MIHICTEPCTBO OCBITU TA HAVKU YKPATHU
HAIIIOHAJIbHUM TEXHIYHU YHIBEPCUTET YKPATHU
«KWTBCHKU TOJITEXHIYHWM IHCTUTYT IMEHI ITOPS

CIKOPCBKOI'O»

MeToauuHi BKa3iBKHU 10 BUKOHAHHS JIA0OPATOPHUX POOIT

10 Kypcy
TexHonoris NPOEKTYBaHHS KOMIT FOTEPHUX CUCTEM — 2

(Ha3Ba JIHMCIMILIIHA)
JJIS HAMPSIMY MiATOTOBKHM (cneniajbHOCTEMN)

123 Komm’rworepHa iHKeHepist
(mmdp Ta HA3Ba HAMPSAMY, CIEHIATEHOCTEH)

(in English)
Methodical instructions for laboratory excercises
in the course

Computer Systems Design Technology — 2

YkiaaB
npodecop Anatomiit MuxanmoBud

CeprieHko, 1.T.H., c.H.C. Kadpeapu OT

PexomennoBano

Buenoto panoro akynprery

1HGOPMATHKHU Ta 0OYMCIIIOBAILHOT TEXHIKU
HTVYY «KIII im. Iropst Cikopchkoro»
[Tpotokon Ne 11_Bim 7 . 05 2019 p.

Kuis - 2020

Laboratory Excercise 1

Recursive digital filter design
Goal: To gain the knowledge and skills in the development and testing of
the high-speed digital filters in FPGA.

Theoretical information

Transfer function

Recursive, or infinite impulse response (IIR) digital filters are often used
in digital signal processing. These filters being configured in the field
programmable gate arrays (FPGAs) have high speed and low energy
consumption. Any IIR filter is described by a N-th order difference equation

with the constant coefficients:

W) =Y ag(n—k) + X bx(n-r). (1)

Thus, the n-th value of the output can be calculated on the basis of the n-
th value of the input x (n) and, accordingly, of N and M past values of the output
y(n—k) and the input x(n—r). Then the impulse response of such a system can be

defined as:

o =505 @

The filtering of the signal x by the filter impulse response / is called the
convolution. The impulse response (2) in the general case is infinite and then it
is an IIR system.

The convolution of 4(n)*x(n) corresponds to the multiplication H(z)X(z) in
the z-space. It should be noted that these convolution properties are valid only
for the domain of the complex variable z, where the function does not diverge.

The impulse response A(n) of system (2) is mapped in the z-space as a

transfer function:

Y(Z) r=0
H(z) “X(2) = N) (3)
1 *
+ g;)akz

where a;, b, are real numbers, the function z™ corresponds to the delay of the
signal to m cycles of the sampling clock signal. Here, the number N is a system
order.

The transfer function (3) can be decomposed into the sum of elementary
fractions. Most often, for example, if N > M; Q =N/2, it is factored into the

product of fractions:

| =
1+a1,kz +a2,kz

0
n -1 -2
H(z) = H boi th14z bz,k22 . (4)
k=0

The transfer function indicates the spectral properties of the linear system
under consideration. On its basis, we find the magnitude-frequency

-jot

characteristic |H(e’)| and the phase-frequency characteristic arg(H(e”™")) of
the system.

Graphical representation of the IIR filter algorithm

In the vast majority of DSP algorithms, epy signal flows are synchronous.
Therefore, such algorithms can be represented by a synchronous data flow graph
(SDF). The signal flow graph is commonly used in the DSP algorithm conside-
ring. And such an algorithm is equivalent to homogeneous SDF. Table 1 shows
the correspondence of the graphical notations of the elements of both signal flow
graph and SDF.

Consider an example of the IIR filtering algorithm of a high-pass second-
order filter (HPF) using a signal graph and SDF. The transfer characteristic of
such a filter is equal to

1z P 1
1+a12_1+a22_2 _(I_Z) 1+a12_1+a22_2 ’ (5)

H(z) =

(compare with (4)).

