
Laboratory exercise 1
Sine wave generator

1 Goal:

The goal is to achieve knowledge and practical experience in design of sine wave generators for modern
applicatin specific computers, to get programming and debugging experience in VHDL language.

2 Theoretical information
Digital sine wave generators are widely used in DSP applications as sine, cosine wave sources for

frequency conversion, discrete Fourier transform, in modems, software defined radios, radars, mobile phones,
radio receivers, etc.

The following schemes of such generators are widely used:
- sine function calculation;
- lookup table-based generators;
- oscillation schemes;
- combined schemes.
Sine function calculation is the usual way to generate sine waves in PC and other program controlled

computers. Here for this purpose the proper instruction of the floating point coprocessor is usually used. In the
application specific processor the different approximation algorithms are used like Taylor scheme, CORDIC
algorithm, interpolation algorithm, etc. For example, sine and cosine functions at the interval |x|<1 can be
estimated as

sin(πx/2) = 1,57063x – 0,64323x3 + 0,07271x5, (1)
cos(πx/2) = 0,9994 – 1,22279x2 + 0,22399x4,

with the error, which is less than 0,06%. The disadvantage of this method consists in the large complexity of
calculations (in the example above – up to 6 multiplications and 2 additions for the sine function). Besides, here
the functions are defined for the angles less than π/2, and additional calculations are needed for deriving the
functions in another ranges. The advantage is a wide range of the generated frequencies.

Lookup table-based generator is the simplest and most widely used solution. The idea is to build the table
of M samples of the sine function, which form a single sine wave period. That means that at the address i the
value S=sin(2πi/M) is stored. The wave generation means reading the samples, addressing them by the
incremented address counter. The increment k=1,2,...,M/2 of such a counter is proportional to the resulting sine
wave frequency f = kfS/M, where fS is the sampling (quantisation) frequency. The precisions of both the
outputted sine wave and its frequency installing depend on the table volume M and the data width of the
coefficients S.

Oscillation scheme is an algorithm, which generates the sine waves using some fundamental properties of
transcendental functions. It is usually implemented as the solving of some difference equation. For example, the
following difference equation

y(i) = 2cos(b)y(i-1) - y(i-2), i=0,1,..., (2)

models the second order recursive digital filter at the border of amplification and excitation modes. Such a
scheme generates the sine wave by the initial conditions

y(-1)= -sin(b); y(-2)= -sin(2b); (3)

or the cosine wave by the conditions

y(-1)= cos(b); y(-2)= cos(2b);

with the frequency f = bfS /(2π) Hz. Theoretically equation (2) represents the stable sine wave generator, i.e. it
operates without damping or saturation of oscillations, if the multiplier of y(i-2) (if any) is equal precisely to a 1

[1], which is usually achieved without complications. But the sine and cosine coefficients must be truncated by
the machine representation in such a way, that the sine of a zero angle to be equal to a zero. i.e.

y(0) = 2cos(b)(-sin(b)) - (-sin(2b)) = 0. (4)

On the Fig.1 the dataflow graph is represented of the equation (2) solving.

-

Rg
y_1

Rg
y_2

Rg
SIN

SM

y(i-2) y(i-1)

sin(2πi/N)

y(i)=sine

2cos(b)

Fig.1. Dataflow graph of the equation (2) solving

This graph can be described by the following VHDL program.

library IEEE;
use IEEE.std_logic_1164.all;
entity SINE is
 port (CLK: in STD_LOGIC;
 RESET: in STD_LOGIC;
 SIN: out integer range -2**15 to 2**15-1);
end SINE;

architecture SIMPLE of SINE is
signal y_1, y_2 : integer range -2**15 to 2**15-1;
constant sinb: integer :=-286;
constant sin2b: integer :=-572;
constant cosb: integer :=32767;
begin
 process(CLK,RESET)
 variable sine: integer;
 begin
 if RESET ='1' then
 y_1<=sinb;
 y_2<=sin2b;
 SIN<=0;
 elsif CLK='1' and CLK'event then
 sine:=2*cosb*y_1 /2**15
 y_2<=y_1;
 y_1<=sine;
 SIN<=sine;
 end if;
 end process;
end SIMPLE;

The sine function as well as the usual signal data have the representation range from -1.0 to 1.0. But in

VHDL the signals are represented by integers or bit vectors. Therefore, in this model all the values are to be
scaled with the coefficient 2-15. Initial data of the signals y1, y2 and constants cosb = 215cos(b) for the
different frequencies are shown in the following table 1.

