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Abstract 
 
Methods of mapping DSP algorithms into FPGA are 

considered. Algorithms are represented by synchronous 
data flow graphs, and are mapped into pipelined data 
paths. The methods consist in placing the algorithm 
graph in the multidimensional index space and mapping 
it into structure and event subspaces. The limitations to 
the mapping process minimize both clock period and  
hardware volume including multiplexor inputs. 

 

1. Introduction 
 

Modern field programmable gate arrays (FPGAs) 
having millions of configurable gates and hundreds of 
hardware multipliers, and operating at hundreds of 
megahertz clock frequencies are considered to be 
advanced chips for high speed digital signal processing 
(DSP). But the design of DSP projects for FPGAs 
remains the very complex task. 

The computing system synthesis usually has three 
general tasks: resource allocation, operator (actor) sche-
duling, and binding resources with operators. These tasks 
consist of subtasks like variable moving scheduling, varia-
ble to register or bus assignment, memory allocation, etc. 
The different synthesis methods are distinguished due to 
the order and way of such subtask implementation. The 
operator scheduling is most responsible and complex task. 
The resulting computing system effectiveness depends on 
all synthesis task implementation. But they are usually 
implemented separately. The subtasks have the local 
targets, which are often in disagreement to another 
subtask targets. Therefore most of synthesis methods do 
not provide the effective structure solutions. 

In the high-level synthesis the DSP algorithm is 
usually represented by the synchronous data flow graph 
(SDF). The nodes of SDF, which are named as actors, 

represent the algorithm operators. Edges represent 
variable movings between actors with the FIFO buffering. 
During a single cycle of SDF modeling each actor 
generates and accepts a variable (token) set, which 
quantity is stable in each cycle [1],[2].  

DSP algorithms have both cyclic and acyclic SDFs. In 
general, the subgraphs of the cyclic SDF have different 
computing periods. The multirate DSP system is an 
example of such a SDF. Therefore, the SDF scheduling is 
a complex task. Very popular approach consists in the 
search for the schedule of an algorithm period, 
considering the acyclic part of SDF. Here the algorithms 
of list scheduling, force directed scheduling, graph 
coloring, left edge scheduling are very popular. But these 
methods cause the bad load balance of processing units 
(PUs) at the beginning and the end of the cycle. To 
consider the cyclic nature of SDF the conflict graph or 
interval graph are analysed additionally [2],[3]. 

Recently such programming tools like AccelDSP or 
System Generator are wide spreaded, which help to 
generate the FPGA configuration of the DSP computing 
system. Here the initial algorithm is represented by SDF 
using Matlab Simulink package [4].  But these tools are 
effective ones only for аcyclic SDF, for example, FIR-
filters, or for actors, which represent the complex library 
components. 

In [5],[6] methods for mapping SDF into parallel 
computing structures are proposed. They are based on 
placing the graph in the multidimensional index space and 
mapping them in subspace of structures and subspace of 
events. Methods of structural design of digital filters 
described in [7],[8] use this approach as well. This 
approach provides simultaneous fulfilment of the 
synthesis tasks and therefore it optimises the structure of 
computing system much better. In the representation this 
approach is described in the application of mapping DSP 
algorithms into FPGAs.   



2. Mapping SDF into subspaces of structures 
and events 

 
The initial data for the design are DSP algorithms, 

represented by SDF, and cost functions. The SDF with a 
single sampling frequency i.e. the homogeneous SDF is 
considered. The multirate SDF is transformed into equiva-
lent homogeneous SDF. The computing system structure 
consists of a set of PUs, connected to each other accor-
ding to the structure graph. A single PU consists of ALU 
of given type (multiplier, adder, etc.) with the result regis-
ter or FIFO buffer on its output and with the input data 
multiplexers on its inputs. PU calculates the operation no 
longer than a single clock cycle.  If PU has not a register 
then the operation is considered to be calculated without a 
delay. Such a simple PU can be naturally implemented in 
the FPGA resources including special DSP hardware like 
DSP48 units in Xilinx Virtex4 devices.  

The cost functions are algorithm period interval: QT = 
LtC, and hardware cost: QS =∑ Сp qp

max, where L is the 
computation period in clock cycles, tC – clock cycle 
duration, Сp – hardware cost of  PU of  p-th type.  

