
 1

Digital Network Design
Short Practical Tutorial

Laboratory exercise 1
Arithmetic and logic unit

1 Goal:

The goal is to achieve knowledge and practical experience in ALU design for modern computers, to
get programming and debugging experience in VHDL language.

2 Theoretical information
ALU is intended for calculating both arithmetical functions (addition, subtraction) and logic

functions (bit-wise AND, OR, NOT, XOR) of data represented by n-bit wide fixed point codes, say A
and B. In most of cases the data are represented by twos complement binary codes. The carry bit С0
serves as a special operand. Except n-bit result Y, the ALU results are the result flags like the carry
bit from the most significant bit (MSB) Сn, overflow flag V, zero flag Z and sign flag S.

The control code F gives the ALU operation type, which coding usually depends on the
instruction opcode set.

 3. ALU design example
Consider the example of 4-bit ALU, which implements Y=А+В+С0 by F=00, А-В-С0 by F=01,

bit-wise AND by F=10, and bit-wise OR by F=11, where С0 is the carry bit to the least significant bit
(LSB). The results are word Y, zero flag Z and carry flag С3.

In VHDL the LSM object declaration looks like the following.

library IEEE;
use IEEE.Numeric_bit.all;
entity ALU is
 port(F : in BIT_VECTOR(1 downto 0);-- function
 A : in BIT_VECTOR(3 downto 0);-- first operand
 B : in BIT_VECTOR(3 downto 0);-- second operand
 C0: in BIT; -- carry input
 Y : out BIT_VECTOR(3 downto 0);-- result
 C3: out BIT; -- carry output
 Z : out BIT -- zero flag
);
end ALU;

The entity in its behavioral representation is represented by the algorithm of its behave not to

consider the concrete element basis of integral technology. But on the contrary to the algorithm
represented by the usual programmer language, here the strict operation sequence is given which is
executed in time. By the execution process the operations are executed in sequential-parallel order:
sequential operators are executed sequentially and parallel ones do in parallel.

The behavioral model of ALU can be described as the following architecture.

architecture NUM of ALU is
 signal ai,bi,yi,bp1:signed(4 downto 0);
 signal ybi:BIT_VECTOR(4 downto 0);
begin
 ai<= '0'& signed(A);-- 1 bit is added to select the carry out bit
 bi<= '0'& signed(B);
 bp1<=bi when C0='0' else –carry bit is added
 bi+1;

 2
ADDER:yi<= ai+bp1 when F(0)='0' else
 ai-bp1;
MUX:with F select
 ybi<= bit_vector(yi) when "00"|"01",
 '0'&(A and B) when "10",
 '0'&(A or B) when others;
 C3<= ybi(4);
 Z<='1' when ybi(3 downto 0)="0000" else '0';
 Y<= ybi(3 downto 0);
end NUM;

In the architecture declaration the signals are declared, which are used as intermediate

signals in the calculations. The type signed is the subtype of the type BIT_VECTOR, which
represents an integer value with MSB as a sign. After the declarative part of the architecture, the
description part of it stays between the key words begin and end. Firstly, the type conversion of
the signals is used for conversion of bit vectors A, B, C0 to signed signals ai,bi. They are
made in one bit longer than input signals to derive the carry out bit. Note that explicit type
conversion is allowed between closely related types only, which are here signed and
BIT_VECTOR of equal length.

 In the operator which is marked by the mark ADDER, the adder-subtractor is described,
Depending on the condition F(0), it performs addition or subtraction of integers. It worth to
mention, that in VHDL all parallel operators can be marked by the name, which helps to
understand the program and simplifies its deвug.

The operator marked by MUX describes a multiplexor which due to the code F selects either
adder output, or logic function AND or OR. The 4-bit addition-subtraction result is transferred to
5-bit vector taking into account the overflow bit. The logic operation result is expanded by a 0 bit to
get the 5-dit vector as the arithmetic result gives. This expansion is implemented using the bit con-
catenation operation: '0'&(A or B). Such expansion is needed because the signal assignment
operation affords that the left signal type has to be of the same type as the right signal is. Here the
ybi bit width which is left to '<=' has to be equal to the formula result bit width which is right to.