Table 1. Designation of the elements of the signal graph and GSPD

Model element Signal flow graph Uniform SDF
Signal x(n) _x(n) x(m) >
Input, output ports, signal source x(mD— —Dy(n) ®_> _>®
x(n), and destination y(n) WIN O—> —0O
Delay to k cycles X(n) 77 X(1=K), A & x(n—k

n

Signal addition, adder node a(n) y(n) an) y(n)
Y1) = a(ny+b(n) b(n) b(n)
Multiplication to a constant | X(/T) Ng x()
(1) = ax(n), multiplication node L~ >

The differential equations correspond to the factors of the transfer

function of the filter (compare with (1)):

u(n) = x(n) — x(n-2);

y(n) = u(n) — ayy(n-1) — azy(n-2).

The equations are calculated in the signal flow graph (Fig. 1). All delay
elements are considered to be zeroed before the algorithm execution. The input
datum x(n) is sampled with the sampling frequency fs. As soon as x(#n) arrives, it
immediately goes to the delay element for two cycles z~ and to the adder “+”,
where it is added to the delayed data x(n—2). The other elements of the graph

model function in the same way: as soon as there is input datum for a node, it

immediately triggers and outputs the output datum.

x(n)

¥(n)

Puc. 1. Signal flow graph of a LPF algorithm

The graph in Fig. 1 can be considered as a structural diagram of some
application-specific calculator, which adders, multipliers are derived by the
mapping of addition, multiplication nodes, and registers are done by the map-
ping of delays. This variant of the algorithm is not a rational one because of the
excessive number of delays. To optimize it, it is possible to rearrange the factors
in formula (5) and to represent the delay z > as two consecutive delays z ':

u(n)=x(n) — aju(n—1) — ay(n—1);

v(n) =u(n-1);
y(n) =u(n) —v(n-1);

The resulting signal graph is shown in Fig. 2, a. It corresponds to SDF in
Fig. 2, b. This graph is called the canonical form of an IIR filter, since it
contains a minimum number of delay elements for storing the intermediate

results, which are the samples of delayed signals u(n) and v(n).

Fig. 2. Signal flow graph of HPF, a) and respective SDF, b)

The signal flow graph and respective SDF may have closed cycles. In Fig.
2 such a cycle is highlighted by a thick line. If there is no delay elements in the
closed loop, then the signals in it are endlessly re-assigned within one clock
cycle, that is, the algorithm is blocked. Therefore, at least one delay element in
each closed loop is a prerequisite for the absence of deadlocks in the signal flow
graph or SDF. Another condition for the absence of the deadlocks is the initial

data, for example, zero data in all the delay elements that belong to such cycles.

IIR filters based on phase filters

The phase filter has a magnitude of its transfer function H(z) which is
equal to |H(z)| = 1. Its phase frequency response at a frequency fz has a phase
shift equal to 180°. If the signals from two parallel phase filters are added, the
output signal is suppressed at the frequencies for which the phase difference is

180°. The resulting transfer function is:
Hg= (H\(2) = H)(2))/2, (6)

and it corresponds to various filters: low pass filter (LPF), high pass filter
(HPF), bandpass filter (BPF), or notch filter. The filter orders play the role as
well. For example, if the function H,(z) is of the second order, as in this
laboratory work, then for H,(z) = 1 we obtain a notch filter, for H,(z) =—1 we do
BPF, for H,(z) =+ z"' we do LPF (+), and HPF (-).

The phase-based IIR filter is characterized by the stability at the low bit
rate of its coefficients, high linearity of the frequency response, as well as high
speed. The parameters of its frequency response, such as the position of the
cutoff frequency, the slope of the transition band are directly dependent on the
coefficients of the filter.

The LPF transfer function, which can be reconfigured, is:

Hs = (H(2) +27)/2,

b+ab+1)z"'+z7

where H@ =T+ 1)z "+ bz 2 (7)
a = cos(2mfz),
b = (1-1)/(1+1), (8)
t = tg(nAy),

moreover, the coefficient a regulates the cutoff frequency fz, coefficient b sets
the width of the transition band Af or the cutoff sharpness. Thus, changing a in
(7), the edge frequency of the passband is regulated within (0.1 — 0.4)fs with a
suppression in the stop band up to 50 dB.

SDF of LPF and SDF of the bandpass filter, which are constructed in
accordance with (6), are shown in Fig. 3. Therefore, these SDFs are
distinguished only by the sign of addition and the presence or absence of a delay

in the second branch of the input signal propagation.