Any network component like multiplexor, adder, etc. 
have approximately distinct FPGA hardware volume 
measured in equivalent gate number, logic cell number, 
CLB slices. From this point of view the average cost of a 
single multiplexor input of Xilinx FPGAs can be 
estimated as 0,57 of register cost, or adder cost with the 
equal data widths. For this reason, the 18-input 16-bit 
width multiplexor has the cost as the 16-bit multiplier unit 
has. Therefore, the multiplexor input number 
minimization is very valued in FPGA projects. Besides, 
this number represents the interconnection complexity. 

According to the method, SDF is represented in the 
three dimensional index space as the algorithm configura-
tion KG = (K,D,A), where K – is the matrix of vectors-no-
des Ki, representing algorithm operators, D is the matrix 
of vectors-edges, representing variable movings between 
operators, A is the incident matrix of SDF. The coordina-
tes of the node Ki = <k i,si,ti>   are equal to the operator 
type (for example, k=1 is multiplication), PU number si, in 
which the operator is implemented, and clock cycle ti, 
when the operator result is stored in the register.   

Equivalent structural solutions are represented by 
equivalent algorithm configurations, which differ in its 
matrices К and D. The matrix К codes some correct 
structure solution, and the matrix D can be derived from 
the equation D = КА. The optimum structural solution 
finding consists in the search of the маtrix К, which 
minimizes the given cost criteria. For example, if the 
genetic optimisation approach is used then the matrix К 
serves as a genome of the population representative. The 

following relations and definitions help to find the 
effective solutions. 

The algorithm configuration is correct if there is none 
couple of equal vectors in the matrix К, i.e.                                

∀ Ki,Kj (Ki≠ Kj, i≠ j ) . 
The operator schedule is correct if the operators that 

are mapped in a single PU are implemented in different 
clock cycles, i.e. 

∀ Ki,Kj(ki=kj, si =sj ) ⇒ ti     tj mod L. 
A modulo operation here represents the cyclic nature 

of SDF modeling. The operators of the same type are 
mapped in the PUs of the respective type:  

Ki,Kj∈Kp,q(ki=kj=p, si =sj =q), | Kp,q| ≤ L, 
where Kp,q is a set of nodes of p-th type that are mapped 
into a q-th PU.  

If SDF has a cyclic route i then the sum of vectors-
edges Dj , belonging to this route, has to be equal to a zero   

∑ bi,j Dj = 0, 
where bi,j is the not zeroed element of i-th row of the 
cyclomatic matrix of SDF. Such cyclic routes are inherent 
to the IIR filters.  

SDF can be represented as the conjunction of the 
аcyclic subgraph, which implements the calculations of a 
single algorithm period, and a set of edges DВj. The back 
propagation vector-edge DВj = <0,0,–kL> means the delay 
which is equal to k periods (iterations) of the algorithm. 
Because the edge DВj is directed to the opposite direction 
comparing to others vectors-edges, it is named as a 
reversed one. In the multidimensional space these edges 
are parallel to the time axis оt. It represents the 
interiteration delay to kL clock cycles. The vector DВj is 
analogous to the delay node Z–k of the signal graph of the 
DSP algorithm. 

An effective algorithm configuration is searched in 
two steps. On the first step SDF nodes and edges are 
placed in the three dimensional space as sets of vectors Ki 
and Dj with respect to all conditions mentioned above. 
Then the PU number is minimized satisfying the condition 
|Kp,q|→L. This condition means that the number of nodes, 
mapped into a single PU, approaches to L.  

On the second step the configuration balancing is 
implemented. During this procedure the acyclic subgraph 
of SDF (i.e. SDF without reversed edges DВj) is conside-
red, and in each edge the delay nodes are added. These 
nodes represent a delay, or storing for a single clock 
cycle, or a register. In the resulting balanced configuration 
all the edges except reversed edges are equal to 
Dj=<aj,bj,1> or Dj=<aj,bj,0>. The configuration nodes 
form columns, and the distance between adjacent columns 
is equal to one clock cycle.  

The balanced configuration is optimised by mutual 
interchanges of nodes belonging to a single column. By 
this process, the register and multiplexor number is 



minimized. The other methods like resynchronisation, left 
edge scheduling are used as well. 

