
1

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ

«КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ

СІКОРСЬКОГО»

Методичні вказівки до виконання лабораторних робіт

по курсу

Технологія проектування комп’ютерних систем — 2
(назва дисципліни)

для напряму підготовки (спеціальностей)
123 Комп’ютерна інженерія

(шифр та назва напряму, спеціальностей)

(in English)

Methodical instructions for laboratory excercises

in the course

Computer Systems Design Technology – 2

 Уклав
професор Анатолій Михайлович

Сергієнко, д.т.н., с.н.с. кафедри ОТ

Рекомендовано
Вченою радою факультету
інформатики та обчислювальної техніки
НТУУ «КПІ ім. Ігоря Сікорського»
Протокол № 11_ від _7_.__05_____.2019 р.

Київ - 2020

2

Laboratory Excercise 1

Recursive digital filter design

Goal: To gain the knowledge and skills in the development and testing of

the high-speed digital filters in FPGA.

Theoretical information

Transfer function

Recursive, or infinite impulse response (IIR) digital filters are often used

in digital signal processing. These filters being configured in the field

programmable gate arrays (FPGAs) have high speed and low energy

consumption. Any IIR filter is described by a N-th order difference equation

with the constant coefficients:

y(n) = – 
N

k=1
aky(n–k) + 

M

r=0
brх(п–r). (1)

Thus, the n-th value of the output can be calculated on the basis of the n-

th value of the input x (n) and, accordingly, of N and M past values of the output

y(n–k) and the input х(п–r). Then the impulse response of such a system can be

defined as:

h(n) =
y(n)
x(n) . (2)

The filtering of the signal x by the filter impulse response h is called the

convolution. The impulse response (2) in the general case is infinite and then it

is an IIR system.

The convolution of h(n)*х(n) corresponds to the multiplication Н(z)Х(z) in

the z-space. It should be noted that these convolution properties are valid only

for the domain of the complex variable z, where the function does not diverge.

The impulse response h(n) of system (2) is mapped in the z-space as a

transfer function:

3

H(z) =
Y(z)
X(z) =


r=0

M

brz
–r

 1 + 
k=0

N

akz
-k
 , (3)

where ak, br are real numbers, the function z–т corresponds to the delay of the

signal to m cycles of the sampling clock signal. Here, the number N is a system

order.

The transfer function (3) can be decomposed into the sum of elementary

fractions. Most often, for example, if N  M; Q =N/2, it is factored into the

product of fractions:

H(z) = П
k=0

Q

b0,k +b1,kz

–1+b2,kz
–2

 1+a1,kz
–1+a2,kz

–2 . (4)

The transfer function indicates the spectral properties of the linear system

under consideration. On its basis, we find the magnitude-frequency

characteristic |H(е-jt)| and the phase-frequency characteristic arg(H(е-jt)) of

the system.

Graphical representation of the IIR filter algorithm

In the vast majority of DSP algorithms, еру signal flows are synchronous.

Therefore, such algorithms can be represented by a synchronous data flow graph

(SDF). The signal flow graph is commonly used in the DSP algorithm conside-

ring. And such an algorithm is equivalent to homogeneous SDF. Table 1 shows

the correspondence of the graphical notations of the elements of both signal flow

graph and SDF.

Consider an example of the IIR filtering algorithm of a high-pass second-

order filter (HPF) using a signal graph and SDF. The transfer characteristic of

such a filter is equal to

H(z) =
1–z–2

 1+a1z
–1+a2z

–2 = (1–z–2)
1

 1+a1z
–1+a2z

–2 , (5)

(compare with (4)).

4

Table 1. Designation of the elements of the signal graph and GSPD

Model element Signal flow graph Uniform SDF

Signal х(п) х(п)
 х(п)

Input, output ports, signal source
х(п), and destination у(п) или

 у(п) х(п)
 х у

Delay to k cycles х(п) х(п– k) z– k

 х(п) … х(п– k)

k

Signal addition, adder node
у(n) = a(n)+b(n)

 a (n)
у (n)

b (n) +

 a (n)
у (n)

b (n) +

Multiplication to a constant
у(n) = aх(n), multiplication node

 х(п) а

*а

+

х(п)

The differential equations correspond to the factors of the transfer

function of the filter (compare with (1)):

u(n) = х(п) – х(п–2);

y(n) = u(n) – a1y(n–1) – a2y(n–2).

The equations are calculated in the signal flow graph (Fig. 1). All delay

elements are considered to be zeroed before the algorithm execution. The input

datum х(п) is sampled with the sampling frequency fS. As soon as х(п) arrives, it

immediately goes to the delay element for two cycles z–2 and to the adder “+”,

where it is added to the delayed data х(п–2). The other elements of the graph

model function in the same way: as soon as there is input datum for a node, it

immediately triggers and outputs the output datum.