The result Y is formed as 4 low bits of the signal ybi, and the result C is formed as the MSB of
it. The zero flag Z is formed as a result of comparing to zero of 4 low bits of the signal ybi.

 Such an example is compiled (synthesized) with small hardware volume (only 15 LUT).

4. Testbench for ALU
The digital networks are usually tested on all the design stages. To test the VHDL – models

automatically the testbench is usually used. Consider the testbench for the architecture
ALU(NUM). Such a testbench – the object ALU_tb – is below.

entity ALU_tb is
end ALU_tb;
architecture TB_ARCHITECTURE of lsm_tb is
 component ALU --tested objects
 port(F : in BIT_VECTOR(1 downto 0);
 A : in BIT_VECTOR(3 downto 0);
 B : in BIT_VECTOR(3 downto 0);
 C0: in BIT;
 Y : out BIT_VECTOR(3 downto 0);
 C3: out BIT;
 Z : out BIT);
 end component;
--testing signals
 signal F : BIT_VECTOR(1 downto 0):="00";
 signal C0 : BIT:='0';
 signal A,B : BIT_VECTOR(3 downto 0);
--proved signals
 signal Y : BIT_VECTOR(3 downto 0);
 signal C3,Z: BIT;
begin
 F<="00";
 C0<='0';
 A<="0000", "0001" after 30 ns,"0011" after 50 ns,"0101" after 70 ns,"1001" after 90 ns;

 3

 B<="0000", "0010" after 20 ns,"0111" after 40 ns,"1100" after 60 ns,"1000" after 80 ns;
 UUT: ALU --тested component
 port map (F => F, A => A,B => B,C0 => C0,
 ` Y => Y, C3 => C3, Z => Z);
 end TB_ARCHITECTURE;

Here the input data signals A and B are generated as waveforms, i.e. their values are

exchanged after some delay which is given by the AFTER clause.
The resulting modeled waveforms are shown in the following figure. The result correctness is

proven "by hand", i.e. one proves that by addition (see fig.) 0101+1100=0001 and C3=1 because
5+(-4) = 1. The modeling is implemented with different values both F and C0 proving ALU
operation in different modes.

F

C0

A

B

Y

C3

Z

0000 0001 0011 0101

0000 0010 0111 1100

0000 0010 0011 1000 1010 1111 0001 1101

0

1001

1000

0001

5. Laboratory exercise implementation
Each exercise variant has a set of parameters, which are numbered by natural numbers. A set

of them is derived from the record-book number of the student. Consider 3 last figures a2,a1,a0, of
the record-book number. Then the variant number is

N = 100a2 + 10a1 +a0 = 29b9+28b8+27b7+26b6+25b5+24b4+23b3+22b2+21b9+b0,
where bi are the bits of the number N in the binary representation.
The data bit width NDB is selected from the Table 1. The data are the twos complement

integers.

Table 1

b5, b4 00 01 10 11
NDB 8 16 24 32

The ALU operations to be implemented are represented in the Table 2.

 Table 2
b2,b1, b0 ALU operations Output signals
000 AND, OR, NAND, ADD, ADDI, ADDC, SRA Y, Cn
001 AND, XOR, ADD, ADDI, SUB, SRA Y, N, Parity
010 AND, OR, XOR, ADD, ADDI, ADDC, SUB Y, Cn
011 AND, XOR, ADD, ADDI, SUB, SRA Y, Z, Parity
100 AND,NAND, ADD, ADDC, SUB, SRA Y, Cn
101 AND, XOR, ADD, ADDC, SUB, SUBB,SRL,SRA Y, N
110 AND, XOR, ADD, ADDC, SUB, SRA, Y, Cn
111 AND, OR, XOR, ADD, ADDC, SUB, SRA Y, Z

Where x NAND y is NOT(x & y); XOR – exclusive OR; ADDI – addition with the immediate

operand, which sign bit is expanded to the whole data width, i.e. ALU must have the additional
input for that operand, which bit width is 8; ADDC – addition with the carry bit; SUBB –
subtraction with a borrow (carry bit); SRA – arithmetical right shift to a single bit, SRL – logical
shift.