The computing system structure and the resulting 
schedule are derived by splitting the algorithm configura-
tion KG to the structure configuration KS and event 
configuration, which have the same incidence matrix А. 
The vectors of the structure configuration are equal to 
<ki,si> , i.e. to the type and number of PU, and the vectors 
of event configuration are equal to <t i> , i.e. to the clock 
cycle, in which the mapped operator is implemented. In 
such a way the algorithm configuration is mapped into the 
structure subspace and into the event subspace. 

 
3. Multiplexor minimization 

 
Consider the method of multiplexor minimizаtion in 

pipelined computing system which is effective one for 
FPGA projects. Very often SDFs of DSP algorithms have 
a set of isomorphic subgraphs. For example, algorithms of 
complex IIR filters are the chains of the second order 
stages, FIR filter graphs have equal periodic parts. High 
speed recursive filter structures are designed composing 
identical all-pass filter chains [9]. To minimise the 
multiplexor number in such structures the following 
theorems are used. 

Theorem 1. Consider the balanced algorithm configu-
ration. Then the multiplexor input amount NМi of i-th PU 
node not exceeds the number of vectors Dі,j that are not 
equal to each other, and its arrows are incident to the 
nodes Ki,k, mapped in this PU.  

The theorem proving is evident. Such vectors Dі,j 
represent the variables that are inputted in i-th PU through 
different multiplexor inputs. The words "not exceeds" 
mean the instance when the multiplexor has a single input 
and is not needed at all. In another situation the 
multiplexor input number is equal to the different vector-
node number.  

Theorem 2. Consider the balanced algorithm configu-
ration KG which has up to L isomorphic subgraphs, or 
equivalent subconfigurations KGОі=(KОі,DОі,AO). Then the 
structure, which is the result of this configuration mapping 
with the period L, has the minimum multiplexor input 
number if and only if all the subconfigurations KGОі are 
mapped into a single structure subconfiguration KSО, and  

∀Ki,j∈KОі(Ki,j= <Cj,k,Cj,l, ti,j>) ;                    (1) 
∀Ki,j∈KОі(arrow of Di,l  is incident to Ki,j ⇒ 

Di,l=<Ck,Cl, 1> , Cl≠0 ).                            
(2)

 
This means that the structure subgraph is isomorphic 

to the proper algorithm subgraphs. Figure 1 illustrates 
mapping the algorithm configuration with the period    
L=3 to the structure configuration. Bold line represents 
the multiplexor. 

 
 

Figure1. Example of algorithm configuration 
mapping. 

 
The theorem proving. When the conditions (1) and (2) 

are satisfied then the resulting PU with one input ALU has 
a single input, and with the two input ALU has two inputs 
respectively. This means that each PU of resulting 
subconfiguration has none multiplexor at all, not to 
consider the inputs of PU (see the Figure 1). 

From the opposite side, consider the theorem condi-
tions are satisfied. Let one or two nodes in the 
subconfigurations exchange their coordinates. Then two 
situations can be hold on. In the first one, the 
interchanged node is mapped into additional PU node, 
which increases the hardware volume. Besides, the vector 
Di,l , which is outputted from this node, exchanges its 
coordinates. And in the resulting structure the additional 
multiplexor input occurs, in which the data is outputted 
from the additional PU node.  

In the second situation the node is mapped into 
another free PU node, or two nodes are mutually 
interchanged. Then the two input multiplexers have to be 
attached to the inputs of this PU, or these PUs. As a 
result, the conditions (1), (2) are not satisfied by any 
exchanges in subconfigurations, which cause the increase 
of PU number or multiplexor input number.  

 

4. Synthesis of digital filters with multiple 
delays 

 
Usually digital filters are described by the transfer 

function H0(Z) which depends on the complex variable Z. 
This function represents the filtering algorithm with the 
period L=1 precisely. And each multiplicand Z-k in the 
function represents the delay to k cycles, which can be 
implemented on the FIFO with k registers. If the register 
number in each delay FIFO is increased in n times then 
the filter with the function Hn(z) = H0(Z

n) is derived. Such 
a filter, named the filter with multiple delays, has the 
following useful property. Its frequency characteristic is 
similar to the prototype filter characteristic but in the 
range of 0 to fS these characteristic repeats itself in n 
times, where fS  is  the quantisation frequency.  
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When the filter stages are connected in a chain then 
the resulting characteristic is the product of the stage 
characteristics. When these characteristics are different 
ones then they mask each other. Using the masking effect 
and multiplied delays of the filter stages, the high quality 
narrow band filters can be designed, which have small 
hardware volume [10].  