Рис. 1. Signal flow graph of a LPF algorithm

+
х(n) u(n) y(n)

y(n–1) z–2
+

z–2

z–1
х(n–2)

y(n–2)

– – –

5

The graph in Fig. 1 can be considered as a structural diagram of some

application-specific calculator, which adders, multipliers are derived by the

mapping of addition, multiplication nodes, and registers are done by the map-

ping of delays. This variant of the algorithm is not a rational one because of the

excessive number of delays. To optimize it, it is possible to rearrange the factors

in formula (5) and to represent the delay z–2 as two consecutive delays z–1:

u(n)= х(n) – a1u(n–1) – a2v(n–1);
v(n) =u(n–1);
y(n) = u(п) – v(п–1);

The resulting signal graph is shown in Fig. 2, a. It corresponds to SDF in

Fig. 2, b. This graph is called the canonical form of an IIR filter, since it

contains a minimum number of delay elements for storing the intermediate

results, which are the samples of delayed signals u(п) and v(п).

The signal flow graph and respective SDF may have closed cycles. In Fig.

2 such a cycle is highlighted by a thick line. If there is no delay elements in the

closed loop, then the signals in it are endlessly re-assigned within one clock

cycle, that is, the algorithm is blocked. Therefore, at least one delay element in

each closed loop is a prerequisite for the absence of deadlocks in the signal flow

graph or SDF. Another condition for the absence of the deadlocks is the initial

data, for example, zero data in all the delay elements that belong to such cycles.

+
–

+
–

a1 u(n–1)

z–1

–

a2 v(n–1)

z–1

а)

х(n) u(n) y(n) х у

*а2

*а1

+ +
–

– –

b)

Fig. 2. Signal flow graph of HPF, а) and respective SDF, b)

6

IIR filters based on phase filters

The phase filter has a magnitude of its transfer function H(z) which is

equal to |H(z)| = 1. Its phase frequency response at a frequency fR has a phase

shift equal to 180. If the signals from two parallel phase filters are added, the

output signal is suppressed at the frequencies for which the phase difference is

180. The resulting transfer function is:

HS = (H1(z) ± H2(z))/2, (6)

and it corresponds to various filters: low pass filter (LPF), high pass filter

(HPF), bandpass filter (BPF), or notch filter. The filter orders play the role as

well. For example, if the function H1(z) is of the second order, as in this

laboratory work, then for H2(z) = 1 we obtain a notch filter, for H2(z) = –1 we do

BPF, for H2(z) = ± z-1 we do LPF (+), and HPF (–).

The phase-based IIR filter is characterized by the stability at the low bit

rate of its coefficients, high linearity of the frequency response, as well as high

speed. The parameters of its frequency response, such as the position of the

cutoff frequency, the slope of the transition band are directly dependent on the

coefficients of the filter.

The LPF transfer function, which can be reconfigured, is:

HS = (H1(z) + z–1)/2,

where H1(z) =
b + a(b + 1)z–1 + z–2

 1+ a(b + 1)z–1 + bz–2 , (7)

a = cos(2πfR),

b = (1t)/(1+t), (8)

t = tg(Δf),

moreover, the coefficient a regulates the cutoff frequency fR, coefficient b sets

the width of the transition band Δf or the cutoff sharpness. Thus, changing a in

(7), the edge frequency of the passband is regulated within (0.1 – 0.4)fS with a

suppression in the stop band up to 50 dB.

7

SDF of LPF and SDF of the bandpass filter, which are constructed in

accordance with (6), are shown in Fig. 3. Therefore, these SDFs are

distinguished only by the sign of addition and the presence or absence of a delay

in the second branch of the input signal propagation.

Fig. 3. SDF of LPF, (a) and bandpass filter SDF, (b)

The bandpass filter works as follows. The same signal passes through two

branches of the graph and a copy of it is subtracted at all frequencies except the

resonance one, giving a zero result. At the resonant frequency fR, the phase filter

returns the signal by 180 and as a result, the signal and its copy are added. LPF

works similarly, but the signal in the phase filter returns 180 at frequencies

above fR.

Let us consider in detail several examples of SDF of the second-order

phase filter. In the direct implementation of the formula (7), at least 6

multiplication nodes and 6 adder nodes are required in SDF. There is a more

efficient SDF for this formula, which is called the wave-propagation filter graph

because it is a waveguide model (Fig. 4).

Figure 4. SDF for the transfer function (7)

у

*b

+

– –
х + + *a

+

+ +

а)

у *½

х + H1(z) у *½

–
х + H1(z)

b)

8

Formula (7) can be reduced by rejecting the ability to directly control the

characteristics of the filter:

H12(z) =
b + сz–1 + z–2

 1+ сz–1 + bz–2 , (9)

where с = a(b + 1). Respective SDF, which represents the cannonic filter

structure, is shown in Fig. 5. The cannonic filter structure contains the

minimum delay number which is equal to the filter order.

Figure 5. SDF for the transfer function (9) in the canonical form

Formula (9) corresponds to the difference equation (10).

уi = bxi + сxi-1
 + xi–2 – сyi–1

 – byi–2 . (10)

Equation (10) can be rewritten as follows

qi = xi – cqi-1
 – bqi–2 ; (11)

уi = bqi + сqi-1
 + qi–2.

