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Electric and Electronic Engineering 
 

Introduction 
Computer engineering is concerned with the integration of circuits and systems onto small 

pieces of silicon today. A typical computer engineer has a working knowledge of silicon devices, 

CMOS circuits, logic design, and system architecture and is usually a specialist in one or more of 

these areas. The field of electric and electronic engineering has made spectacular advances in 

recent years. Overall, the objective has been to provide the technology needed to build large 

information systems on tiny chips, and to build a system of such chips in a board. 

 To solve modern computational problems new complex microprocessors are designed 

which due to their advanced architecture provide to solve these problems in real time and with 

minimized energy consumption, and with the speed of several billion instructions per second. The 

modern microprocessor consists of both microprocessor core and a set of peripheral devices 

including memory units, data transfer ports, DSP engines, ADC, DAC, etc. Such a microprocessor 

or a system of them is named as System-On-the-Chip, or shortly SOC. 

The fact is that the modern SOC is characterized by high wire resistivity, high level of signal 

interferences, the delays in wires which are higher than delays in gates, low feeding voltage and 

high current consumtion. The frequencies in such circuits are higher than thousands of megahertz. 

Therefore, to design modern SOC the computer engineer has to take many electical laws into 

account. 

He or she has to know that any board interconnection is a transmission line by definition. 

Therefore, to design modern computer boards one has to consider that the reflections, interference, 

and noise in board wires cause measurable changes in the appearance or behavior of signals at 

higher frequencies. And as a result, negleblible attention to these features causes unworkable 

projects. 

Lectures in electronic engineering include electric engineering basics, transistor basics, 

transistor circuit design questions, and MOSFET transistor basics, which are needed in 

development of modern circuits. The lectures are based on the method of quadripole analysis. This 

method helps to investigate and design both transmission lines and transistor circuits. Besides, the 

quadripole method use shows the way to solve the complex problem of the circuit analysis by the 

approach "divide and concuer". This teach the students to develop the algorithms for solving similar 

problems.  
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Electric engineering basics 
 

1. Basic electric circuits and components 
 

 1.1. Electric measurements 
The electric current is the stream, or continuous movement of electric charges as illustrated 

by the fig.  1. The electric current is the time rate of change of charge across the referenced area, as 

given by:  

dt
dQi = , 

where Q is charge, which is measured in units of coulombs. A coulomb is equal to charge of 

approximately 6,24·1018 electrons. 
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Fig. 1. Illustration of the electric current flow 

The current unit is ampere. It is the base SI unit. SI means Systėme International d'Unitės. 

This is the internationally agreed upon system of coherent units that is now in use for all scientific 

and most technological purposes in many countries. In short, 1 ampere is 1A. Milliampere (mA), 
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microampere (µA), nanoampere (nA)  and other subunits are distinguished. These units depend on 

each other: 1A =1000 mA, 1mA =1000 µA, 1µA =1000 nA. 

In the space the electric potential e is distinguished. It means the work, which is necessary 

to bring a unit of positive charge to a given point of the space. The difference between potentials in 

two points, say e1, e2 is equal to the voltage v, i.e. 

v=e1−e2. 

The voltage v is the electromotive force, which is equal to the work, which is necessary to 

bring a unit of positive charge from one point to another. From this point of view the potential e is 

equal to the voltage between this point and some abstract point of zeroed potential e0. Often the 

point with such properties is called as a ground.  

The voltage, or potential difference, between two points in a circuit indicates the energy 

required to move charge from one point to the other. As will be presently shown, the direction, or 

polarity, of the voltage is closely tied to whether energy is being dissipated or generated in the 

process. 

Both potential and voltage are measured in volts, shortly, V. Such subunits like kilovolt 

(kV), millivolt (mV), microvolt (µV) are frequently used, and 1kV=1000V; 1V=1000mV; 

1mV=1000µV. 

In the low-frequency electronic devices the direct-current (DC), and alternating-current 

(AC) circuits are distinguished. Below the current and voltage are considered which are exchanged 

in time, mostly alternating-current and alternating-voltage. 

If for some short time period some charge Q was flown throug a subcircuit, i.e. the current i 

flows, and at its edges the voltage v is present. Then the elementary energy which was emitted 

there as warm, radio waves, chemical compound, etc, is equal to 

dW  = VdQ = vidt. 

The speed of the energy income in the circuit is the instantaneous power and is equal to 

vi
dt

vdQ
dt

dWP === . 

The energy which is emitted from time t1 to time t2 is equal to 

∫=
1

2

t

t
PdtW . 

The energy and power are measured in joules (J) and watts (W). The power also is measu-

red in kilowatts (kW), miliwatts (mW), 1 kW =1000 W; 1 mW = 0.001 W.  
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 1.2.Resistance and Ohm law 
Between voltage and current the following dependence is present named the Ohm law: 

R
vi = , 

where  v is the voltage between two given points; i is the current which is moved out one point and 

flowed in another point with less potential; R is the resistance between these points. In general, the 

resistance R in this equation is substituted by the impedance Z , which is more complex nature (see 

below). 

The resistance is measured in ohms (Ω), kiloohms  (kΩ), megaohms (MΩ), and 1 kΩ =1000 

Ω; 1 MΩ = 1000 kΩ.  

The electro engineering unit with the given resistance, named resistor is depicked as: . 

For homogeneous conductors with the steady intersection area S  (see Fig.  2) its resistance 

is equal to: 

S
lR
σ

= , 

where σ is the conductor conductivity; l is its length.  

 
σ S

 
l  

  

Fig  2 − Resistance of the metallic bar 

The power dissipation P of a resistor is given by 

P = vi = i2R.                    ( 2) 

In computer engineering, this type of power dissipation leads to heating and can cause 

thermal instabilities and circuit failures. The formula ( 2) analysis shows that for the same voltage a 

small value of R gives large current flow, and is accompanied by large power dissipation. 

 

 1.3. Voltage and Current sources  
In the electro engineering the voltage sources are signified as:  , and the current 

sources are signified as: .  

An ideal voltage source provides a prescribed voltage across its terminals irrespective of the 

current flowing through it. The amount of current supplied by the source is determined by the 
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circuit connected to it.  The ideal voltage source has zeroed inner resistance rs =0 . And ideal current 

source has zeroed inner conductivity, i.e. unlimited inner resistance rs =∞.   

Really, such a source can be accumulator, transducer, or generator output, which has 

concrete inner resistance rs > 0. The symbol of such voltage source as accumulator, or alkaline 

battery is 
 

. 
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Fig. 3 − Practical voltage source under loading (a) and under shorting (b) 

Figure 3 depicts a model for a practical voltage source, composed of an ideal voltage source, 

vS, in series with a resistance, RS. Note that by convention the direction of positive current flow 

out of a voltage source is out of the positive terminal. 

The resistance RS in effect poses a limit to the maximum current the voltage source can 

provide: 

iS max = vS /RS

Note, however, that its presence affects the voltage across the load resistance: this voltage is 

no equal to the source voltage. Since the current provided by the source is 

LS

S
S RR

vi
+

=  

the load voltage can be determined to be 

 
LS

S
SLSL RR

vvRiv
+

== . 