 4
The laboratory exercise implementation has 2 stages: behavioral model development, and

testbench development wit the model testing.
 Behavioral model development.
The behavioral model of ALU is described by the dataflow style using the operations with bit

vectors and integers, and functions of the package Cnetwork or the package IEEE.Numeric_bit.
Here the VHDL editor and compiler of Active HDL are used.

Thestbench development and model testing
The testbench shown above serves as an example of such a testbench. It is redesigned

according to the needs of the given variant of the tested entity.
When the models are tested due to the signal waveforms the model correct operation is

proven and the signal delays between inputs and outputs are measured. The derived waveforms are
replaced to the report using options ctrl-c and ctrl-v. Finally, the conclusions to the laboratory
exercise based on the testing result are done.

6. Laboratory exercise report
The laboratory exercise report must contain:
- Goal of the work,
- ALU description,
- VHDL texts of the behavioral model and testbench,
- Waveforms of the testbench,
- Conclusions.

 5

Laboratory exercise 2

Program Counter
1. Goal:

to achieve theoretical and practical knowledge in program counter design. The laboratory exercise
serves as a lesson to program in VHDL the behavior both combinational networks and triggers as
well.

2. Theoretical informatiom
The program counter (PC) named also as instruction counter (ICTR) is used for the

calculation the next instruction address in the CPU. Depending on the instruction type and
condition flag, PC outputs different addresses of the next instruction.

If the running instruction is not a branch instruction, or a branch instruction but the branch
condition is false then the next instruction address is formed from the recent address by the
addition of the instruction length code of k bytes. If this instruction is the branch instruction and
the branch condition is true then the next instruction is the branch address. This address is derived
from the address field of the instruction as the absolute address (call-type instruction), or the
relative displacement, which is added to the PC state. By the initialization the PC state must be
reset.

 3. PC design example
Consider the PC which forms 13-bit width address, adds the 8-bit displacement by the signal

ED and installs the absolute address AA by the signal WR. Let the address increment is always a 1,
i.e. the instruction length is stable. Such PCs are built in the RISC-like processors. Then the
following VHDL model represents such a PC.

library IEEE;
use IEEE.Numeric_Bit.all;
entity PC is
 port(CLK: in BIT; -- сlock input
 R : in BIT; -- reset
 EPC: in BIT; -- PC operation enable
 WR: in BIT; -- write absolute address
 ED: in BIT; -- enable displacement addition
 AA: in BIT_VECTOR(12 downto 0); -- absolute address
 D : in BIT_VECTOR(7 downto 0); -- branch address displacement
 A : out BIT_VECTOR(12 downto 0)); -- output address
end PC;

architecture PC of PC is
 signal ai:unsigned(12 downto 0); --inner signal - register-counter
begin
 PC_P: process(CLK, R) -- process describes the program counter
 begin
 if R='1' then
 ai<=(others=>'0'); -- PC reset
 elsif RISING_EDGE(CLK) then
 if EPC='1' then
 if WR<='1' then
 ai<=unsigned(AA);-- absolute address loading
 elsif ED='1' then
 ai<=ai + unsigned(D); --displacement addition
 else
 ai<=ai+1; -- increment
 end if;
 end if;
 end if;
 end process;

 A<=BIT_VECTOR(ai);
end PC;

 6
Here the signal ai is the inner signal, which is inferred by the synthesizer as the register-

counter. This signal is assigned to the output port A. The port-signal A could not be used instead of
ai because he has the out-mode, which prohibites it to be an operand in a statement. The
behavior of PC is described by the process PC_P. The process is such parallel operator which
describes the sequential behavior. The operators in the process body are implemented sequentially
from the first operator to the last one. The process is started by the event of exchange of selected
signals which form the sensitivity list, and which is put in the brackets after the reserved word
Process.

The conditions of the if-then-elsif-else operator are proven sequentially. And if some
condition is true then the respective operators are implemented, and this logical operator is
finished. Here the condition RISING_EDGE(CLK) is the function call which returns true if at
considered moment the rising edge of the clock signal occurs. This means that the signal ai is
written by the new value, i.e. it behaves as the register.

The signal condition EPC='1' allows writing to ai, that means that PC may be waiting on
EPC, for example, when in CPU some wait states are introduced.