If the delays in edges are not to be minimized, then equations (11) are

satisfied in SDF, such as in Fig. 6. But we get only two multiplication

operations. When selecting the common coefficients for parentheses in (10), we

obtain the equation:

уi = b(xi – yi–2) + с(xi-1 –
 yi–1)

 + xi–2 . (12)

Figure 6. SDF for the transfer function (9) with excessive delay number

xi yi

-–

*b

*c

*b х у

qi yi

*

b xi

*

c
–

9

According to the equation (12) SDF is drawn, which is shown in Fig. 7.

Due to the reuse of delays, the authors Mitra and Hirano had constructed the

SDF example called MH2B, which is shown in Fig. 8.

Fig.7. SDF for equation (12)

Fig.8. SDF МН2В

The thick line in SDF in Fig. 4 – 8 represents the critical path. The length

of this path has the maximum value — 4tS + 2tM for SDF in fig. 4 and the

minimum value for SDF in Fig. 5 and 6, which is equal to 2tS + tM at the cost of

the larger number of multiplication nodes.

у

*b +

xi
х +

*с +

+

–
–

xi–1 xi–2 yi

yi–1 yi–2

у

*b

+

xi
х

+

*с

+ –

qi–1

qi–2

yi
+

qi

10

Digital filter testing

Determination of the frequency response of a filter is a typical procedure

for its diagnosis and testing. For the analysis or measurement of the magnitude-

frequency response and the phase-frequency response of a IIR filter, a complex

signal е–jn, which, should be fed to the input of the tested filter. Here,  = 2f is

the frequency under consideration. This signal is called an analytical signal.

Often, a simple method of checking is used which uses only the

component cos(n) instead of the analytical signal. Then, the frequency

response is measured at the output of the system, as a maximum of the resulting

signal Re(H()), that is, it is measured at the moments when the second

component is equal to Im(H()) = sin(n) = 0. The disadvantage of this method

is the inaccuracy of measuring the maximum of the signal.

A more accurate method is based on deriving the imaginary component

Im(H()) after passing the result of Re(H()) through a Gilbert filter, which

rotates the phase of the signal by 90. But such a filter introduces a significant

distortion in the frequency response.

Therefore, a signal graph such as in Fig. 9 should be used to analyze the

IIR filter. It uses two identical copies of the filter with the function H(z) to

which the sine and cosine components of the analytical signal are fed.

Respectively, the components of the analytic response signal of the IIR filters

are measured on their outputs.

H(z)

H(z)

cos(n)

sin(n)

x2 + y2

–arctg








y

x

Re(H())=x |H()|

arg(H())
–Im(H())=y

Fig. 9. Frequency response measurement of the real system H(z)

11

In the laboratory work, a test bench is used, having the structure as in Fig.

10, which can be downloaded at: http://kanyevsky.kpi.ua/en/useful-ip-

cores/testbench-for-the-filter-testing/ The ports and tuning constants of this

testbench unit are presented in Table 1.

Fig.10. Filter testbench

Filter bit width selecting

The vast majority of IIR filters are calculated in computers or FPGAs

using the integers or fixed-point numbers. When programming such a filter, a set

of coefficients that meet the requirements are presented in a floating-point

format. Then, the numbers of bits of quantization of the coefficients пк, the input

data пх, and the results пу are chosen.

As a rule, пх,пу  log2D, where D is the dynamic range of the signal. That

is, every 6 decibels of the dynamic range account for at least one bit of data.

The coefficients are scaled and rounded off, so that at |bi| < 1 the integer

value is equal

b’i =]2nxbi +0.5[. (11)

12

Table 1. Ports and generic variables of the testbench module for testing

the digital filters

Port name Port meanings

fsampl Integer sampling frequency, for example, 1000 kHz

fstrt Starting frequency fo, the first frequency which is analyzed

deltaf
Frequency increase d, so in k steps the generator will output the
frequency fo + k*d

maxdelay
The delay in signal samples, after which the output signal parameters will
be estimated. Usually it is slightly higher than the maximum (group)
delay of the filter which is tested.

slowdown
Factor, in which the filter speed is slowed down. If the input samples
enter each clock cycle then slowdown=1, if the samples go in odd clock
cycles then slowdown=2, etc.

nn Input and output data width

magnitude
Integer magnitude of the generated sine/cosine waves. For example, if
nn=8 then magnitude is any positive number less than 127.

REO,IMO
Cosine/ sine waves, represented by the nn bit integers, outputted by the
component

RERSP,IMRSP
Filter output signals , which are responses to the cosine/ sine waves, and
which must be ported to the nn-bit width inputs

FREQ
Frequency code of the given sine/cosine waves in this but the previous
frequency step, which is equal to fo + (k-1)*d

MAGN
Estimated magnitude of the signal RERSP,IMRSP at the frequency
FREQ

LOGMAGN
Estimated magnitude of the signal RERSP,IMRSP at the frequency
FREQ in the logarithmical scale, i.e. in decibels. Note, the signal with the
given magnitude is 0 db

PHASE
Estimated phase of the signal RERSP,IMRSP at the frequency FREQ
represented in the range ± π

ENA Enable signal, which strobes the filter inputs when slowdown>1

The filter results are calculated by the formula (1). In this case, the adder

accumulating the result should have such a bit width so that no overflow occurs.