The circuit in Fig. 3 suggests that the ideal voltage source is required to provide an infinite 

amount of current to the load, in the limit as the load resistance approaches zero. Naturally, this is 

impossible; for example, consider a conventional car battery: 12 V, 450 A-h (ampere-hours). This 

implies that there is a limit to the amount of current a practical source can deliver to a load. The 

limitations of practical sources can be approximated by exploiting the notion of the internal 

resistance of a source. 
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Fig. 4 − Practical current source under loading 

A similar modification of the ideal current source model is useful to describe the behavior of 

a practical current source. The circuit illustrated in Figure 4 depicts a simple representation of a 

practical current source, consisting of an ideal source in parallel with a resistor. Note that as the 

load resistance approaches infinity (i.e., an open circuit), the output voltage of the current source 

approaches its limit, 

vS max = iSrS . 

A good current source should be able to approximate the behavior of an ideal current source. 

Therefore, a desirable characteristic for the internal resistance of a current source is that it be as 

large as possible.   

The sources described so far have the capability of generating a prescribed voltage or 

current independent of any other element within the circuit. Thus, they are termed independent 

sources.  

There exists another category of sources, however, whose output (current or voltage) is a 

function of some other voltage or current in a circuit. These are called dependent (or controlled) 

sources. A different symbol, in the shape of a diamond, is used to represent dependent sources and 

to distinguish them from independent sources. For example, voltage controlled current source 

(VCCS) :  
  

F ( v X  ) .  

 1.4. Time–dependent signal sources 
Figure  5 illustrates the convention that will be employed to denote time-dependent signal 

sources. 

I1

I(t)

V1

V(t)

V2

SINE(0Vdc 1Vac 1KHz)
a) b) c)

 
Fig. 5 − Generalized time-dependent sources (a,b), and sinusoidal source (c)   
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One of the most important classes of time-dependent signals is that of periodic signals. 

These signals appear frequently in practical applications and are a useful approximation of many 

physical phenomena. A periodic signal x(t) is asignal that satisfies the following equation: 

x(t) = x(t + nT ) n = 1, 2, 3, . . . 

 where T is the period of x(t). Figure  6 illustrates a number of the periodic waveforms that are 

typically encountered in the study of electrical circuits.  

                         

 
 

Waveforms  such as the sine, triangle, square, pulse, and sawtooth waves are provided in the 

form of voltages (or, less frequently, currents) by commercially available signal (or waveform) 

generators. Such instruments allow for selection of the waveform peak amplitude, and of its 

period. Sinusoidal waveforms constitute by far the most important class of time-dependent signals. 

Figure 6 depicts the relevant parameters of a sinusoidal waveform. A generalized sinusoid is 

defined as follows: 

x(t) = Acos(ωt + φ) 

where A is the amplitude, ω the radian frequency, and φ the phase.  

 If f = natural frequency = 1/T(cycles/s, or Hz) 

Then ω = radian frequency = 2πf (radians/s) 

The phase shift, φ, permits the representation of an arbitrary sinusoidal signal.  

Thus, the choice of the reference cosine function to represent sinusoidal signals — arbitrary 

as it may appear at first—does not restrict the ability to represent all sinusoids. 

 

 1.5. Average and RMS Values 
Now that a number of different signal waveforms have been defined, it is appropriate to 

define suitable measurements for quantifying the strength of a time-varying electrical signal. The 

most common types of measurements are the average (or DC) value of a signal waveform—which 
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corresponds to just measuring the mean voltage or current over a period of time—and the root-

mean-square (or rms) value, which takes into account the fluctuations of the signal about its 

average value. Formally, the operation of computing the average value of a signal corresponds to 

integrating the signalwaveform over some (presumably, suitably chosen) period of time. We define 

the time-averaged value of a signal x(t) as 

∫=
T

dttx
T

tx
0

,)(1)(  

where T is the period of integration. Figure 7 illustrates how this process does. In fact, it 

corresponds to computing the average amplitude of x(t) over a period of T seconds. 

 

 
Fig. 7 − Time-averaged value of the signal x(t) 

Problem 

Compute the average value of the signal x(t) = 10 cos(100t) . 

Analysis: The signal is periodic with period T = 2π/ω = 2π/100, thus we need to integrate 

over only one period to compute the average value: 

 

∫ ∫ =−===
T

dttdttx
T

tx
0

100/2

0
0)0sin()2sin(
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10)100cos(10

2
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Comments: The average value of a sinusoidal signal is zero, independent of its amplitude 

and frequency. 

Very conveniently, a useful measure of the voltage of an AC waveform is the root-mean-

square, or rms, value of the signal, x(t), defined as follows: 

 

∫=
T

rms dttx
T

x
0

2 ')'(1  
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Note that if x(t) is a voltage, the resulting xrms will also have units of volts. If you analyze 

equation 4.24, you can see that, in effect, the rms value consists of the square root of the average (or 

mean) of the square of the signal. 

Thus, the notation rms indicates exactly the operations performed on x(t) in order to obtain 

its rms value. 

Problem 

Compute the rms value of the sinusoidal current i(t) = I cos(ωt). 

Analysis: Applying the definition of rms value we compute: 

IIIdttII

dttIdttIdtti
T

i
T

rms

707,0
22

1')'2cos(
222

1

')'2cos(
2
1

2
')'(cos

2
')'(1

2/2

0

2
2

/2

0

2/2

0

22

0

2

===+=

=⎟
⎠
⎞

⎜
⎝
⎛ +===

∫

∫∫∫
ωπ

ωπωπ

ω
π
ω

ω
π
ωω

π
ω

 

   

where I is the peak value of the waveform i(t). 

Comments: The rms value of a sinusoidal signal is equal to 0.707 times the peak value, 

independent of its amplitude and frequency. The factor of 0.707 =1/ 2  is a useful number to 

remember, since it applies to any sinusoidal signal. 

 

 1.6. Phasors and impedance 
In this section, we introduce an efficient notation to make it possible to represent sinusoidal 

signals as complex numbers, and to eliminate the need for solving differential equations.  

Named after the Swiss mathematician Leonhard Euler, Euler’s identity forms the basis of 

phasor notation. Simply stated, the identity defines the complex exponential ejθ as a point in the 

complex plane, which may be represented by real and imaginary components: 

e jθ = cos θ + j sin θ . 