Table 1
-sinb -sin2b cosb Calculated sine wave

period, clocks
Derived sine wave

period, clocks
Derived

magnitude
DC dis-

placement
19261 31165 26510 10 10 32767 0
2856 5690 32642 72 72 32422 -6
286 572 32767 720 703 28808 -87

This generator is rather simple. It is often used to generate the waves of a single frequency. The

disadvantages of this generator are: -small scope of the frequency regulating, which is limited by the data bit
width and relation (4); - wave magnitude is different for the different frequencies, and some displacement is
present (see the table); - for a set of frequencies the set of coefficients must be calculated and/or stored; - very
high (>0,13fS) and very low (<0,001fS) frequencies could not be generated without extreme errors. A

Another oscillation schema is based on the well-known trigonometric formulas:

sin(x+y) = sinx cosy + cosx siny; (5)
cos(x+y) = cosx cosy – sinx siny.

Here sinx, cosx are samples of the generated waves, and y is the angle to which the neighboring samples
are differ, i.e. it represents the given frequency. The disadvantage of this sheme consists in its unstability due to
the unprecise representation and calculation of the sine and cosine samples. That means that sin2 x+ cos2 x ≠1
sin2 y+ cos2 y ≠1 due to the truncation errors (2) . This feature can be minimized by addition of some
nonlinearities to this schema which will decrease the increased signal magnitude.

In the combined schemes the superposition of the mentioned above schemes is used. For example,
consider the generator which frequency must be tuned precisely. Then such generator can be built as two
generators, one of them generates sine and cosine waves with the high frequency and another one does them
with the low frequency. The resulting signal is derived by the mixing the signals of both of them using the
equations (5).

 3. Generator design example
Consider the design of the sine wave generator, which outputs the sine, cosine waves. Its parameters are:

frequency 0,01fS , sine table length 16, table pattern – sine function of the argument range 0 to π, phase
accumulator data width – 16 bit, output data width - 16.

 The generator structure is shown on the Fig.2

RgP SM

P
F

 1
5

14
 1

3
 1

1
10

0

ROMS1

RgS

SM
S

0

±

P

1
ROMS2

RgC

SM
C

0

±

cosusinu

t2
SM
1

cossin

Fig.2. Sine wave generator structure

The adder SMP with the register RgP implements the phase accumulator with the increment F. ROM

ROMS1, ROMS2 store one half of the sine function period. ROMS1 is addressed by 5 most significant bits of
RgP except highest one. Therefore, the whole sine wave period consists of 32 samples.

The adder SMS inverts the sine code to generate the negative waves of the resulting sine signal. It is
implemented when the 15-th bit of RgP is a 1. In another situation this adder throughputs the data without
exchanges.

The adder SM1 adds a 1 to 2 MSBs of the code RgP, and therefore, it shifts the phase value to 90°. By
this method the address is derived which provides the cosine function fetching from the sine table. The adder
SMC and ROMS2 generate the cosine function. Sine and cosine samples are buffered in the registers RgS and
RgC respectively.

The end of each wave period is in time with the phase accumulator overflow. This means that to generate
the signal with the frequency 0,01fS , 100 clock cycles must take one overflow. Such situation occurs when the
phase increment is equal to F =]216 /100[= 655. The relative frequency error due to the phase code truncation
is equal to δf = (216 /100 –F)/ F = 5,5·10-4 .