Moreover, the bit width of the product is пд = пк + пх, and the bit of the adder

must be at least пс = log2S + пк+пх, where S is the theoretically possible

maximum result of the formula (1). For the right half of the formula (1), which

corresponds to the FIR filter, the maximum of the sum is equal to the sum of the

modules of all the coefficients of the filter contained in the numerator of the

formula of the transfer function, i.e.

13

nс = log2 
i=0

M

|bi| + nк+ nх. (12)

For the left half of the formula (1), the maximum of the sum can be much

larger due to the amplification of the signal in the feedback. Such gain is

proportional to the filter quality factor, which is proportional to the gain of the

signal at the resonant frequency. For the phase filter (7) and (8), the quality

factor of the filter increases sharply at b  1.

In practice, for the phase filters and filters based on them, due to their low

sensitivity to rounding errors, the bit of intermediate results is chosen as

пс = пд + пх+ 3, (13)

where пд = 1,...,6 is chosen depending on the filter quality factor and is specified

after its simulation. That is, this value is reduced to such a minimum, which

provides the overflow absence for all inner signals. For example, when b <0.7 in

(7), then it is enough пд = 1.

The coefficient bit width for the phase filters may be less than one for

other IIR filters. Usually. the bit width пк = пх is sufficient. This bit width can be

reduced according to the results of the filter testing if the resulting frequency

response requirements are satisfied.

The filter result y(n) is taken as the highest пу bits of the sum (1), and the

lower bits of the sum are truncated. Some other rounding algorithms can be used

as well.

Since пс can be quite a large number, and the probability of reaching the

result of the maximum value is small (at resonant frequencies and large input

signals), in practice, пс is chosen slightly less. But in this situation, the addition

in (1) is performed by the algorithm of accumulation with saturation. According

to this algorithm, if there is an overflow occurs, the result is replaced by the

maximum number with the corresponding sign. The signal saturation simulates a

similar process in the analog circuits and produces significantly less signal

distortion than the overflow.

14

The following example shows the implementation of the saturation in

VHDL. Consider пс = 14, nд = 3 и ny = 8, and the resulting magnitude is less

than 1, and a fixed point stands before the 8-th bit. Then the saturation operation

of the accumulated result S is programmed as

Y <= x”7F” when S(13 downto 10) > signed(“0001”),
 X”80” when S(13 downto 10) < signed(“1111”), else
 S(11 downto 3);

Here, the constants x”7F” and x”80” represent the maximum value 0,99

and minimum value –0,99.

Task for work

Develop a VHDL-project of a digital filter with a transfer function (6).

The types of components H1(z) and H2(z) are set according to the variant

from Table 2. The task number of this and other laboratory works coincides with

the student number in the group list. In this case, in Table 2, H2(z), cut-off

frequency (resonance frequency) fR, transition bandwidth Δf, and type of SDF

are set. The coefficients a, b for the function (7) are calculated by formulas (8),

and the coefficient c for the function (9) is calculated as c = a (b + 1).

The bit width of the input and output data

in the first group, bit width is 14,

in the second – bit width is 16,

in the third – bit width is 24,

in the fourth – bit width is 18.

The coefficient bit width is equal to пк = пх – 2. The bit width of the

internal intermediate results is determined by the relation (13).

The filter model is a description of a given SDF in VHDL. SDF is

optimized by the retiming and pipelining methods. For example, it is advisable

to add delays at the input and output of SDF, which are mapped in the

corresponding registers of the input and output signals.

15

Table 2. Parameters and functions for laboratory work

var.№ fR, Δf Fig. SDF H1(z) H2(z)
1 0,1 0,05 4 z–1
2 0,125 0,05 5 z–1
3 0,15 0,05 6 z–1
4 0,175 0,05 7 z–1
5 0,20 0,05 8 z–1
6 0,225 0,05 4 z–1
7 0,25 0,05 5 z–1
8 0,275 0,05 6 z–1
9 0,1 0,05 7 –z–1
10 0,125 0,05 8 –z–1
11 0,15 0,05 4 –z–1
12 0,175 0,05 5 –z–1
13 0,20 0,05 6 –z–1
14 0,225 0,05 7 –z–1
15 0,25 0,05 8 –z–1
16 0,275 0,05 4 –z–1
17 0,1 0,1 6 1
18 0,125 0,1 7 1
19 0,15 0,1 8 1
20 0,175 0,1 4 1
21 0,20 0,1 5 1
22 0,225 0,1 6 1
23 0,25 0,1 7 1
24 0,275 0,1 8 1
25 0,125 0,1 4 –1
26 0,15 0,1 5 –1
27 0,175 0,1 6 –1
28 0,20 0,1 7 –1
29 0,225 0,1 8 –1
30 0,25 0,1 4 –1

The VHDL description of the filter should have appropriate comments

that indicate the author and explain the execution of the algorithm.

The developed filter should be tested in the testbench, such as in fig. 8.

Also, the filter must be synthesized in FPGA CAD (Xilinx or Intel) for

FPGAs selected arbitrarily, with the placement and routing procedures.

