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Abstract. An approach for designing the reconfigurable computing systems in FPGA is proposed, which is based on 

mapping synchronous data flow graphs to a manycore system. The reconfiguration is performed by switching data flows 

and exchanging the instruction sets of the processor cores. To implement the processor elements of such a system, a 16-

bit RISC-processor core is developed, which has small hardware costs and a configurable instruction set. 
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1 Introduction 
 

The expansion of the field programmable gate arrays (FPGAs) as the basis of the configurable computers is a constant 

trend. Usually, the application-specific processor is configured in FPGA once per operation period. Sometimes, FPGA 

is fully or partially reconfigured during this period providing an optimal computing structure for various fragments of 

the implemented algorithm. In the latter case, we speak about the dynamically reconfigured computer (DRC) [1,2]. 

 As a rule, DRC implements the data flow algorithms for which it is possible to predict volumes of computing 

portions and interprocessor communications. When designing RC, the algorithm is modeled, computation portions are 

mapped in the processor units (PUs), the variants of the processor structure are determined, and a set of configuration 

files are generated, which are then loaded dynamically into FPGA [1]. 

New series of FPGAs of Altera and Xilinx firms support a partial reconfiguration. But, first of all, the minimum 

portion of the reconfiguration covers the rectangular area of the FPGA, which is quite large. For example, in the Xilinx 

FPGA, this area includes four DSP48 multiplication blocks. In addition, a part of the FPGA that has not changed the 

configuration and the island with a new configuration should have unchanged common data points. All this leads to 

difficulties in designing the DRC and restrictions to optimize hardware costs. Secondly, the minimum partial 

reconfiguration lasts several milliseconds, that is, it constitutes a large time overhead [2]. 

The new series of FPGAs have a number of features that infer the choice of architectures that are configured in. If 

the number of transistors in the FPGA increases in four times, then the tracing resources increase only twofold. The 

delays in the lines is in 1–3 times greater than ones in the look-up tables (LUTs) and in other logic elements [2]. 

Therefore, the effective structural solution is the use of compact configurable modules, so that their internal signals are 

not spread far. 

 Time and hardware overhead costs for reconfiguring the DRC can be reduced to the minimum if such 

reconfiguration does not change the FPGA configuration. Many works, for example [3], propose a multiprocessor 

architecture of  DRC, which consists of a set of identical compact PUs, which are bound to a configuration system of 

commutation or a network on a chip. Such a system can be quickly and dynamically reprogrammed. The disadvantage 

of this architecture is that PUs are highly specialized, which imposes limitations on a plurality of implemented 

algorithms. 

A program-driven processor core with a specialized instruction set is preferable to select as PU. When implemented 

in an FPGA, such a processor can dynamically modify the executable algorithm, due to the overlay structure of its 

programs. Besides, the usual configuration technology provides the exchange of the inner program RAMs of these PUs 

in the configuration file without recompiling the whole project. In addition, the instruction set of separate PUs can be  

dynamically changed by the partial reconfiguration of FPGA without affecting the common data transmission points. 

The popular microprocessor cores, such as Nios, Microblaze, Mico32, OpenRISC, MIPS, do not fit the compactness 

requirements mentioned above. To achieve an acceptable clock frequency, these processors have a multi-staged pipeline 
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(up to 5 and more stages). System interrupts, context exchange, virtual memory, cache-RAM, and high-speed interface 

to external dynamic memory are implemented in such cores to execute several independent program threads in them. In 

order to implement the multiprocessor architecture, the high-bandwidth busses and hardware controllers are required for 

maintaining the of memory access coherence [4]. 

In these conditions, the architecture of the XMOS manycore system has a set of advantages. This architecture 

inherits the positive properties of the transputer architecture. Among them are the high-speed real time multithreaded 

operation without the use of the operational system, and the effective interprocessor communications through a set of 

the virtual links [5]. 

The purpose of the work is to construct a manycore DRC in FPGA, which implements the synchronous data flow 

model, thereby reducing hardware costs, increasing the speed of the system and the possibility of the dynamic 

reconfiguration. For this purpose a compact core of the RISC processor was developed, which plays the role of a PU in 

such a system. 

 

2 Synchronous dataflow system 
 

The synchronous data flow graph (SDF) is a convenient model for representing many algorithms with the cyclic nature, 

such as digital signal processing algorithms. SDF consists of nodes or actors that perform computational functions and 

edges, which interconnect the nodes in the system. Each edge can have a FIFO buffer to perform the dataflow delay for 

several cycles. The actor operates immediately, as soon as there is data at its inputs and outputs the results to its outputs. 

In contrast to the data flow graph of the general type, each actor in SDF consumes and issues the same amount of data 

during a single cycle of the algorithm execution. 

The SDF model has the properties, such as deadlock absence, static scheduling, ability to execute a large set of 

algorithms. Due to this, SDF is used for both the programming of multiprocessor systems [6] and for the design of 

pipelined computing structures [7, 8, 9]. 

With a one-to-one mapping of the SDF algorithm, the structure of the system is derived, which is isomorphic to this 

graph. Each PU of such a structure performs a single process of calculating the corresponding function-actor. When the 

next data group arrives the input ports, the process starts, calculates the function, writes the results to the output ports, 

and stops. 

In the case of N-to-one mapping of SDF, up to N actors are implemented in a single PU. In this case, PU is 

programmed according to the methods, which are proved in [6, 10]. Consequently, each PU of the system performs only 

a single program flow. They do not require the operating system, interrupt system, virtual memory, and the like. That is, 

such PUs have small hardware costs and they are compact in their FPGA implementation. 