In Xilinx FPGAs the multiplied delays are implemen-
ted in FIFO units of SRL16 - type, which occupy the same 
place as separate registers do. This fact shows that the 
filter with multiplied delays has the same hardware 
volume as the usual filter has. For the synthesis of such 
filters in FPGA the following method is proposed. 

On the first step of the method the algorithm is 
selected which SDF has a set of isomorphic subgraphs. 
The subgraph edges can be loaded by delays, which are 
equal to k. Consider the subgraph number is L. This figure 
provides the maximum hardware utilization but in 
general, it can have another value. The subgraph with k=1 
is represented by the algorithm subconfiguration named as 
a period configuration. The border nodes in it are selected 
which are incident to the reversed edges. These border 
nodes are mapped into iteration inputs and outputs of the 
structure. The period configuration is optimised as it is 
mapped into the structure with the parameter L=1, i.e. 
into the structure with the maximum parallelism.  

On the second step up to L subconfigurations and 
other nodes (if needed) are connected together according 
the algorithm graph. By this process, the conditions of the 
theorem 2 must be satisfied. If some filter stages use 
delays to k cycles then (k-1)L delay nodes are added to 
reversed edges of their subconfigurations.  

On the third step the configuration is mapped into the 
structure with the period L. The resulting structure 
consists of the pipelined substructure, which implements 
the period configuration, and multiplexers with delays to 
(k-1)L clock cycles on its inputs.  

The hardware volume of the resulting structure, not to 
account registers, is estimated by the formula:  

Θ'
S =  nA + 10nM + 0,57LnD , 

where nA and nM is the adder and multiplier number, 
which is equal to the number of nodes of additions and 
multiplications in the subgraph of SDF; nD is the number 
of reversed edges, or delay lines in the filter stage. 

The register number in the structure depends on the 
topology of the subgraph, on the delay distribution 
between reversed edges, and can be estimated as the 
number which is proportional to L. As a result, if the 
subgraph number is equal to L, then the structure has the 
minimum number of registers, adders and multipliers. 
This is proven by the fact that by this condition exactly L 
nodes of delay, addition, and multiplication are mapped 
into respective PU nodes, and all of them are fully loaded. 

5. Filter synthesis example 

 
Consider the example of the low pass filter synthesis 

using the methods described in [9]. The filter consists of 
four sequential stages with the delays multiplied by 1, 2, 
4, and 8. First three stages have the transfer function as 
the bireciprocal filter has. The last stage forms the 
sharpness of the whole filter. Each stage is implemented 
on the base of the allpass filter, and therefore it has stable 
characteristics. The transfer function of a single (first) 
stage is the following  
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where b regulates the pass band cutoff frequency, a 
regulates the filter sharpness. This filter is effectively 
implemented using the lattice wave digital filter structure, 
which provides the minimum of multipliers [11].  

On the first step of the synthesis the balanced 
algorithm subconfiguration is formed which is shown on 
the Figure 2. On this figure the register nodes are signed 
by large circles, reverse edges are signed by the dotted 
arrow, and border nodes – by small circles. The time axis 
is horizontal and the space axis is vertical. 

On the second step L=4 subconfigurations are 
connected together. The resulting configuration is shown 
on the Fig. 3. And on the third step the filter structure is 
derived, and its FSM is synthesized. The Figure 4 
illustrates the derived structure configuration. In the 
figures the colored polygons represent the subconfigu-
ration shown on the Figure 2.  

The filter implementation consists in transformation its 
algorithm configuration into VHDL description and then 
in configuring it in FPGA. 

When such a filter is designed by the usual method 
then its structure consists of four separate stages 
connected in chain. Each stage has 7 adders 2 multipliers 
and 3 registers for pipelining. Besides these stages have 
three registered delays, each of them has 1, 2, 4 and 8 
registers, which can be implemented on SRL16 units. The 
resulting hardware volume is equal ΘSВ = 132. In the 
critical path of this structure 4 adder are set, i.e. the clock 
cycle period is equal to  ΘТВ = 4ТS.   