The laboratory work protocol should contain:

– filter algorithm, optimized filter SDF;

– VHDL-text description of the filter;

16

– magnitude-frequency response charts in a linear and logarithmic scale

derived during the testing;

- synthesis results in the form of hardware costs and the minimum period

of the clock frequency, given as a screenshot of the FPGA CAD.

Execution example

Consider SDF such as in Fig. 8 and it is necessary to develop a low-pass

filter with a cutoff frequency fR =0.25 (this is the so-called half-pass filter) and a

transition band Δf = 0.1. The width of the input data is 12.

Then, according to (8) and (9), a = cos(2π0,25) = 0; t = tg(0,1) =0,325;

b = (10,325)/(1+0,325) = 0,509; c = a(1 + b) = 0. So, the multiplication to c is

removed. The resulting filter SDF is shown in Fig. 11.

Fig. 11. Half-band low-pass filter SDF

In Fig.11, an arrow across the arc represents a one-bit right shift, that is, a

division in a half.

Further, this SDF is subject to the retiming by pipelining. In this case, the

graph edges are weighted with delays so that the algorithm remains unchanged,

with the exception of latent delay and so that the critical path is minimized. The

у

*b

+

x
х

+

+ –

qi–1

qi–2

yi +
q

17

resulting filter SDF is shown in Fig. 12. It shows the critical path and all the

signals that are involved in the calculations.

Fig. 12. Pipelined SDF of the half-band low-pass filter

The bit width of the intermediate signals пс = пд + пх + 3 = = 2+12+3 = 17

is selected. The bit width of the coefficients is пк = 12. The bit width of the

product is пп = пк+ пс = 17+12= 29.

The resulting VHDL filter description is presented below.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity LPF_HB_LAB is
 port(CLK : in STD_LOGIC;
 RST : in STD_LOGIC;
 X : in STD_LOGIC_VECTOR(11 downto 0);
 Y : out STD_LOGIC_VECTOR(11 downto 0)
);
end LPF_HB_LAB;

architecture synt of LPF_HB_LAB is

constant b:signed(11 downto 0):=
 to_signed(integer(0.509*2.0**11),12);

 constant max:signed(3 downto 0):="0111";
 constant min:signed(3 downto 0):="1100";
 signal xi,xi_1,xi_2,xi_3:signed(16 downto 0);
 signal qi,qi_1,qi_2,mbp:signed(16 downto 0);
 signal mb:signed(28 downto 0);
 signal yi:signed(11 downto 0);
begin
 LPF:process(CLK,RST)
 variable yt:signed(16 downto 0);
 begin
 if RST = '1' then
 xi<=(others=>'0');

у

*b

+

x

х

+

+ –

qi–1 qi–2

yi +
q

xi–1 xi–2 xi–3

mbp

mb

mb

18

 xi_1<=(others=>'0');
 xi_2<=(others=>'0');
 xi_3<=(others=>'0');
 yi<=(others=>'0');
 qi_1<=(others=>'0');
 qi_2<=(others=>'0');
 mb<=(others=>'0');
 mbp<=(others=>'0');
 elsif CLK='1' and CLK'event then
 xi<= RESIZE(signed(X&"000"),17);
 xi_1<= xi;
 xi_2<= xi_1;
 xi_3<= xi_2;
 mb <= b*(xi + qi_1);
 qi_1<= xi_1 - mb(27 downto 11);
 qi_2<= qi_1;
 mbp <= qi_2 + mb(27 downto 11);

 yt:= mbp + xi_3;
 if yt(16 downto 13) > max then
 yi<= x"7ff";
 elsif yt(16 downto 13) < min then
 yi<= x"800";
 else
 yi<=yt(14 downto 3);
 end if;
 end if;
 end process;
 Y<= std_logic_vector(yi);

end synt;

The test results of the filter model in the form of the magnitude frequency

response, logarithmic frequency response and phase-frequency response are

shown in Fig. 13. In this case, the input signal has an amplitude of 2000 <211,

the sampling frequency is 1000 arbitrary units.

The charts show that the filter has a suppression level of 21 dB, is really

half-band filter (at a frequency of 250 = 1000/4, the transfer function is

1459/2000  0,5), its phase characteristic approximately linear, but at a

frequency of 332 the phase is changed sharply by an angle , and at this

frequency, just a collapse occurs in the frequency response.

When configuring the filter in the Xilinx Spartan-6 FPGA, the following

results were obtained.

19

Fig. 13. Magnitude-frequency response, logarithmic frequency response and

phase-frequency response of the developed filter

20

--
 Constraint | Check | Worst Case | Best Case | Timing | Timing
 | | Slack | Achievable | Errors | Score
--
 ts_clk = PERIOD TIMEGRP "CLK" 7.93 ns HIG | SETUP | 0.000ns| 7.930ns| 0| 0
 H 50% | HOLD | 0.382ns| | 0| 0
--

So, the hardware costs of the synthesized filter are 31 CLB slices and 1

block DSP48. The filter clock frequency reaches fC = 1 / 7.93 = 126 MHz.