4. Testbench for PC
One of the possible testbenches for PC is the following

library IEEE;
use IEEE.Numeric_Bit.all;
entity PC_tb is
end pc_tb;
architecture TB_ARCHITECTURE of pc_tb is
 component pc is port(

 CLK : in BIT;
 R : in BIT;
 EPC : in BIT;
 WR : in BIT;
 ED : in BIT;
 AA : in BIT_VECTOR(12 downto 0);
 D : in BIT_VECTOR(7 downto 0);
 A : out BIT_VECTOR(12 downto 0));
 end component;

 signal CLK, R, EPC, WR, ED: BIT;
 signal AA, A: BIT_VECTOR(12 downto 0);
 signal D : BIT_VECTOR(7 downto 0);

begin
 R<='0', '1' after 33 ns, '0' after 45 ns;
 CLK<=not clk after 5 ns; --clock generator
 EPC<='1', '0' after 110 ns;
 WR<='0', '1' after 60 ns, '0' after 70 ns;
 ED<= '0', '1' after 80 ns, '0' after 90 ns;
 D<="00001000";
 AA<="0001000000001";

 UUT : pc port map (CLK => CLK, R => R,EPC => EPC, WR => WR,
 ED => ED, AA => AA,D => D, A => A);

end TB_ARCHITECTURE;

Here the waveform assignment operator CLK<=not clk after 5 ns; after each 5

nanosecond inverts the value of the clock signal, i.e. it generates the meander waveform with the
period of 10 nanoseconds. Note, that all the bit signals including this one are initialized before
modeling as zeros. Therefore, the rising edges of the clock signal occur in 5-th, 15-th, etc.
nanosecond.

The resulting waveforms which show the correct PC operation are in the figure below.

 7

0001 0002 0003 0000 0001 0002 0201 0202 020A 020B 020C

R

EPC

CLK

WR

ED

5. Laboratory exercise implementation
Each exercise variant has a set of parameters, which are numbered by natural numbers. A set

of them is derived from the record-book number of the student. Consider 3 last figures a2,a1,a0, of
the record-book number. Then the variant number is

N = 100a2 + 10a1 +a0 = 29b9+28b8+27b7+26b6+25b5+24b4+23b3+22b2+21b1+b0,
where bi are the bits of the number N in the binary representation.
The instruction address bit width NIA is selected from the Table 1.

Table 1
b9, b8 00 01 10 11
NIA 14 16 18 20

The program counter PC has the data width NIA as well.
The displacement bit width is selected from the Table 2.

Table 2
b1, b0 00 01 10 11
ND 8 10 12 14

 8

Laboratory exercise 3

Program Counter
1. Goal:

to achieve theoretical and practical knowledge in memory unit designing like the register array.
The laboratory exercise serves as a lesson to program in VHDL the behavior both combinational
networks and triggers as well.

2.Theoretical information

The register array (RA) is intended for the fast speed access and transfer of n-bit wide data
through a set of ports. In the laboratory exercise the data bit width NR from 4 to 16, and the array
volume from 8 to 32 words are considered. Each of RA ports has its own address bus. The port
number is equal to 2 or 3. The ports are marked as B, D, or Q. One of ports is intended for writing,
and another – for reading are. The ports can be bidirectional, i.e. they are used both for reading
and for writing. In the laboratory exercise the bidirectional busses are recommended to be
implemented on the tristate bus.

The writing operation is done always on the rising edge of the clock signal or write signal. The
reading operation is done immediately just after the address code is set.

3. Example of the RA description
Consider an example of the 3-port RA design with the volume of 8 sixteen bit words. The RA

entity declaration looks like the following.
use work.CNetlist.all;
entity RA is
 port(CLK:in BIT; -- синхровход
 WR:in BIT; -- сигнал записи
 AB:in BIT_VECTOR(2 downto 0);-- адрес канала В
 AD:in BIT_VECTOR(2 downto 0);-- адрес канала D
 AQ:in BIT_VECTOR(2 downto 0);-- адрес канала Q
 Q: in BIT_VECTOR (15 downto 0);-- данное канала Q
 B: out BIT_VECTOR(15 downto 0);-- данное канала В
 D: out BIT_VECTOR(15 downto 0));-- данное канала D
end RA;