Figure  8 illustrates how the complex exponential may be visualized as a point (or vector, if 

referenced to the origin) in the complex plane.  
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Fig. 8 − Complex data in the complex plane 

Note that the magnitude of ejθ is equal to 1: |ejθ| = 1  since 

| cos θ + j sin θ| = )sin(cos 22 θθ +  = 1 

Note also that the Euler’s identity corresponds to equating the polar form of a complex num-

ber to its rectangular form. For example, consider a vector of length A making an angle θ with the 

real axis. The following equation illustrates the relationship between the rectangular and polar 

forms: 

Aejθ = Acos θ + jAsin θ = A∠θ 

To see how complex numbers can be used to represent sinusoidal signals, rewrite the expres-

sion for a generalized sinusoid in light of Euler’s equation: 

                                            Acos(ωt=φ)=Re[Ae j(ωt+φ) ]  

We see, that it is possible to express a generalized sinusoid as the real part of a complex 

vector whose argument, or angle, is given by (ωt + φ) and whose length, or magnitude, is equal 

to the peak amplitude of the sinusoid. The complex phasor corresponding to the sinusoidal signal 

Acos(ωt + φ) is therefore defined to be the complex number 
ϕjAe = complex phasor notation for Acos(ωt+φ)= θ∠A  

 

Problem 

Compute the phasor voltage resulting from the series connection of two sinusoidal voltage 

sources v1(t) = 15 cos(314t + π/4) V 

v2(t) = 15 cos(314t + π/12) V 

Find: Equivalent phasor voltage vS (t). 

Analysis: Write the two voltages in phasor form: 

V1(jω) = 15 π/4 V ∠

V2(jω) = 15e jπ/ 12 = 15 π/12 V ∠
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Convert the phasor voltages from polar to rectangular form: 

V1(jω) = 10.61 + j10.61 V 

V2(jω) = 14.49 + j3.88 

Then 

VS(jω) = V1(jω) + V2(jω) = 25.10 + j14.49 = 28.98 e jπ/6 = 28.98∠ π/6 V 

Now we can convert VS(jω) to its time-domain form: 

vS (t) = 28.98 cos(314t + π/6) V. 

Phasor notation is a very efficient technique to solve AC circuit problems. 

 

 1.7. Impedance 
We now analyze the i-v relationship of the three ideal circuit elements in light of the phasor 

notation. The result will be a new formulation in which not only resistor but any linear two pole 

circuits will be described in this notation. A direct consequence of this result will be that the Ohm 

law and a set of theorems are extended to AC circuits. In the context of AC circuits, any one of the 

ideal linear circuit elements will be described by a parameter called impedance, which may be 

viewed as a complex resistance.  

Figure 9 depicts the circuit represented in phasor-impedance form; the latter representation 

explicitly shows phasor voltages and currents and treats the circuit element as a generalized 

“impedance.” 

Vs(jw)
Z

I(jw)

o

o    
Fig. 9 − Simple circuit represented in phasor-impedance form 

 

It will be shown that each of the ideal circuit elements may be represented by one such 

impedance element. Let the source voltage in the circuit of Figure be defined by 

vS(t) = Acos ωt  or VS(jω) = Ae j0◦ = A∠ 0o. 

Then the current i(t) is defined by the i-v relationship for each circuit element. Let us 

examine the properties of the resistor, inductor, and capacitor, which are the general elements of 

any circuit. 
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 1.8. Capacitance 
The capacitance is a parameter that describes how a particular device can store electric 

charge. The capacitor is formed by two metal plates that are separated by an insulator layer. The 

circuit symbol for a capacitor is: .  If a voltage v is applied to the plates, then charges  Q of 

opposite signs will be induced on these plates. The amount of charge Q stored on the capacitor and 

the applied voltage v are in the following relation 

Q = Cv, 

where C is capacitance. The unit of capacitance is the farad (F). In the world of electronics, 

realistic capacitors have very small values and are measured in microfarads (µF), nanofarads (nF), 

and picofarads (pF), and 1 µF=10-6F; 1nF=10-9F; 1pF=10-12F. 

When moving charge from or to the capacitor then a current I flows with the value 

,
dt
dvC

dt
dQI ==  

that is proportional to the time rate of change the voltage.  

The electric field energy in the capacitor in arbitrary time is equal to 

C
QCvW
22

22

== .                                                                (3) 

The formulae (3) shows that the capacitance can store the energy. But this energy in most 

cases is the alternating one, and could not be stored more than for seconds or minutes. The 

capacitors in the modern dynamic random access memories (DRAMs) are used for the data storing. 

The positive or negative charge in them means the bit, which is equal to 1 or 0. To store the bits for 

a long time these storage capacitors have to be uploaded (refreshed) automatically in the time 

period of some milliseconds. 

With iC = i and vC = vS, the capacitor current may be expressed as: 

( ) ( ) ( 2/cos)sin()cos()()( πωωωωω +=−=== tCAtACtA
dt
dC

dt
tdvCti C

C )  

so that, in phasor form, 

VS (jω) = A∠ 0 , and I(jω) = ωCA∠ π/2 

The impedance of the ideal capacitor, ZC(jω), is therefore defined as follows: 

                  

                    
CjC

j
CjI

jVjZ S
C ωω

π
ωω

ωω 12/1
)(
)()( =

−
=−∠==           
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where we have used the fact that 1/j = e−jπ/2 = −j . Thus, the impedance of a capacitor is also a 

frequency-dependent complex quantity, with the impedance of the capacitor varying as an inverse 

function of frequency; and so a capacitor acts like a short circuit at high frequencies, whereas it 

behaves more like an open circuit at low frequencies.  

 1.9. Inductance 
The inductance L is the entity of the electric net which has the properties of the inductive 

coil in which the magnetic energy can be loaded. If the voltage at the ends of the inductivity L is 

equal to 

dt
d

dt
diLV Ψ== ,                                                              ( 4) 

where Ψ is the magnetic linkage in the inductance. For the inductance formed by the coil with w 

windings the magnetic linkage is Ψ=wΦ, where Φ is the magnetic flux. The magnetic linkage and 

flux are measured in webers (Wb). The circuit symbol for an inductance is:  . 

 An inductance of one henry, abbreviated H, represents a potential difference of one volt 

across an inductor within which the current is increasing or decreasing at one ampere per second. 

Usually, inductances are expressed in millihenries (mH), microhenries (µH), or even in nanohenries 

(nH). Then 1 mH = 0.001 H; 1 µH =0.001mH; and 1 nH = 0.001µH. 

The magnetic energy in the inductance is equal to  

L
LiW

22

22 Ψ
== .                                                               ( 5) 

The inductances are widely used in the modern switching AC-DC, and DC-DC converters, 

which serve as the voltage sources of the computers. The inductances are used in the computer 

circuits for the current filtering as well.  The formulas ( 4), ( 5) show, that the inductance can load 

the high energy, and the voltage in it can have high figures when the current is high, and it is 

exchanged sharply. Therefore, care have to be taken to keep the current exchange in the inductances 

of such circuits to save the integral circuits from the dramatic voltage surges. 

A set of coils, which have the common magnetic flux is named as a transformer. In the 

transformer the alternating current in the primary coil induces the alternating magnetic flux, which 

generates the alternating voltage, named electromotive force (EMF) in the secondary coil.  The 

transformer steps up or steps down the input voltage depending on the rate of the secondary and 

primary windings.  