The synthesized structure has 2 multipliers, 7 adders, 
26 registers and registered delays, and 7 four input 
multiplexers. Its hardware volume is equal to ΘS=65,5. 
The critical path delay is equal to the delay of a single 
adder or multiplier, i.e. ΘТ = ТS, and the cycle period is 
equal to  LТS=4ТS. Comparing the derived figures, the 
proposed structure has twofold smaller hardware volume 
than the usual structure has, and has the same throughput. 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure.2. Subconfiguration of the filter 
 

 
Figure.3. Resulting algorithm configuration 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Resulting structure configuration 

6. Dynamically tuned Digital filter 
  

In the representation the digital filter that is tuned 
dynamically (on the fly) is exposed. This filter design is 
similar to the design example shown above. The main 
idea is that the stage coefficients, and the chain length can 
be exchanged during the filter operation considering the 
properties of the transfer function (3). Up to 8 stages are 
connected into chain. As a result, the bandpass edge 
frequency is tuned in the range of (0,015-0,4)fS. The 
suppression level is not less than 75-80 db, and the filter 
steep slope is higher than 100 db per octave. The 12-bit 
length frequency code regulates the edge frequency.  

The filter was implemented in Xilinx Virtex4 FPGA 
device. Its hardware volume occupies 706 CLB slices and 
three multipliers. Due to the full pipelining the maximum 
clock frequency is higher than 200 MHz. As a result, the 
filter has small hardware volume, high characteristics, and 
can operate with the signals with the sampling frequencies 
up to 25 MHz. The filter structure and its control is so 
complex that its design would be impossible without a 
proposed method use.  

 

7. Rational fraction numbers in the IIR 
filters 

 
High quality IIR filters must be implemented with the 

increased computation precision to preserve the dramatic 
truncation error increase. For this purpose the variable bit 
width is increased up to two fold increase, and often the 
floating point data is used. As a result, the hardware 
volume is increased and the filter throughput is decreased.  

It is proposed to implement the IIR filter calculations 
using the rational fraction numbers which are used, for 
example, in the linear algebra problem solving in FPGA 
[12]. Then the data are represented by the n-bit numerator 
and n-bit denominator. The rational fraction multiplier 
consists of two usual multipliers, i.e. its hardware is in 
two times less volume than the multiplier for the 2n-bit 
integers has. The fraction adder has three multipliers and 
one adder of n-bit integers. To preserve the high 
precision, after each fraction operation numerator and 
denominator of the result are normalized to some bit 
number (2-8).  

The disadvantage of this approach is that need of 
division of numerator to denominator to represent the 
results as the usual integer data. But if the DSP system 
implements a set of complex algorithms including 
multirate filtering, linear algebra problem solving, DFT, 
which use the rational fraction calculations as well, then 
such final data transfer has not high comparative 
complexity.    



The ALU which calculates the rational fractions has 
more hardware volume than ALU for integers. But this 
volume more than in 2 times less than the floating point 
ALU has, and its throughput is higher than one of the 
floating point ALU or 2n-bit integer ALU has. The latent 
pipeline delay of such ALU is equal to 3-6 clock cycles, 
and is sufficiently less than the latent delay of the floating 
point ALU. 

 The direct use of the rational fraction ALU in the IIR 
filter with the parameter L=1 is not effective due to its 
high latent delay. But it is not sufficient when L>(2-5), 
i.e. when the proposed methods of SDF mapping are used.  

 
Conclusion 
A method of pipelined DSP application specific 

processors is proposed which provides adder, multiplier, 
and multiplexor hardware minimization due to the 
utilization of properties both DSP algorithms and FPGA 
architectures. The synthesized processors have the 
minimized clock cycle, and implement the DSP 
algorithms in the pipelined mode with the given period of 
L clock cycles.   

The proposed methods of design of multistaged DSP 
filters with multiple delays provide the minimized clock 
period and hardware volume by the given limitations 
(period L, cost function Θ'

S,  SDF with equal subgraphs). 
These methods were proved in designing the multistage 
wave-propagation filters. This design shows that the 
hardware volume can be decreased in two times 
comparing to the hardware volume of usual filters. 

The rational fraction calculations in IIR filters are 
proposed, which by use of proposed methods helps to 
achieve the high speed precise computations on the 
processors with minimized hardware volume. 

This work was partially funded by the Science and 
Education Ministry of the Republic Poland, grant N515 
002 32/0176.  
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