21

Laboratory Excercise 2

Designing a digital filter without multiplication blocks

Goal: To gain knowledge and skills in the development and testing of

high-speed digital filters in FPGAs using techniques of the hardware costs

reducing.

Theoretical information

Mask filters

When the digital filter cascades are connected in series, the resulting

frequency response is the intersection of the frequency responses of these

cascades. It is said that the cascade frequency response masks the frequency

response of other cascades, that is, such a cascade is a masking filter (Fig. 14).

Thanks to masking, the resulting filter, consisting of simple filter cascades, has a

high-quality frequency response.

Fig. 14. An example of a three cascade filter with the mask filters

Multiple delay filters

Each term z-k in the transfer function H (z) in the filter signal graph

corresponds to a delay of k cycles or a chain of k delay registers in the filter

structure. If the number of delay registers in the filter is increased in n times, a

22

filter with frequency response Hn(z) = H(zn) is obtained. The frequency response

of this filter has the same form as the prototype filter H(z), but in the range of

0 — fS it is repeated n times, where fS is the sampling frequency. For example, in

fig. 14 H1 = H(z), H2 = H(2z), H3 = H(4z).

Replacing a multiplication block with a constant multiplier

Most multiplication blocks in DSP are the blocks that multiply to the

constants. If a constant can be represented in a canonical number system with a

small number of nonzero digits, then the general purpose multiplier is worth to

be replaced by an application-specific multiplier in the form of a tree of partial

product adders.

For example, consider a constant y = 9310 = 10111012. Then the product is

ух = 93x =(26 +24 +23 +22 +1)x,

that is, when representing the factor y in the binary form, we have 5 nonzero

digits. The multiplication by such a factor consists of shifting the datum x by the

corresponding number of bits and adding them on the tree of 4 adders. A

diagram of such a tree is shown in Fig. 15a, on which the horizontal arrows

show a shift to the right by the corresponding number of bits.

Fig. 15. Examples of the constant multipliers

If the constant is represented in the signed canonical notation, the number

of nonzero digits decreases. It should be noted that the complexity of the adder

and the subtractor are the same. For instance,

 а) b) c)

23

y = 9310 = 10111012 = 1100
-
1012 = 10

-
100

-
1012 = (27 –25 – 22 +1).

Then the number of adders decreases to three, as in Fig. 15, b. You can

still improve the scheme after factorizing the coefficient. For instance,

10
-
100

-
1012 = (21 +1)(25 – 1).

Then the number of adders decreases to two, as in Fig. 15, c.

Task for work

To develop a VHDL project of a digital filter without the multiplication

blocks with the following transfer function

H(z) = H4(z)HМ(z) ,

where H4(z) = H3(zk),

 H3(z) =(H1(z) + H2(z))/2,

H1(z) is the same as in the laboratory work 1 and is implemented in the

corresponding SDF, and HМ(z), H2(z), a, b, k are selected from Table 3.

The filter model is a description of a given SDF in VHDL. SDF is

necessarily optimized by the retiming and pipelining methods, as this is

facilitated by the use of multiple delays in the SDF feedbacks.

The testing of the developed filter is performed on a test bench, such as in

fig. 8.

Also, the filter has to be synthesized with the placement and routing in

selected FPGA CAD (Xilinx or Intel) for FPGA, which is chosen arbitrarily.

The protocol of the laboratory work in which the following items must be:

– filter algorithm, and optimized SDF;

– VHDL description of the filter, which should have appropriate

comments indicating the author and explanations of the algorithm execution.

 – frequency response charts in the linear and logarithmic scales derived

from the filter testing;

24

Table 3. Parameters and functions for the laboratory work 2

Variant
№

a b H2(z) k HМ(z)