Let vL(t) = vS(t) and iL(t) = i(t) 

Then the following expression may be derived for the inductor current:   
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∫ ∫ ===== )sin(')'cos(1)(')'(1)()( t
L

AdttA
L

tidttv
L

titi LSL ω
ω

ω  

        

Note how a dependence on the radian frequency of the source is clearly present in the 

expression for the inductor current. Further, the inductor current is shifted in phase (by 90◦) with 

respect to the voltage. This fact can be seen by writing the inductor voltage and current in time-

domain form: 

)cos()()( tAtvtv LS ω==  

                       ⎟
⎠
⎞

⎜
⎝
⎛ −==

2
cos)()( πω

ω
t

L
Atiti L   

 

It is evident that the current is not just a scaled version of the source voltage, as it was for 

the resistor. Its magnitude depends on the frequency, ω, and it is shifted (delayed) in phase by π/2 

radians, or 90◦. Using phasor notation, equation becomes 

0)( ∠= AjVS ω  

2/)( π
ω

ω ∠=
L

AjI  

 

Thus, the impedance of the inductor is defined as follows: 

LjL
jI
jVjZ S

L ωπω
ω
ωω =∠== 2/

)(
)()(  

 

Note that the inductor now appears to behave like a complex frequency-dependent resistor, 

and that the magnitude of this complex resistor, ωL, is proportional to the signal frequency, ω. 

Thus, an inductor will “impede” current flow in proportion to the sinusoidal frequency of the source 

signal. This means that at low signal frequencies, an inductor acts somewhat like a short circuit, 

while at high frequencies it tends to behave more as an open circuit. 

 

 1.10. Impedance meanings 
The impedance parameter is extremely useful in solving AC circuit analysis problems, 

because it will make it possible to take advantage of most of the network theorems developed for 

DC circuits by replacing resistances with complex-valued impedances. The examples, that follow, 

illustrate how branches containing series and parallel elements may be reduced to a single 
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equivalent impedance. It is important to emphasize that although the impedance of simple circuit 

elements is either purely real (for resistors) or purely imaginary (for capacitors and inductors), the 

general definition of impedance for an arbitrary circuit must allow for the possibility of having both 

a real and an imaginary part, since practical circuits are made up of more or less complex 

interconnections of different circuit elements.  

In its most general form, the impedance of a circuit element is defined as the sum of a real 

part and an imaginary part: 

Z(jω) = R(jω) + jX(jω)  

where R is called the AC resistance and X is called the reactance. The frequency dependence of R 

and  X  has been indicated explicitly, since it is possible for a circuit to have a frequency-dependent 

resistance. Note that the reactances have units of ohms, and that inductive reactance is always 

positive, while capacitive reactance is always negative. 

Figure 10 depicts ZC(jω) in the complex plane, alongside ZR(jω) and ZL(jω). 

 
Fig. 10 − Impedance of resistor, capacitor, and inductor in the complex plane 

 

 1.11. Measuring devices 
The ohmmeter is a device that, when connected across a circuit element, can measure the 

resistance of the element. Figure 11 depicts the circuit connection of an ohmmeter to a resistor. 

Symbol for ohmmeter is
     Ω   

     .  

T 

R1
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Fig. 11 − Connection of the ohmmeter 

One important rule needs to be remembered: The resistance of an element can be measured 

only when the element is disconnected from any other circuit. 

The ammeter is a device that, when connected in series with a circuit element, can measure 

the current flowing through the element Symbol for ammeter is
     A             . Figure 12 depicts the 

connection of an ohmmeter into a circuit. 

R2

R1
A1

A3

R

V1

V
I(jw)

 
Fig. 12 − Connection of an ammeter into a circuit 

The ammeter must be placed in series with the element whose current is to be measured 

(e.g., resistor R1 or R2). The ammeter should not restrict the flow of current (i.e., cause a voltage 

drop), or else it will not be measuring the true current flowing in the circuit. An ideal ammeter has 

zero internal resistance. 

The voltmeter is a device that can measure the voltage across a circuit element (see Fig. 

13). Since voltage is the difference in potential between two points in a circuit, the voltmeter needs 

to be connected across the element whose voltage we wish to measure.  The symbol for voltmeter 

is
         V              . A voltmeter must also fulfill the following requirements. The voltmeter must be placed in 

parallel with the element whose voltage it is measuring. The voltmeter should draw no current away 

from the element whose voltage it is measuring, or else it will not be measuring the true voltage 

across that element. Thus, an ideal voltmeter has infinite internal resistance. 

R2

R1

Vs

i

 
Fig. 13 − Connection of a  voltmeter into a circuit 

All of the considerations that pertain to practical ammeters and voltmeters can be applied to 

the operation of a wattmeter, a measuring instrument that provides a measurement of the power 
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dissipated by a circuit element, since the wattmeter is in effect made up of a combination of a 

voltmeter and an ammeter. Symbol for the wattmeter is
     W       . 

Figure 14 depicts the typical connection of a wattmeter in the same series circuit used above. 

In effect, the wattmeter measures the current flowing through the load and, simultaneously, the 

voltage across it and multiplies the two to provide a reading of the power dissipated by the load. 

 

 

 

 

 

 

 

 

R2

R1

Vs
R2

R1

Vs

Fig. 14 − Connection of a wattmeter into a circuit 

 

 1.12. Linear and unlinear components and circuits 
The relationship between current and voltage at the terminals of a circuit element defines the 

behavior of that element within the circuit. In this section we shall introduce a graphical means of 

representing the terminal characteristics of circuit elements. 

 Suppose now that a known voltage were imposed across a circuit element. The current that 

would flow as a consequence of this voltage, and the voltage itself, form a unique pair of values. If 

the voltage applied to the element were variedand the resulting current measured, it would be 

possible to construct a functional relationship between voltage and current known as the i-v 

characteristic (or voltampere characteristic). Such a relationship defines the circuit element, in 

the sense that if we impose any prescribed voltage (or current), the resulting current (or voltage) is 

directly obtainable from the i-v characteristic. A direct consequence is that the power dissipated (or 

generated) by the element may also be determined from the i-v curve. 

Figure 15 depicts the i-v characteristic of a tungsten filament light bulb. A variable voltage 

source is used to apply various voltages, and the current flowing through the element is measured 

for each applied voltage. 
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Fig 15 − i-v characteristic of a tungsten filament light bulb 

We could certainly express the i-v characteristic of a circuit element in functional form: 

i = f (v) v = g(i). 

The examples of the unlinear components are varistor (voltage dependent resistor), diode, 

coil inductance. More complex components are transistors, coil transformers, triacs. 

Due to the presence of unlinear components in the electrical circuit the linear and unlinear 

circuits are distinguished. In general, any real circuit can be considered as unlinear one because any 

component is not ideal one.  

The analysis and synthesis of the unlinear circuits are much complex of that of linear 

circuits. Therefore, to deal with the unlinear circuits its unlinear components are usually linearized, 

and the circuit is considered at its state where the components are represented as linear ones.  

 

 2. DC electrical circuits and networks 
 2.1. Electrical circuit elements 
In the previous sections we have outlined models for the basic circuit elements: sources, 

resistors, capacitors, inductances and measuring instruments. In order for current to flow there must 

exist a closed circuit. We have assembled all the tools and parts we need in order to define an 

electrical network. It is appropriate to formally define the elements of the electrical circuit; the 

definitions that follow are part of standard electrical engineering terminology. 