Behavioral model of RA
The main feature of the RA model consists in that that two parallel reading operations and

one writing operation are implemented through 3 different addresses. This behavior is described
by the following architecture.

architecture BEH of RA is

type MEM8X16 is array(0 to 7) of BIT_VECTOR(15 downto 0);
signal addr,do: BIT_VECTOR(15 downto 0);

begin
RA8:process(CLK,AD,AB) ---- блок регистровой памяти ---------------

 variable RAM: MEM8x16;
 variable addrq,addrd,addrb:natural;
 begin
 addrq:= BIT_TO_INT(AQ);
 addrd:= BIT_TO_INT(AD);
 addrb:= BIT_TO_INT(AB);
 if CLK='1' and CLK'event then
 if WR = '1' then
 RAM(addrq):= Q; -- запись
 end if;
 end if;
 B<= RAM(addrb); -- чтение канала В
 D<= RAM(addrd); -- чтение канала D

 end process;
end BEH;

 9
This description is written by the style for synthesis. The synthesizer implements in on the set

of triggers. Fig. below illustrates the structure of this RA.

DC

MUXB
0
…
7
DC

AB

D

:
:

:
:

B

AD

WE

qout(0)
RG0

D Q
C
CE

AQ

ce(0

:
:

CLK
Q

RG7
D
C Q
CE

MUXD
0
…
7
DC

Fig.3.1. RA structure

4. Laboratory exercise implementation
Each exercise variant has a set of parameters, which are numbered by natural numbers. A set

of them is derived from the record-book number of the student. Consider 3 last figures a2,a1,a0, of
the record-book number. Then the variant number is

N = 100a2 + 10a1 +a0 = 29b9+28b8+27b7+26b6+25b5+24b4+23b3+22b2+21b9+b0,
where bi are the bits of the number N in the binary representation.
The data bit width NDB is selected from the Table 1. The data are the twos complement

integers.

Table 1

b5, b4 00 01 10 11
NDB 8 16 24 32

The register file volume NR is selected from the Table 2.
Table 2

b3, b2 00 01 10 11
NR 8 16 32 8*4 (4 banks of 8 registers)

When 4 banks are considered, then the register file consists of 4 equal separate parts, one odf

them is selected by the 2-bit bank select bus.
The register address number NRA is selected from the Table 3.

Table 3

b1, b0 00 01 10 11
NRA 1 2 3 3

When NRA =2 one of the addresses is used both for reading and for writing. When NRA =3 one

of the addresses is used only for writing.

 10

Laboratory exercise 4

Finite State Machine
1. Goal:
to achieve theoretical and practical knowledge in the finite state machine (FSM) designing.

The laboratory exercise serves as a lesson to program in VHDL the authomata behavior, which is
implemented as FSM.

2.Theoretical information
FSM is a sequential logic network, which implements the given control algorithm as the

predefined sequence of its states. Its next state Si+1 depends on the previous one Si and on the input
signals Xj. Its outputs Yp depend logically on its state Si. Such FSM is named as a Moore FSM.
When its outputs Yp depend both on its state Si and on input signals Xj, then it is named as a Mealy
FSM. The FSM algorithm is fully described by its state graph (state diagram) or by FSM chart.
Modern CADs synthesize the FSM from its state graph automatically.

The nodes of the state graph represent the FSM states, and its directed edges represent the
branches from one state to another. In the Moore state graph the node Sk is labelled by variables YP,
separated by a slash "/", which output a 1, when FSM stays in this state. The edges are labelled by
the input labels which are the boolean functions of the input variables, and which derive the branch
conditions. They can be labelled by the output labels, that are output variables, when it its the
Mealy state graph. In Fig.4.1. is an example of the state graph, which has both Moore and Mealy
outputs.

If we label an edge XiXj/YpYq, this means if inputs Xi and Xj are
1 (we don't care what the other input values are), the outputs Yp and Yq
are 1 and (other outputs are 0), and we will traverse this arc to go to the
next state. For example, in the graph in Fig.1 the state Sk remains the
same when X̄ 1X̄ 2 = 1 and it is exchanged to the state Sk when X1 = 1,
providing the output signal Y1 = 1. In order to have a completely
specified proper state graph, in which the next state is always uniquely
defined for every input combination, we must place the following
constraints on the input labels for every state Sk:

X̄1X̄2

X3/Y2,Y3

X̄3

Sk/Y3

Sp Sq
1/Y1

X2X1

If Fi and Fj are any pair of input labels (boolean functions) on
edges exiting state Sk, then Fi ·Fj =0, if i≠j.