The cycle of SDF computing in such a parallel system is determined by the critical path which passes through PUs 

with the  maximum loading. The rest of PUs, through which the critical path does not passes, are underloaded [6, 7]. 

Therefore, there is a problem with the PU loading balance. 

 

3 Dynamic reconfiguration  
 

A task, which requires the dynamic reconfiguration, should be represented as a set of different SDFs. Then, these SDFs 

are mapped in several manycore structures that are differentiated by the structures. These structures are combined into a 

single combined DRC structure using respective switching nodes. The tasks performed in PUs are described as 

programs in the corresponding programming language and are compiled in the PU executing codes. In this case, a set of 

used instructions is selected and allocated in each PU, where it is configured, as proposed in [10]. The resulting 

manycore system project is configured in FPGA along with the program codes according to the usual method, using the 

CAD tools of the FPGA manufacturer. 

When solving the PU problem, the DRC executes its programs, and its reconfiguration consists only in the 

corresponding adjustment of the switching nodes and in the re-loading of programs in the PU from the external 

memory. Such a process of reconfiguration occurs much faster than with the full or partial change in the configuration 

of the FPGA. 

 

4 PU architecture 
 

A 16-bit processor core RISC-ST2 was developed as PU of the manycore system, which implements SDF. The RISC-

ST core, which is described in [9], was taken as the basis. The instruction bit width is increased to 18, which made it 
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possible to optimize the instruction set and to use better the internal memory resources of FPGA. A set of specific 

instructions is added to the RISC-type instruction set. They process the selected bits, select bit fields in the word, merge 

fields, shift word, count the position of the most significant bit. To implement a quick access to the associative table, an 

instruction of the hash function calculating is added as well. Such instructions contribute to the effective 

implementation of the parsing and compression algorithms. 

A set of used instructions is programmed during the formation of the configuration file, as proposed in [10]. As a 

result, the small footprint PUs and shortened program codes are derived, which are effectively configured in FPGA. 

The registered memory of the processor has 32 registers, among them 16 registers are available in the instruction. In 

order to maximize the possibility of the registered memory, which is implemented on LUTs, a single instruction can 

read three operands from these registers and write a single result for a single clock cycle. 

The following addressing modes are available: registered, indirect registered, base addressing, index addressing with 

the pre-increment. The data memory is divided into 4k byte pages and has a maximum capacity of 256 megabytes. To 

access the data memory, the standard Wishbone open interface is used. 

Up to 256 peripheral registers are addressable. Such registers serve as input-output registers. The data exchange 

between PUs is implemented through these registers as well as the communication with the application specific 

processors is. These processors execute high-speed computing, for example, the calculation of elementary functions, 

digital signal processing, or encryption. Several PU cores are synchronized by the interrupt system. Due to the fact that 

the instruction pipeline has three stages, the most instructions are executed for a single clock cycle, and the branch, call 

and memory reading instructions are executed in two cycles.  

The core of the microprocessor is described by the VHDL language and has no restrictions for the synthesis and 

configuring in any FPGA series. The processor model has a built-in disassembler, which simplifies the testing and 

debugging of programs. A cross-assembly program in Java has been developed, which outputs the VHDL files of the 

program memory. 

 

5   Implementation of the processor core in the FPGA 
 

Table 1 shows the results of the PU core synthesis for the Xilinx Kintex-7 FPGA and its closest known analogs. 

Compared to the analogs, the developed PU core has lower hardware costs and higher performance. It should be noted 

that the delay in the interconnection lines accounts for 75% of the delay of the critical path in this core. The core 

compactness makes it possible to place about three hundred cores in Xilinx xc7k480t FPGA, each with 12 kilobytes of 

program and data memory. 

Tab. 1. Implementation of microprocessor cores in the FPGA Xilinx Kintex-7 

Microprocessor core Bit width Hardware volume, LUTs Maximum clock frequency, MHz 

RISC-ST2 16   653 217 

OpenMSP430  16 1387 150 

OpenRISC1200  32 4945 107 

 

The RISC-ST2 processor can be configured in FPGAs of different series. Table 2 shows the results of the processor 

configuration, which contatins the PU core and the minimum set of the peripherals. 

 

Tab. 2. Implementation of the RISC-ST2 core in the FPGA 

FPGA series Hardware volume,  Maximum clock frequency, MHz 

LUTs registers 

Xilinx Zynq   799 262 148 

Xilinx Spartan6   824 264 133 

Xilinx Virtex7   760 226 205 

Altera StratixV   967 239 227 

Altera Cyclone V   988 240 150 

Altera Max10 2322 1309 76 

Lattice ECP5U   742 245 112 

 
 

 

 



5-th International Conference "High Performance Computing" HPC-UA 2018 (Ukraine, Kyiv, October 22-23, 2018). Р. 127-130. 

4 

 

6 Conclusion 
 

An approach to the creation of manycore system on a FPGA chip is proposed, which is based on the mapping the SDF 

graph to the system structure. The approach provides to obtain a dynamically reconfigurable high-performance system 

for processing data flows with the reduced hardware costs. 

The RISC processor core with an application specific instruction set is developed, which forms a basis of the 

manycore system. Due to the fact that this core is adapted to perform a single computing process, it has both small 

hardware cost and high speed. Up to several hundreds of such cores can be configured in a single FPGA chip forming 

the manycore system. It is possible to develop the manycore systems to process the data streams with the throughput of 

several tens of billions of operations per second. It is planned to create a system that executes fast compression -

decompression, high-speed parsing of files. For this purposes, the ideas of performing of the GIF decompression in the 

proposed core [11], and of the high-speed reconfigurable parser [12], are helpful. 
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