A branch is any portion of a circuit with two terminals connected to it. A branch may 

consist of one or more circuit elements. In practice, any circuit element with two terminals 

connected to it is a branch. 

 A node is the junction of two or more branches (one often refers to the junction of only two 

branches as a trivial node). Figure  16 illustrates the concept. In effect, any connection that can be 
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accomplished by soldering various terminals together is a node. It is very important to identify 

nodes properly in the analysis  of electrical networks. 

R1

R2

R3

R4
R5

R6 R7 R8
Node

Node A

Node b  
Fig. 16 − Node of the electrical circuit 

A loop is any closed connection of branches. Various loop configurations are illustrated in 

Figure  17.  

R1 R2

R3 R4

Loop 1 Loop 2

Loop 3  
Fig. 17 − Loops in the circuit 

A mesh is a loop that does not contain other loops. Meshes are an important aid to certain 

analysis methods. In Figure 17, the circuit consists of two meshes: loops 1 and 2 are meshes, but 

loop 3 is not a mesh, because it encircles both loops 1 and 2. 

Whenever we reference the voltage at a node in a circuit, we imply an assumption that the 

voltage at that node is the potential difference between the node itself and a reference node called 

ground, which is located somewhere else in the circuit and which for convenience has been 

assigned a potential of zero volts.  
 The choice of the word ground is not arbitrary. In every circuit a point can be defined that is 

recognized as “ground” and is assigned the electric potential of zero volts for convenience. Symbol 

for ground is   , or  , or 
 

 depending on some properties of the ground wire. For example, the 

first symbol is used as the digital signal ground, and the latter one as the analog signal ground is. 
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 2.3. Kirchhoff’s current law 
Note that in the circuit of Figure 3, a the current, i, flowing from the voltage source to the 

resistor is equal to the current flowing from the resistor to the source. In other words, no current 

(and therefore no charge) is “lost” around the closed circuit. This principle was observed by the 

German scientist G. R. Kirchhoff  and is now known as Kirchhoff’s current law (KCL). 

Kirchhoff’s current law states that because charge cannot be created but must be conserved, the sum 

of the currents at a node must equal zero. Formally: 

∑
=

=
N

n
ni

1

0  

 

The significance of Kirchhoff’s current law is illustrated in Figure  18, where the simple 

circuit of Figure  3,a has been augmented by the addition  of two resistors. In applying KCL, one 

usually defines currents entering a node as being negative and currents exiting the node as being 

positive. Thus, the resulting expression for node 1 of the circuit of Figure  18 is: 

−i + i1 + i2 + i3 = 0 

R1 R2 R3
Vs

4V

i1 i2 i3

             ↓ 

Fig.  18 −  Kirhoff's law representation 

Kirchhoff’s current law is one of the fundamental laws of circuit analysis, making it possible 

to express currents in a circuit in terms of each other; for example, one can express the current 

leaving a node in terms of all the other currents at the node. The ability to write such equations is a 

great aid in thesystematic solution of large electric circuits. 

Problem: 

If the battery in the diagram supplies a total of 10mW to the three elements shown and i1 = 2 

mA and i2 = 1.5 mA, what is the current i3? If i1 = 1 mA and i3 = 1.5 mA, what is i2? 

 

 2.4. Kirchhoff’s voltage law 
The voltage, or potential difference, between two points in a circuit indicates the energy 

required to move charge from one point to the other. The principle underlying Kirchhoff’s voltage 

law is that no energy is lost or created in an electric circuit; in circuit terms, the sum of all voltages 

associated with sources must equal the sum of the load voltages, so that the net voltage around a 
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closed circuit is zero. If this were not the case, we would need to find a physical explanation for the 

excess (or missing) energy not accounted for in the voltages around a circuit. Kirchhoff’s voltage 

law may be stated in a form similar to that used for Kirchhoff’s current law: 

∑
=

=
N

n
nv

1

0  

 

where the vn are the individual voltages around the closed circuit.  

 Problem Known Quantities: Voltages across each circuit element; current in circuit. 

Find: Power dissipated or generated by each element. 

 Analysis: Following the passive sign convention, we first select an arbitrary direction for 

the current in the circuit; the example will be repeated for both possible directions of current flow to 

demonstrate that the methodology is sound. 

1. Assume clockwise direction of current flow, as shown in Figure  19. 

R2

R1

Vs
. 12V

i=0.1A

v1=8V

v2=4V

+
+

-

-

 
Figure  19 − Simple circuit to analyze 

2. Label polarity of voltage source, as shown in Figure 19; since the arbitrarily chosen 

direction of the current is consistent with the true polarity of the voltage source, the source voltage 

will be a positive quantity. 

3. Assign polarity to each passive element, as shown in Figure  19. 

4. Compute the power dissipated by each element: Since current flows from − to + through 

the battery, the power dissipated by this element will be a negative quantity: 

PB = −vB* i = −(12 V)* (0.1 A) = −1.2 W 

that is, the battery generates 1.2 W. The power dissipated by the two loads will be a positive 

quantity in both cases, since current flows from + to −: 

P1 = v1 * i = (8 V)*. (0.1 A) = 0.8 W 

P2 = v2 * i = (4 V)*. (0.1 A) = 0.4 W 
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 2.5. Example: The Wheatstone Bridge 
The Wheatstone bridge is a resistive circuit that is frequently encountered in a variety of 

measurement circuits. The general form of the bridge circuit is shown in Figure  20, where R1, R2, 

and R3 are known while Rx is an unknown resistance, to be determined.  The objective is to 

determine the unknown resistance, Rx . 

Vs R1

Rx

R3

R4

a b

c

d

va vb

 
Fig.  20 − Wheatstone bridge circuit 

1. Find the value of the voltage vab = vad − vbd  in terms of the four resistances and the source 

voltage, vS . Note that since the reference point d is the same for both voltages, we can also write vab 

= va − vb. 

2. If R1 = R2 = R3 = 1k", vS = 12 V, and vab = 12 mV, what is the value of Rx? 

Solution 

1. First, we observe that the circuit consists of the parallel combination of three subcircuits: 

the voltage source, the series combination of R1 and R2, and the series combination of R3 and Rx . 

Since these subcircuits are in parallel, the same voltage will appear across each of them, namely, the 

source voltage, vS . 

Thus, the source voltage divides between each resistor pair, R1 −R2 and R3 −Rx, according to 

the voltage divider rule: va is the fraction of the source voltage appearing across R2, while vb is the 

voltage appearing across Rx : 
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Finally, the voltage difference between points a and b is given by: 
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This result is very useful and quite general. 
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2. In order to solve for the unknown resistance, we substitute the numerical values in the 

preceding equation to obtain  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
x

x

R
R

000,1000,2
000,112012,0  

 

 2.6. Network analysis 
The analysis of an electrical network consists of determining each of the unknown branch 

currents and node voltages. It is therefore important to define all relevant variables as clearly as 

possible, and in systematic fashion. Once the known and unknown variables have been identified, a 

set of equations relating these variables is constructed, and these are solved by means of suitable 

techniques. The analysis of electrical circuits consists of writing the smallest set of equations 

sufficient to solve for all of the unknown variables. The analysis of electrical circuits is greatly 

simplified if some standard conventions are followed.  