If n edges exit state Sk, and they have input labels F1, F2,…, Fn,
respectively, then F1∨F2∨… ∨ Fn = 1.

Fig.4.1

The first condition assures us that at most one input label can be 1 at any given time, and
the second condition assures us that at least one input label will be 1 at any given time. Therefore,
exactly one label will be 1, and the next state will be uniquely defined for every input combination.
For example in Fig.4.1 conditions are satisfied for all the nodes.

As an alternative to state graphs, a state machine flowchart, or FSM chart is. Just as
flowcharts are useful in software design, they are useful in the hardware design of digital systems.
The state in it is represented by a state box. It contains a state name, followed by a slash "/" and an
optional output list. A state code may be placed outside the box. A decision box is represented by a
diamond-shaped symbol with true and false branches. The condition placed in the box is a Boolean
expression that is evaluated to determine which branch to take. The conditional output box, which
has curved ends, contains a conditional output list.

An FSM chart is constructed from FSM blocks. Each of them contains exactly one state box,
together with the decision boxes and conditional output boxes, associated with that state. Block has
one entrance path and one or more exit paths. Each block describes the operation during the time
that FSM is in one state. A path through a block from entrance to exit is referred to as a link path.

Certain rules must be followed when constructing an FSM block. First, for every valid
combination of input variables, there must be exactly one exit path defined. This is necessary since
each allowable input combination must lead to a single next state. Second, no internal feedback
within a block is allowed.

 11

ch
st
de
ex
bo
is

P

st
co
st

m
st
im
w
w
w
st
no

co
si
in
m
m
m
co

pr
in
Th
Fi

as

D

X1
X2

X3
C

Table 4.1

Next state, X3X2X1= Present output, X3X2X1= resent
state
Z2Z1

000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111

Sk 00 00 01 10 – 00 01 10 – Y3

Sp 01 10 Y1

Sq 10 10 00 10 00 0 Y2, Y3
It is easy to convert a state graph to an equivalent FSM chart. The
art, which is equivalent to one in Fig.4.1, has three blocks – one for each

ate. The Moore output Y3 is placed in the state box Sk, since it does not
pend on the input. Some condition nodes X1, X2 have a single output. This is
plained by the fact that the Mealy outputs Y1, Y2 appear in conditional output
xes, since they depend on both the state and input. The resulting FSM chart

 shown in Fig.4.2.

Sk/Y3

X1

Y1

0

1

Sp

X2
0

1

Sq

X3
1 0

Y2,Y3

1001

00

The FSM network contains a set of triggers and a logic network. Triggers
ore the FSM state, orher words, they form a state register. The logic network
nsists of two parts. One of them generates signals Di, which are the trigger
imulating functions. The another one outputs the resulting signals Yj.

First of all, the states Sk are given the concrete values. There is a set of
ethods of coding the states. The method selection depends on the number of
ates, if the FSM is optimized for speed or hardware volume, or error
munity. The one-hot coding means that for n state FSM the n-bit wide state

ord is selected, in which a 1 stays in the k-th position, when coding the state Sk. For example, FSM
ith the state graph in Fig.4.1 would have the state coding 001, 010, 100. This coding is usually used
hen the state number is small. It provides usually the highest speed, because the trigger
imulating functions occur to be rather small. When the state graph contains the long chains of
des, the state register can be implemented as a shift register.

Fig.4.2

 The natural number coding is used in most of cases, especially, when the state graph
ntains the long chains of nodes. In the example on Fig.4.2, the codes are 00, 01, and 10. In this

tuation, the state register behaves as a counter. When the states are coded by the Gray codes, then
 most of state branches, only a single bit of the code is exchanged. This serves both to LN
inimization and to error immunity. In the combined coding, the code word is divided into 2 or
ore fields, each of them are coded by some coding method. Here the advantages of different
ethods can be used. For example, when the code word has two n-bit fields, which have one-hot
ding, then such code word can code up to n2 states.

