:

$$c_p = c_o (1 - \pi^2 v^2 a^2 / \lambda^2) = f(\lambda),$$
 (3)

где v — коэффициент Пуассона, *а* — радиус цилиндра. Поэтому модель DWG должна быть скорректирована в соответствии с этой формулой.

Модифицированную модель DWG некоторого стержня можно представить структурой, показанной на рис.1. Эта модель состоит из левого (LA) и правого (RA) адаптеров, волновода Р продольных волн и волновода S поперечных волн. В каждом из трехпортовых адаптеров вычисляются выражения (2). Их порты, соответствующие торцам стержня, подключены к цепям, реализующим отражение волн с коэффициентами затухания S_L и S_R согласно уравнениям (1). Сигнал возбуждения v_{in} подается в модель через сумматор.

Рис. 1. Структура модели стержня

Волновод S выполняет задержку на заданное количество тактов частоты дискретизации и определенное ослабление волнового сигнала. Волновод P состоит из нескольких каналов, каждый из которых имеет отдельные диапазон частот пропускания, задержку и затухание в зависимости от соответствующей длины волны λ согласно (3). Таким образом, модифицированная модель DWG способна принимать во внимание дисперсность распространения звука в твердом теле, то есть, зависимость фазовой скорости звука от его длины волны или частоты.

Каналы волновода Р реализуются на основе полосового фильтра на базе фазового волнового фильтра, описанного в [6]. Передаточная функция одного канала равна:

$$H_{S}(z) = \left(k_{D} - k_{D} \frac{a + b(1 + a)z^{-1} + z^{-2}}{1 + b(1 + a)z^{-1} + az^{-2}}\right)z^{-d},$$

где k_D — коэффициент затухания, $b = \cos(2\pi f_B)$ — коэффициент, регулирующий центральную частоту полосы пропускания f_B , a = (1-t)/(1+t) — коэффициент, задающий ширину полосы пропускания Δf , $t = \operatorname{tg}(\pi \Delta f)$, d — задержка канала, тактов. В результате, в каждом из каналов динамически перестраиваются не только задержка и затухание, но и полоса частот пропускания. Таким образом, достигается выполнение не только законномерности, представленной формулой (3) но и более реалистичных частотных зависимостей скорости сигнала. Особенности реализации данного полосового фильтра, а также фильтров, перестраиваемых в широком диапазоне частот, описаны в работе [7].

Экспериментальные результаты. На языке VHDL была описана модель стержня со структурой как на рис. 1. В ней волновод Р имеет до восьми каналов.

Суммарная амплитудно-частотная характерис¬тика волновода S показана на рис.2. Здесь частота f измеряется в долях частоты дискретизации F_s . На рис.2 также показаны частотные характеристики двух соседних каналов волновода.

Модель возбуждалась узким ультразвуковым импульсом, а интенсивность звука *v* измерялась на выходе узла сумматора (см. Рис.1).

Рис. 2. Суммарная амплитудо-частотная характеристика волновода Р

На рис.3 показана временная диаграмма, представляющая волновой сигнал, снятая с экрана VHDL-симулятора. Эта диаграмма показывает, что волны действительно претерпевают дисперсию при распространении в модели стержня.

Рис. 3. Временная диаграмма распространения поширення ультразвукового импульса в стержне

Модель стержня описана на языке VHDL, и поэтому она может быть реализована как в симуляторе VHDL, так и в ПЛИС. Модель описана стилем для синтеза и при конфигурировании в ПЛИС Xilinx Spartan-6, содержит 2680 логических элементов, 60 блоков умножения DSP48, и 16 блоков памяти BlockRAM. При этом достигается частота дискретизации сигнала $F_s < 100$ МГц. Такая частота обеспечивает моделирование в режиме реального времени.

Выводы. Предложен модифицированный метод цифровых волноводов для моделирования твердого тела, учитывающий дисперсность распространения волн. Метод основан на модели цифрового волновода, задержка которого зависит от длины волны. Пример модели стержня, описанной в VHDL, показывает эффективность этой модели.

2. *Karjalainen M., Erkut C.* Digital Waveguides versus Finite Difference Structures: Equivalence and Mixed Modeling // EURASIP Journal on Applied Signal Processing, 2004. №7. Pp. 978-989.

3. Маркел Дж. Д. Линейное предсказание речи. – М.: Связь. 1980. 308 с.

4. Fettweis A. Wave digital filters: Theory and practice // Proc. IEEE, 74, 1986 №2. Pp. 270 - 327.

5. Kolsky H. Stress Waves in Solids. Dover Publications Inc. 2012.

6. *Regalia P. A., Mitra S. K., Vaidyanathan P. P.* The Digital All-Pass Filter: A Versatile Signal Processing Building Block // Proc. IEEE. V.76. 1988. No1. – Pp. 19-37.

7. Сергиенко А. М., Лесик Т. Н. перестраиваемые цифровые фильтры на ПЛИС // Электронное моделирование, **32**, 2010, №6. – С. 47-56.

^{1.} Smith III J. O. Physical Modeling Using Digital Waveguides // Computer Music Journal, V.16. 1993. №4. Pp.74-91.