The first observation to be made is that the relevant variables in network analysis are the 

node voltages and the branch currents. This fact is a consequence of Ohm’s law. Consider the 

branch depicted in Figure 21, consisting of a single resistor.  

R

i
Va Vb

 
Fig. 21 − A single branch of a circuit 

 Here, once a voltage vR is defined across the resistor R, a current i will flow through the 

resistor, according to vR = iR. But the voltage vR, which causes the current to flow, is really the 

difference in electric potential between nodes a and b: 

vR = va −vb

Consider the circuit on the Fig. 22. Let us identify the branch and node voltages and the loop 

and mesh currents in the circuit.  

R2 R4

R1 R3

Vs

V

ia ib

a b c

d

+ vr1     - +      vr3     -

+ 
   

vr
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  -

-  
 v

r2
   

  +

 
Fig. 22 − Analyzed circuit 

The following node voltages may be identified: 
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 2.7. Node voltage method 
The node voltage method is based on defining the voltage at each node as an independent 

variable. One of the nodes is selected as a reference node (usually—ground), and each of the other 

node voltages is referenced to this node. Once each node voltage is defined, Ohm’s law may be 

applied between any two adjacent nodes in order to determine the current flowing in each branch. In 

the node voltage method, each branch current is expressed in terms of one or more node voltages; 

thus, currents do not explicitly enter into the equations.  

Once each branch current is defined in terms of the node voltages, Kirchhoff’s current law is 

applied at each node:     Σi = 0 

The systematic application of this method to a circuit with n nodes would lead to writing n 

linear equations. However, one of the node voltages is the reference voltage and is therefore already 

known, since it is usually assumed to be zero. Thus, we can write n−1 independent linear equations 

in the n−1 independent variables (the node voltages). Nodal analysis provides the minimum number 

of equations required to solve the circuit, since any branch voltage or current may be determined 

from knowledge of nodal voltages.  

The nodal analysis method may also be defined as a sequence of steps, as outlined below: 

Node Voltage Analysis Method 

1. Select a reference node (usually ground). All other node voltages will be referenced to 

this node. 

2. Define the remaining n−1 node voltages as the independent variables. 

3. Apply Kirhhoff Current Law at each of the n−1 nodes, expressing each current in terms of 

the adjacent node voltages. 

4. Solve the linear system of n−1 equations in n−1 unknowns. 

As an illustration of the method, consider the circuit shown in Figure  23. 
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R1 R3

R2

V1

Node a Node b

Node c
 

Fig. 23 − Example of the circuit solved by the Node Voltage Analysis Method 

 The direction of current flows selected arbitrarily (assuming that iS is a positive current). 

Application of KCL at node a yields: 

iS − i1 − i2 = 0   

whereas, at node b, 

i2 − i3 = 0  

It is instructive to verify  that it is not necessary to apply KCL at the reference node. The 

equation obtained at node c,   

i1 − i3 − iS = 0 . 

is not independent of  both previous equations. Now, in applying the node voltage method, the 

currents i1, i2, and i3 are expressed as functions of va, vb, and vc, the independent variables. Ohm’s 

law requires that i1, for example, be given by 

i1 = ( va − vc)/R1

since it is the potential difference, va − vc, across R1 that causes the current i1 to flow from node a to 

node c. Similarly, 

i2 = ( va − vb)/R2

i3 = ( vb − vc)/R3

The presence of voltage sources actually simplifies the calculations. To illustrate this point, 

consider the circuit of Figure  24. Note that one of the node voltages is known already. 

Vs

R1

R2

R3

R4
Is

va vb vc

 
Fig.  24 − Circuit to analyze by the node voltage method 
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 2.8 Mesh current method 
The second method of circuit analysis, which is in many respects analogous to the method of 

node voltages, employs mesh currents as the independent variables. The idea is to write the 

appropriate number of independent equations, using mesh currents as the independent variables. 

Analysis by mesh currents consists of defining the currents around the individual meshes as the 

independent variables. Subsequent application of Kirchhoff’s voltage law around each mesh 

provides the desired system of equations. 

Consider the circuit on the Fig. 25. Let us identify the branch and node voltages and the loop 

and mesh currents in the circuit.  
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Fig. 25 − Analyzed circuit 

In the mesh current method a current flowing through a resistor in a specified direction 

defines the polarity of the voltage across the resistor, as illustrated in Figure 21, and that the sum of 

the voltages around a closed circuit must equal zero, by Kirhhoff voltage law. Once a convention is 

established regarding the direction of current flow around a mesh, simple application of Kirhhoff 

voltage law  provides the desired equation. Figure 24 illustrates this point. 

The number of equations is equal to the number of meshes in the circuit. All branch currents 

and voltages may subsequently be obtained from the mesh currents, as will presently be shown. 

Since meshes are easily identified in a circuit, this method provides a very efficient and systematic 

procedure for the analysis of electrical circuits. The following box outlines the description of the 

procedure used in applying the mesh current method to a linear circuit. 

 

Mesh Current Analysis Method 

1. Define each mesh current consistently. We shall always define mesh currents clockwise, 

for convenience. 

2. Apply Kirhhoff voltage law  around each mesh, expressing each voltage in terms of one 

or more mesh currents. 
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3. Solve the resulting linear system of equations with mesh currents as the independent 

variables. 

In mesh analysis, it is important to be consistent in choosing the direction of current flow. 

To avoid confusion in writing the circuit equations, mesh currents will be defined exclusively 

clockwise when we are using this method.  

To illustrate the mesh current method, consider the simple two-mesh circuit shown in Figure  

24. This circuit will be used to generate two equations in the two unknowns, the mesh currents i1 

and i2. It is instructive to first consider each mesh by itself. 

Beginning with mesh 1, note that the voltages around the mesh have been assigned in Figure  

24 according to the direction of the mesh current, i1. Recall that as long as signs are assigned 

consistently, an arbitrary direction may be assumed for any current in a circuit; if the resulting 

numerical answer for the current is negative, then the chosen reference direction is opposite to the 

direction of actual current flow. Thus, one need not be concerned about the actual direction of 

current flow in mesh analysis, once the directions of the mesh currents have been assigned.  