Then, the state table is built. This table has the columns of present state, next state and
esent output. The next state column contains the subcolumns, which are coded by the bits of the
put signals. These subcolumns show what next state is for the given value of the input variable.
e present output column has the similar form. Table 4.1. is the state table for the FSM chart in

g.4.2.
From the next state columns of the state table the trigger stimulating functions are derived,

 signals that force the D triggers of the state register to be set:

D1 = Z̄ 2Z̄ 1(X̄ 3X̄ 2X1∨X̄ 3X2X1∨X3X̄ 2X1∨X3X2X1) = Z̄ 2Z̄ 1X1;
D2 = Z̄ 2Z̄ 1(X̄ 3X2X̄ 1∨X̄ 3X2X1∨X3X2X̄ 1∨X3X2X1)∨Z̄ 2Z1∨Z2Z1∨Z2Z̄ 1X̄ 2 =
 = Z̄ 2Z̄ 1X2∨Z1∨Z2Z̄ 1X̄ 2.

Note that the don't-care states in the combination X2X1=11 and in the state Z2Z1 = 11 (for
2) are assigned as a 1. The output functions are derived from the present output columns as well:

& 1

Z1
TT D

C

Z2TT D
C

&

&

& &

&

D1 Y1

Y3
Y2 &

Y1 = Z1; Y2 = Z2X3; Y3 = Z̄ 2Z̄ 1∨Z2X3;

The resulting FSM network is shown in Fig.4.3.
Once the state graph or the FSM chart are build, then

the FSM can be easily described in VHDL and then its network
can be synthesized by a compiler. Here a case statement can be
used to specify what happens in each state. Each condition box
corresponds directly to an if statement. The following program

Fig.4.3

 12

describes FSM with the chart in Fig.4.3.

entity FSM1 is port(C,X1,X2,X3:in bit;
 Y1,Y2,Y3:out bit);
end FSM1;
architecture beh of FSM1 is
 signal S,D:bit_vector(0 to 1); -- sta e codes t

t

t

begin
 LN:process(X1,X2,X3,S) begin --LN model
 Y1<='0';Y2<='0';Y3<='0'; --usual output states
 case S is
 when "00" => Y3<='1'; -- current state Sk
 if X1='1' then
 D<="01"; --next sta e
 elsif X2='1' then
 D<="10";
 else D<="00"
 end if;
 when "01"=> D<="10"; Y1<='1'; -- state Sp
 when others=> if X3='1' then -- state Sq
 D<="00";Y2<='1';Y3<='1';
 else D<="10";
 end if;
 end case;
 end process;
 RG:process(C) begin -- state register
 if C='1' and C'event then
 S <= D; -- update sta e on rising edge of C
 end if;
 end process;
end beh;

The first process represents the logic network of FSM, and the second process updates the state
register on the clock. The signals Y1, Y2, Y3 are turned on in the appropriate states, and they must
be turned off when the state S changes. A convenient way to do this is to set them all to 0 at the
start of the process.

4. Laboratory exercise variants
Each exercise variant has a set of parameters, which are numbered by natural numbers. A set

of them is derived from the record-book number of the student. Consider 3 last figures a2,a1,a0, of
the record-book number. Then the variant number is

N = 100a2 + 10a1 +a0 = 29b9+28b8+27b7+26b6+25b5+24b4+23b3+22b2+21b1+b0,
where bi are the bits of the number N in the binary representation.
The FSM must implement the slot machine control. Consider the slot machine, which

solds some product, which is costs NC kopecks. Then this product will be outputted, when
the sum N of the coins, which are dropped by the customer, is equal to NC. The nominal
values of the coins can be V1, V2, and V3. Therefore, the FSM must provide the output
signal OK=1 when NC= a1V1+ a2V2+ a3V3, where a1, a2, a3∈{0,1,2,3,…}

The values NC , V1, V2, and V3 are selected from the Table 4.2.