1 –0,3125 0,75 –1 2 (1 +z–1+z–2+z–3+z–4)/8
2 –0,125 0,75 –1 2 (1 –z–1+z–2–z–3+z–4)/8
3 –0,625 0,75 –1 2 (1 +4z–1+6z–2+4z–3+z–4)/16
4 –0,875 0,75 –1 2 (1 –4z–1+6z–2–4z–3+z–4)/16
5 –0,3125 0,5 –z–1 2 (1 +4z–1+6z–2+4z–3+z–4)/16
6 –0,75 0,5 –z–1 2 (1 +z–1+z–2+z–3+z–4)/8
7 –0,5 0,5 –z–1 2 (–1 +3z–1+5z–2+3z–3–z–4)/8
8 –0,25 0,5 –z–1 2 (1+5z–1+10z–2+10z–3+5z–4+z–5)/32
9 –0.875 0,5 z–1 2 (1+z–1+z–2+z–3+z–4+z–5+z–6+z–7)/8
10 0.5 0,5 z–1 2 (1+z–1)(1+z–1+z–2+z–3)/8
11 –0,25 0,25 z–1 3 (2 +5z–1+7z–2+5z–3+2z–4)/32
12 –0,5 0,25 z–1 3 (1 +z–1+z–2+z–3+z–4+z–5)/8
13 –0,125 0,25 z–1 3 (1 +z–1+2z–2+z–3+z–4)/8
14 –0,75 0,25 z–1 3 (1 –z–1+z–3–z–4)/4
15 –0,75 0,25 z–1 3 (1 +0.7z–1–0.7z–3–z–4)/4
16 –0,625 0,25 z–1 3 (1 –z–1+z–2–z–3+z–4–z–5)/8
17 –0,75 0,25 z–1 3 (1 –0.7z–1+0.7z–3–z–4)/4
18 –0,5 0,25 z–1 2 (1 +z–1+z–3+z–4)/4
19 0.25 0,25 z–1 2 (–1 +z–1+z–3–z–4)/4
20 –0,625 0,25 z–1 2 (1 –z–1+z–3–z–4)/4
21 –0,5 0,25 z–1 2 (–1 +2z–2–z–4)/4
22 –0,75 0,25 z–1 2 (1 +2z–1+2z–2+2z–3+z–4)/8
23 –0,6 0,25 z–1 2 (1–2z–1+2z–2–2z–3+z–4)/8
24 0 0,25 z–1 2 (1+z–1+z–2+z–3+z–4+z–5+z–6)/8
25 –0.1 0,25 z–1 2 (1–z–2+z–4–z–6)/4
26 –0.15 0,25 z–1 3 (1+1.4z–1+z–2–z–4–1.4z–5–z–6)/8
27 –0,5 0,25 z–1 3 (1 +z–1+z–2+z–3+z–4)/8
28 –0,625 0,25 z–1 3 (–3–2z–1+5z–2+5z–3–2z–4–3z–5)/32
29 –0,5 0,25 z–1 3 (1+5z–1+10z–2+10z–3+5z–4+z–5)/32
30 –0,75 0,25 z–1 3 (3–2z–1+5z–2+5z–3–2z–4+3z–5)/32

– synthesis results in the form of a screenshot showing the hardware costs

and the minimum period of the clock frequency for the selected FPGA.

The variant number for this lab is the same as the student number in the

group list.

The bit depth of input, output and intermediate data is the same as in the

laboratory work 1.

25

Execution example

Consider SDF of the IIR filter part such as in Fig. 11 and it is necessary to

develop LPF with a = 0, b = 0.5625, k = 2; HМ(z) = (1 +4z–1+6z–2+4z–3+z–4)/16.

The input data bit width is 12.

The filter SDF is shown in fig. 16. It consists of the IIR part (left) and the

FIR part (right).

Fig. 16. Low-pass filter SDF

This SDF is then retimed using the pipelining technique. Also, the

multiplication by b is replaced by an application-specific adder-based multiplier.

Then, b = 0,4375 = 0,100
-
1 means that the multiplication is performed as the

subtraction of the operand shifted by 4 bits from the operand shifted by 1 bit.

Similarly are implemented multiplication by coefficients in the FIR part.

The resulting filter SDF is shown in Fig. 17. It shows all the signals that

are involved in the calculations. The filtering result is divided by 32 using a shift

right to 5 bits, taking into account the transmission coefficients of the IIR and

FIR parts. The critical path is minimized to the delay of one adder due to the

retiming and pipelining, as well as the replacement of multiplication by addition.

у

*b

+

xi
х

+

+ – qi–1

qi–4

yi +
qi

+ + +

5
+

2
1

2 2

yi-1 yi-2 yi-3 yi-4

+

26

Fig. 17. Low-pass filter pipelined SDF

The bit width of the intermediate data in the FIR part is selected:

пс = пд + пх + 3 = 2 + 12 + 3 = 17. Taking into account the formula (12), the

intermediate data bit width of the FIR part is пу = пс + 4 = 17 + 4 = 21. The

resulting VHDL filter description is presented below.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity LPF_HB_LAB2 is
 port(
 CLK : in STD_LOGIC;
 RST : in STD_LOGIC;
 X : in STD_LOGIC_VECTOR(11 downto 0);
 Y : out STD_LOGIC_VECTOR(11 downto 0)
);
end LPF_HB_LAB2;

architecture synt of LPF_HB_LAB2 is
 constant max:signed(3 downto 0):="0111";
 constant min:signed(3 downto 0):="1100";
 signal xi,xi_1,xi_2,xi_3,xi_4,xi_5:signed(16 downto 0);
 signal qi,qi_1,qi_2,qi_3,mb,qpx,mbp:signed(16 downto 0);
 signal yi,yi_1,yi_2,yi_3,yi_4:signed(16 downto 0);
 signal y01,y22,y34,y012,y34_1:signed(20 downto 0);
 signal ys:signed(11 downto 0);
begin
 IIR:process(CLK,RST)
 begin
 if RST = '1' then