This generator is described as the following.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_signed.all;
entity SIN_GEN is
 port(CLK : in STD_LOGIC;
 RST : in STD_LOGIC;
 F : in STD_LOGIC_VECTOR(15 downto 0);
 SIN_O : out STD_LOGIC_VECTOR(15 downto 0);
 COS_O : out STD_LOGIC_VECTOR(15 downto 0));
end SIN_GEN;
architecture beh of SIN_GEN is
 type ARR is array (0 to 15) of integer range -2**15 to 2**15-1;

constant SIN_TABLE:ARR:=
(0, 6392,12539,18204, 23170,27245,30273,32138,

 32767,32138,30273,27245, 23170,18204,12539,6392);
 signal t:ARR:= (0,others=>0);
 signal P,sinu,cosu:STD_LOGIC_VECTOR(15 downto 0);
 signal t2:STD_LOGIC_VECTOR(1 downto 0);
begin
 process
 variable j: real;
 begin
 for i in 0 to 15 loop
 j:=real(i);
 t(i)<=integer(FLOOR(32767.9* SIN(MATH_2_PI*j/32.0)));
 end loop;
 wait;
 end process;

 CT_PHASE:process(CLK,RST) begin --счетчик фазы
 if RST='1' then
 P<=X"0000";
 elsif CLK='1' and CLK'event then
 P<=P+F;
 end if;
 end process;

 sinu<=CONV_STD_LOGIC_VECTOR(SIN_TABLE(CONV_INTEGER('0'&P(14 downto 11))),16);

 t2<=P(15 downto 14) +1;

 cosu<=CONV_STD_LOGIC_VECTOR(SIN_TABLE(CONV_INTEGER('0'&t2(0)&P(13 downto 11))),16);

 process(CLK,RST) begin -- registers with 2th complement deriving
 if RST='1' then
 SIN_O<=(others=>'0');

 COS_O<=(others=>'0');
 elsif CLK='1' and CLK'event then
 if P(15)='0' then
 SIN_O<= sinu;
 else
 SIN_O<=0 - sinu;
 end if;
 if t2(1)='0' then
 COS_O<= cosu;
 else
 COS_O<=0 - cosu;
 end if;
 end if;
 end process;
end beh;

4. Laboratory exercise implementation
The generator must generate both sine and cosine waves. The output signal magnitude must be

stable. The generator must be able to generate a set of frequencies f1, f2 , and f3 , which are given by the
2-bit input code. The inputs and outputs must be represented by the STD_LOGIC codes.

Each exercise variant has a set of parameters, which are numbered by natural numbers. A set of
them is derived from the record-book number of the student. Consider 3 last figures a2,a1,a0, of the
record-book number. Then the variant number is

N = 100a2 + 10a1 +a0 = 29b9+28b8+27b7+26b6+25b5+24b4+23b3+22b2+21b9+b0,
where bi are the bits of the number N in the binary representation.
The generator type is selected from the Table 1. .

Table 1

b0 0 1
Type Lookup table-based Oscillator scheme (2)

The set of calculated frequencies is represented in the Table 2.

 Table 2
b3,b2, b1 Generator frequencies, fractions of fC

000 0,001 0,01 0,03
001 0,002 0,02 0,04
010 0,003 0,03 0,05
011 0,004 0,04 0,06
100 0,005 0,05 0,07
101 0,006 0,06 0,08
110 0,007 0,07 0,09
111 0,008 0,08 0,1

The generator must have the bit widths as in the following table

Table 3
b4,b3, b2 Output sine

bit width
Phase accumu-
lator bit width

Coefficient,
ALU bit widths

Sine table address
bit width

000 8 16 12 4
001 8 18 14 4
010 10 20 16 5
011 10 22 18 5
100 12 24 20 5
101 12 26 22 6
110 16 28 24 6
111 16 32 28 6

5.Testbench development and model testing
The model can be tested in the ActiveHDL environment by adding the stimulator signals for CLK and

RST inputs, and investigating the output sine and cosine signals. The CLK frequency must be equal to 100
MHz.

For each given frequency code the output sine wave frequency must be measured by the invesitigation of
the output waveform diagram. The waveform frequency error must be derived too.

6. Laboratory exercise report
The laboratory exercise report must contain:
- Goal of the work,
- Generator description,
- VHDL texts,
- Waveforms of testing,
- Conclusions.

Literature
1. Отнес Р., Эноксон Л. Прикладной анализ временных рядов. –М.:Мир. –1982. – 428 с.
2. Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов. –М.:Мир. –1978. – 848 с.

	Sine wave generator