 13

Table 4.2
b3,b2,b1,b0 NC V1 V2 V3

0 0 0 0 20 5 10 -
0 0 0 1 30 5 25 -
0 0 1 0 50 10 25 50
0 0 1 1 55 10 25 -
0 1 0 0 60 10 25 -
0 1 0 1 60 10 25 50
0 1 1 0 70 10 50 -
0 1 1 1 75 25 50 -
1 0 0 0 100 25 50 -
1 0 0 1 125 25 50
1 0 1 0 125 25 50 100
1 0 1 1 150 25 50 -
1 1 0 0 150 50 100 -
1 1 0 1 175 25 100 -
1 1 1 0 200 50 100 -
1 1 1 1 300 50 100 -

5. Example of the FSM design
Consider an example of the slot machine with the following parameters :

NC V1 V2 V3

25 5 10 -

The FSM entity declaration looks like the following.

entity FSM is
 port(CLK:in BIT; -- synchrosignal
 RST:in BIT; -- reset input
 V1:in BIT;-- first type coin is dropped
 V2:in BIT;-- second type coin is dropped
 DR:out BIT;-- the instruction: "Drop a coin"
 OK:out BIT;-- the sum is achieved
 ERR: out BIT);-- the achieved sum is false
end FSM;

Fig.4.4

RST

V1

INIT/DR
N=0

N10/DR

V2

V1

V1

V2

N25 /OK

V2

V1

V2

V1
V2

N5 /DR

N20 /DR

N15 /DR

OVF /ERR
N>25

RST

State graph design
The state graph is designed according to the

algorithm of the slot machine operation. The state
graph nodes form a set of levels or stages. Ther
first node belongs to the first stage, it is the state
when the machine is resetted. The second stage is
formed by the nodes, which fix the events, when
the first coin V1 or V2 is dropped. The third stage is
formed by the nodes, which fix the events, when
the second coin of the value V1 or V2 is dropped,
etc. And the last stage is formed by the final nodes,
when the needed sum is achieved or this sum is
error one. The states are named according to the
sum, which is got, say, when the recent sum is 10
kopecks then the state is N10. The derived state
graph is illustrated by the Fig.4.4.

 14

FSM description
The algorithm represented by the state graph on Fig.4.4. is described as the following

architecture.
architecture BEH of FSM is
 Type STATE is (INIT, N5, N10, N15, N20, N25, OVF);--sta es o the FSM t f

t

 signal st : STATE;
begin
 STATES: process(CLK,RST) -- FSM process
 begin
 if RST='1' then
 st<=INIT;
 elsif CLK='1' and CLK'event then
 case st is --next FSM s ate depending on actual state and signals V1 and V2
 when INIT => if V1='1' then st<=N5;
 elsif V2='1' then st<=N10;
 end if;
 when N5 => if V1='1' then st<=N10;
 elsif V2='1' then st<=N15;
 end if;
 when N10 => if V1='1' then st<=N15;
 elsif V2='1' then st<=N20;
 end if;
 when N15 => if V1='1' then st<=N20;
 elsif V2='1' then st<=N25;
 end if;
 when N20 => if V1='1' then st<=N25;
 elsif V2='1' then st<=OVF;
 end if;
 when N25 => st<=INIT;
 when others => null; --when other states – nothing to do
 end case;
 end if;
 end process;
-- output signals
 DR<='1' when st=INIT or st=N5 or st=N10 or st=N15 or st=N20 else '0';
 OK<='1' when st = N25 else '0'; -- the sum is achieved
 ERR<='1' when st=OVF else '0';-- the achieved sum is false
end BEH;

The derived FSM model was modeled using the signal stimulating. By this process, the signals

RST, V1 and V2 were stimulated by the buttons (Hotkey mode of the stimulator). The resulting
waveforms are in the Fig.4.5, and they show the correct FSM operation.

init n10 n15 n20 ovf init n10 n20 n25 init

CLK

RST

V1

V2

st

DR

OK

ERR

Fig.4.5.

	Digital Network Design
	Arithmetic and logic unit
	Here the input data signals A and B are generated as wavefor
	Program Counter
	1. Goal:
	2. Theoretical informatiom
	One of the possible testbenches for PC is the following

	Program Counter
	1. Goal:
	2.Theoretical information
	When NRA =2 one of the addresses is used both for reading an

	Finite State Machine
	1. Goal:
	2.Theoretical information
	State graph design
	The state graph is designed according to the algorithm of t
	FSM description