qpx

+

xi

х

+

+ –
qi–1

yi +
qi

2
1

2 2

yi-1 yi-2 yi-3 yi-4
xi-1

xi-2

+
1

4

у

+ + +

+ +
5

mb
mb

mbp

y01 y22
y34

y34-1

y012

qi–2

qi–3

xi-3 xi-4 xi-5

–

27

 xi<=(others=>'0'); xi_1<=(others=>'0');
 xi_2<=(others=>'0'); xi_3<=(others=>'0');
 xi_4<=(others=>'0'); xi_5<=(others=>'0');
 yi<=(others=>'0'); qi<=(others=>'0');
 qi_1<=(others=>'0'); qi_2<=(others=>'0');
 qi_3<=(others=>'0'); qpx<=(others=>'0');
 mb<=(others=>'0'); mbp<=(others=>'0');
 elsif CLK='1' and CLK'event then
 xi<= RESIZE(signed(X&"000"),17);
 xi_1<= xi;
 xi_2<= xi_1;
 xi_3<= xi_2;
 xi_4<= xi_3;
 xi_5<= xi_4;
 qpx <= xi + qi_1;
 mb <= shift_right(qpx,1) - shift_right(qpx,4);
 qi <= xi_2 - mb;
 qi_1<= qi;
 qi_2<= qi_1;
 qi_3<= qi_2;
 mbp <= qi_3 + mb;
 yi<= mbp + xi_5;
 end if;
 end process;

 FIR:process(CLK,RST)
 variable yt:signed(20 downto 0);
 begin
 if RST = '1' then
 yi_1<=(others=>'0'); yi_2<=(others=>'0');
 yi_3<=(others=>'0'); yi_4<=(others=>'0');
 y01 <=(others=>'0'); y012 <=(others=>'0');
 y22 <=(others=>'0'); y34 <=(others=>'0');
 y34_1<=(others=>'0'); ys <=(others=>'0');
 elsif CLK='1' and CLK'event then
 yi_1<= yi;
 yi_2<= yi_1;
 yi_3<= yi_2;
 yi_4<= yi_3;
 y01 <= yi + resize((yi_1 &"00"),21) ;
 y22 <= resize((yi_2 &"00"),21) + (yi_2 & "0");
 y34 <= yi_4 + resize((yi_3 & "00"),21) ;
 y34_1<= y34;
 y012 <= y01 + y22;
 yt:= y012 + y34_1;
 ys<=yt(19 downto 8);
 end if;
 end process;
 Y<= std_logic_vector(ys);
end synt;

The test results derived on the test bench are shown in Fig.18.

28

Fig. 18. The magnitude-frequency response and the logarithmic frequency

response of the filter in Fig. 17

From the obtained charts, one can see that the filter has a suppression

level of 35.6 dB, a cutoff frequency of 0.112, and a start frequency of the

suppression band of 0.175.

When configuring the filter in the Xilinx Spartan-6 FPGA, the following

results are derived.

29

--
 Constraint | Check | Worst Case | Best Case | Timing | Timing
 | | Slack | Achievable | Errors | Score
--
 ts_clk = PERIOD TIMEGRP "CLK" 2.8 ns HIGH | SETUP | 0.248ns| 2.552ns| 0| 0
 50% | HOLD | 0.388ns| | 0| 0
 | MINPERIOD | 0.134ns| 2.666ns| 0| 0
--

So, the hardware volume of the synthesized filter is 77 CLB slices,

including 382 triggers and 263 LUTs.

30

The filter maximum clock frequency reaches fC = 1/2.666 = 375 MHz.

This is almost three times higher than for a filter that uses a multiplication block

(see Laboratory exercise 1). Thus, the technique of using application-specific

multiplication blocks not only reduces the hardware costs (DSP48 multiplication

blocks, each of which is equivalent to 20 adders) but also significantly increases

the filter performance.

Recommended literature

1. Сергиенко А.М. VHDL для проектирования вычислительных

устройств. Киев: ЧП "Корнейчук", ТИД ДС, 2003. — 208 с.

2. Сергієнко А.М. Генератор рекурсивних фільтрів без блоків

множення. 2014. [електронний ресурс]

 http://kanyevsky.kpi.ua/GEN_MODUL/APgen/APMF_help_ukr.php

3. Сергієнко А. М., Сергієнко А.А. Методика проектування

цифрових фільтрів з застосуванням VHDL. //Праці 3 міжнародної

конференції InfoCom’2016, 1 – 2 грудня 2016 р. -К.:НТУУ “КПІ”, ВПІ

“Політехніка”. – 2016. –С. 56-57. [електронний ресурс]

 https://iconfs.net/w.infocom2016/metodyka-proektuvannya-tsyfrovykh-filtriv-

z-zastosuvannyam-vhdl

4. Сергієнко А.М., Виноградов Ю.М., Лесик Т.М. Цифрова обробка

сигналів. Комп’ютерний практикум мовою VHDL. – Киів. – 2012. – 106 с.

[електронний ресурс]

http://kanyevsky.kpi.ua/wp-content/uploads/2017/11/DSP_LabS.pdf

5. Schlichthärle D. Digital Filters: Basics and Design. – Springer. Berlin

Heidelberg, –2011. – 527 p.

6. Khan S. A. Digital Design of Signal Processing Systems. A Practical

Approach. – Wiley. – 211. – 586 p. – Available at

http://dspace.bhos.edu.az/jspui/bitstream/123456789/1146/1/%5BShoab_Ahmed

_Khan%5D_Digital_Design_of_Signal_Process.pdf