According to the sign convention, then, the voltages v1 and v2 are defined as shown in Figure  

24. Now, it is important to observe that while mesh current i1 is equal to the current flowing through 

resistor R1 (and is therefore also the branch current through R1), it is not equal to the current through 

R2. The branch current through R2 is the difference between the two mesh currents, i1−i2. Thus, 

since the polarity of the voltage v2 has already been assigned, according to the convention, it 

follows that the voltage v2 is given by: 

v2 = (i1 − i2)R2

Finally, the complete expression for mesh 1 is 

vS − i1R1 − (i1 − i2)R2 = 0 

The mesh current i2 is also the branch current through resistors R3 and R4; however, the 

current through the resistor that is shared by the two meshes, R2, is now equal to (i2 − i1), and the 

voltage across this resistor is 

v2 = (i2 − i1)R2

and the complete expression for mesh 2 is 

(i2 − i1)R2 + i2R3 + i2R4 = 0 

Combining the equations for the two meshes, we obtain the following system of equations: 
(R1 +R2 )i1 −R2i2 = vS 
R2 i1 +(R2 + R3 + R4) i2 = 0 
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These equations may be solved simultaneously to obtain the desired solution, namely, the 

mesh currents, i1 and i2. One can verify that knowledge of the mesh currents permits determination 

of all the other voltages and currents in the circuit. 

 

 2.9. Matrix equations in electric and electronic engineering 
 

 2.10. Nodal and mesh analysis with controlled sources 
The methods just described also apply, with relatively minor modifications, in the presence 

of dependent (controlled) sources. Solution methods that allow for the presence of controlled 

sources will be particularly useful in the study of transistor amplifiers, transformer circuits, etc. 

Recall from the Section  1.3 that a dependent source is a source that generates a voltage or current 

that depends on the value of another voltage or current in the circuit.  

When a dependent source is present in a circuit to be analyzed by node or mesh analysis, 

one can initially treat it as an ideal source and write the node or mesh equations accordingly. In 

addition to the equation obtained in this fashion, there will also be an equation relating the 

dependent source to one of the circuit voltages or currents. This constraint equation can then be 

substituted in the set of equations obtained by the techniques of nodal and mesh analysis, and the 

equations can subsequently be solved for the unknowns. 

It is important to remark that once the constraint equation has been substituted in the initial 

system of equations, the number of unknowns remains unchanged. 

Consider, for example, the circuit of Figure  26, which is a simplified model of a bipolar 

transistor amplifier. 
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ib Vo
ib

+

-
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Fig.  26 − Example of the circuit with the current controlled current source 

 In  the circuit of Figure  26, two nodes are easily recognized, and therefore nodal analysis is 

chosen as the preferred method. Applying KCL at node 1, we obtain the following equation: 
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which can be used to solve for v1 and v2. 

The techniques presented in this section and the two preceding sections find use more 

generally than just in the analysis of resistive circuits. These methods should be viewed as general 

techniques for the analysis of any linear circuit; they provide systematic and effective means of 

obtaining the minimum number of equations necessary to solve a network problem. Since these 

methods are based on the fundamental laws of circuit analysis, Kirhhoff voltage law  and KCL, they 

also apply to any electrical circuit, even circuits containing nonlinear circuit elements. 

 2.11. The principle of superposition 
Rather than a precise analysis technique, like the mesh current and node voltage methods, 

the principle of superposition is a conceptual aid that can be very useful in visualizing the behavior 

of a circuit containing multiple sources. The principle of superposition applies to any linear system 

and for a linear circuit may be stated as follows: 

In a linear circuit containing N sources, each branch voltage and current is the sum of N 

voltages and currents each of which may be computed by setting all but one source equal to zero 

and solving the circuit containing that single source. 

An elementary illustration of the concept may easily be obtained by simply considering a 

circuit with two sources connected in series, as shown in Figure  27. 
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Fig.  27 − The representation of a circuit by two circuit superposition 

The circuit of Figure  27 is more formally analyzed as follows. The current, i , flowing in the 

circuit on the left-hand side of Figure  27 may be expressed as: 
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Figure  27 also depicts the circuit as being equivalent to the combined effects of two circuits, 

each containing a single source. In each of the two subcircuits, a short circuit has been substituted 

for the missing battery. This should appear as a sensible procedure, since a short circuit—by 

definition—will always “see” zero voltage across itself, and therefore this procedure is equivalent to 

“zeroing” the output of one of the voltage sources. 

If, on the other hand, one wished to cancel the effects of a current source, it would stand to 

reason that an open circuit could be substituted for the current source, since an open circuit is by 

definition a circuit element through which no current can flow (and which will therefore generate 

zero current).  

The principle of superposition can easily be applied to circuits containing multiple sources 

and is sometimes an effective solution technique. 

 

 3. One-port networks and equivalent circuits 
 3.1. One-port network 
You may recall that, in the discussion of ideal sources in Chapter  1.3, the flow of energy 

from a source to a load was described in a very general form, by showing  the connection of two 

“black boxes” labeled source and load (see Figure  3,a). Each block—source or load—may be 

viewed as a two-terminal device, described by an i-v characteristic. 

The general circuit representation is called a one-port network and is particularly useful for 

introducing the notion of equivalent circuits. Note that the one-port network is completely described 

by its i-v characteristic; this point is best illustrated by the next example. 

Problem.  Determine the source (load) current i in the circuit of Figure  28 using equivalent 

resistance ideas.  
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Fig.  28 − Finding the equivalent resistance one-port circuit 

Analysis: Insofar as the source is concerned, the three parallel resistors appear identical to a 

single equivalent resistance of value 
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Thus, we can replace the three load resistors with the single equivalent resistor REQ, as 

shown in Figure  28, and calculate 
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 3.2. Th´evenin and Norton Theorems 
In studying node voltage and mesh current analysis, you may have observed that there is a 

certain correspondence (called duality) between current sources and voltage sources, on the one 

hand, and parallel and series circuits, on the other. This duality appears again very clearly in the 

analysis of equivalent circuits: it will be shown that equivalent circuits fall into one of two classes, 

involving either voltage or current sources and (respectively) either series or parallel resistors, 

reflecting this same principle of duality. The discussion of equivalent circuits begins with the 

statement of two very important theorems, 

The Th´evenin Theorem 

As far as a load is concerned, any network composed of ideal voltage and current sources, 

and of linear resistors, may be represented by an equivalent circuit consisting of an ideal voltage 

source, vT , in series with an equivalent resistance, RT . 
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The Norton Theorem 

As far as a load is concerned, any network composed of ideal voltage and current sources, 

and of linear resistors, may be represented by an equivalent circuit consisting of an ideal current 

source, iN, in parallel with an equivalent resistance, RN. 

Problem 

Find the Th´evenin equivalent resistance seen by the load R6 in the circuit of Figure  29. 

Given Data: R1 = 20; R2 = 20; I = 5 A; R3 = 10; R4 = 20; R5 = 10. 
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Fig.  29 − A network for which the Th´evenin equivalent resistance is found 

Analysis: Following the Th´evenin theorem, we first set the current source equal to zero, by 

replacing it with an open circuit. Looking into terminal a-b we recognize that, starting from the left 

(away from the load) and moving to the right (toward the load) the equivalent resistance is given by 

the expression 

RT = [((R1||R2) + R3) ||R4] + R5  = [((20||20) + 10) ||20] + 10 = 20 Ohm. 

Note that the reduction of the circuit started at the farthest point away from the load. 

 3.3.Computing the Th´evenin voltage 
The equivalent (Th´evenin) source voltage vT  is equal to the open-circuit voltage present 

at the load terminals (with the load removed). 

This states that in order to compute vT , it is sufficient to remove the load and to compute the 

open-circuit voltage at the one-port terminals. Figure  30 illustrates that the open-circuit voltage, 

vOC, and the Th´evenin voltage, vT , must be the same if the Th´evenin theorem is to hold.  
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Fig. 30 − Equivalent open circuit 
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This is true because in the circuit consisting of vT and RT , the voltage vOC must equal vT , 

since no current flows through RT and therefore the voltage across RT is zero. Kirchhoff’s voltage 

law confirms that 

vT = RT (0) + vOC = vOC . 

To summarize the main points in the computation of open-circuit voltages, consider the 

circuit of Figure  31,a. Recall that the equivalent resistance of this circuit was given by  

RT = R3 +R1||R2. 

To compute vOC, we disconnect the load, as shown in Figure  31,b, and immediately observe 

that no current flows through R3, since there is no closed circuit connection at that branch. 

Therefore, vOC must be equal to the voltage across R2, as illustrated in Figure  31,b. 
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Fig. 31 − Equivalent network finding 

Since the only closed circuit is the mesh consisting of vS, R1, and R2, the answer we are 

seeking may be obtained by means of a simple voltage divider: 
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It is instructive to review the basic concepts outlined in the example by considering the 

original circuit and its Th´evenin equivalent side by side, as shown in Figure  31. The two circuits 

of Figure  30 are equivalent in the sense that the current drawn by the load, iL, is the same in both 

circuits, that current being given by: 
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 3.4.Computing the Norton Current 
The computation of the Norton equivalent current is very similar in concept to that of the 

Th´evenin voltage. The following definition will serve as a starting point: 
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The Norton equivalent current is equal to the short-circuit current that would flow were 

the load replaced by a short circuit. An explanation for the definition of the Norton current is easily 

found by considering, again, an arbitrary one-port network, as shown in Figure  32, where the one-

port network is shown together with its Norton equivalent circuit. 
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One-port
network

o

o

isc

o

o
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Fig.  32.  − To derive the Norton equivalent current 

It should be clear that the current, iSC, flowing through the short circuit replacing the load is 

exactly the Norton current, iN, since all of the source current in the circuit of Figure 32 must flow 

through the short circuit.  

Consider the circuit on Figure  33, shown with a short circuit in place of the load  resistance. 

Any of the techniques presented in this chapter could be employed to determine the current iSC. In 

this particular case, mesh analysis is a convenient tool, once it is recognized that the short-circuit 

current is a mesh current. Let i1 and i2 = iSC be the mesh currents in the circuit of Figure 33. Then, 

the following mesh equations can be derived and solved for the short-circuit current: 

 (R1 + R2)i1 − R2iSC = vS; 

−R2i1 + (R2 + R3)iSC = 0.  
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Fig. 33 − Example of the Norton equivalent current deriving 

An alternative formulation would employ nodal analysis to derive the equation  
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Recognizing that iSC = v/R3, we can determine the Norton current to be: 
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Thus, conceptually, the computation of the Norton current simply requires identifying the 

appropriate short-circuit current. 

 3.5. Duality of the Norton and Th´evenin equivalent circuits 
The Norton and Th´evenin theorems state that any one-port network can be represented by a 

voltage source in series with a resistance, or by a current source in parallel with a resistance, and 

that either of these representations is equivalent to the original circuit, as illustrated in Figure  34. 
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Fig. 34. One-port network, and its equivalent circuits 

An extension of this result is that any circuit in Th´evenin equivalent form may be replaced 

by a circuit in Norton equivalent form, provided that we use the following relationship: 

vT = RT iN . 

 

 3.6. Experimental Determination of Th´evenin and Norton Equivalents 
The idea of equivalent circuits as a means of representing complex and sometimes unknown 

networks is useful not only analytically, but in practical engineering applications as well. It is very 

useful to have a measure, for example, of the equivalent internal resistance of an instrument, so as 

to have an idea of its power requirements and limitations. Fortunately, Th´evenin and Norton 

equivalent circuits can also be evaluated experimentally by means of very simple techniques. The 

basic idea is that the Th´evenin voltage is an open-circuit voltage and the Norton current is a short-

circuit current. It should therefore be possible to conduct appropriate measurements to determine 

these quantities. Once vT and iN are known, we can determine the Th´evenin resistance of the circuit 

being analyzed according to the relationship 

RT =  vT/ iN

Figure  35 illustrates the measurement of the open-circuit voltage vT and shortcircuit current 

iN for an arbitrary network connected to any load and also illustrates that the procedure requires 

some special attention, because of the nonideal nature of any practical measuring instrument. The 

figure clearly illustrates that in the presence of finite meter resistance, rm, one must take this 

quantity into account in the computation of the short-circuit current and open-circuit voltage; vOC 
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and iSC appear between quotation marks in the figure specifically to illustrate that the measured 

“open-circuit voltage” and “short-circuit current” are in fact affected by the internal resistance of 

the measuring instrument and are not the true quantities. 
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Fig. 35. Experimental estimation of the unknown network parameters 

One can verify that the following expressions for the true short-circuit current and open-

circuit voltage apply 
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where iN is the ideal Norton current, vT the Th´evenin voltage, and RT the true Th´evenin resistance. 

For an ideal ammeter, rm should approach zero, while in an ideal voltmeter, the internal resistance 

should approach an open circuit (infinity); thus, the two expressions just given permit the 

determination of the true Th´evenin and Norton equivalent sources from an (imperfect) measure-

ment of the open-circuit voltage and short-circuit current, provided that the internal meter resistan-

ce, rm, is known. Note also that, in practice, the internal resistance of voltmeters is sufficiently high 

to be considered infinite relative to the equivalent resistance of most practical circuits; on the other 

hand, it is impossible to construct an ammeter that has zero internal resistance. If the internal 

ammeter resistance is known, however, a reasonably accurate measurement of short-circuit current 

may be obtained.  

The following example illustrates the point. 

Problem: Determine the Th´evenin equivalent of an unknown circuit from measurements of 

open-circuit voltage and short-circuit current. Given Data— Measured vOC = 6.5 V; Measured iSC = 

3.75 mA; rm = 15 . 

Analysis— The unknown circuit, shown on the top left in Figure  36, is replaced by its 

Th´evenin equivalent, and is connected to an ammeter for a measurement of the short-circuit 

current, and then to a voltmeter for the measurement of the open-circuit voltage . The open-circuit 

voltage measurement yields the Th´evenin voltage: vOC = vT = 6.5 V. 
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Fig. 36. Practical measurement of the unknown circuit parameters 

To determine the equivalent resistance, we observe in the figure depicting the voltage 

measurement that, according to the circuit diagram,  
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Note, that in most cases, it is not advisable to actually shortcircuit a network by inserting a 

series ammeter as shown in Figure 36; permanent damage to the circuit or to the ammeter may be a 

consequence. 
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