Hl(Z)

Fig. 3. SDF of LPF, (a) and bandpass filter SDF, (b)

The bandpass filter works as follows. The same signal passes through two
branches of the graph and a copy of it is subtracted at all frequencies except the
resonance one, giving a zero result. At the resonant frequency fz, the phase filter
returns the signal by 180° and as a result, the signal and its copy are added. LPF
works similarly, but the signal in the phase filter returns 180° at frequencies
above f.

Let us consider in detail several examples of SDF of the second-order
phase filter. In the direct implementation of the formula (7), at least 6
multiplication nodes and 6 adder nodes are required in SDF. There is a more
efficient SDF for this formula, which is called the wave-propagation filter graph

because it is a waveguide model (Fig. 4).

Figure 4. SDF for the transfer function (7)

Formula (7) can be reduced by rejecting the ability to directly control the
characteristics of the filter:

b+cz'+z?
1+cz '+ bz?> ©)

H12(Z) =

where ¢ = a(b + 1). Respective SDF, which represents the cannonic filter

structure, i1s shown in Fig. 5. The cannonic filter structure contains the

minimum delay number which is equal to the filter order.
Xj

Figure 5. SDF for the transfer function (9) in the canonical form

Formula (9) corresponds to the difference equation (10).
Vi =bx;tcxi txi,—cyi—byi, . (10)
Equation (10) can be rewritten as follows
qi =Xi—cq—bqia; (11)
Vi =bqitcqitgia
If the delays in edges are not to be minimized, then equations (11) are
satisfied in SDF, such as in Fig. 6. But we get only two multiplication
operations. When selecting the common coefficients for parentheses in (10), we

obtain the equation:

Vi =b{xi—yia)tc(xii—yi1) TXi2. (12)

Figure 6. SDF for the transfer function (9) with excessive delay number

According to the equation (12) SDF is drawn, which is shown in Fig. 7.
Due to the reuse of delays, the authors Mitra and Hirano had constructed the

SDF example called MH2B, which is shown in Fig. 8.

©,

X; I Xi-1 Xi2 Yi
i .

Fig.8. SDF MH2B

The thick line in SDF in Fig. 4 — 8 represents the critical path. The length
of this path has the maximum value — 4ty + 2t), for SDF in fig. 4 and the
minimum value for SDF in Fig. 5 and 6, which is equal to 2¢5 +), at the cost of

the larger number of multiplication nodes.

Digital filter testing

Determination of the frequency response of a filter is a typical procedure
for its diagnosis and testing. For the analysis or measurement of the magnitude-
frequency response and the phase-frequency response of a IIR filter, a complex
signal ¢”®", which, should be fed to the input of the tested filter. Here, » = 27f is
the frequency under consideration. This signal is called an analytical signal.

Often, a simple method of checking is used which uses only the
component cos(wn) instead of the analytical signal. Then, the frequency
response is measured at the output of the system, as a maximum of the resulting
signal Re(H(w)), that is, it is measured at the moments when the second
component is equal to Im(H(w)) = sin(wn) = 0. The disadvantage of this method
is the inaccuracy of measuring the maximum of the signal.

A more accurate method is based on deriving the imaginary component
Im(H(w)) after passing the result of Re(H(w)) through a Gilbert filter, which
rotates the phase of the signal by 90°. But such a filter introduces a significant
distortion in the frequency response.

Therefore, a signal graph such as in Fig. 9 should be used to analyze the
IIR filter. It uses two identical copies of the filter with the function H(z) to
which the sine and cosine components of the analytical signal are fed.
Respectively, the components of the analytic response signal of the IIR filters

are measured on their outputs.

cos(on) H(z) Re(H(w))=x

x2 + yz |H(o)|

—

X

H
sin(wn) . H(Z) —Im(H(o))=y | . —arctgm M”

Fig. 9. Frequency response measurement of the real system H(z)

1V

In the laboratory work, a test bench is used, having the structure as in Fig.
10, which can be downloaded at: http://kanyevsky.kpi.ua/en/useful-ip-
cores/testbench-for-the-filter-testing/ The ports and tuning constants of this

testbench unit are presented in Table 1.

U1 u2 U4
rey
clk +CLK Y »|RERSP ENA[+
CILN | p— Freq
rst +RsT +HCLK FREQ
RSTP— imx Logmagn
+ X +{RST LOGMAGN [+
o START MAGN [+ Magn
CLK_GEN fir_filter 0 Phase
PHASE |+
Oclk UK}
imy REO *
Orst ek vp +{IMRSP
Mo |
+RsT

X FilterTB_r
|—;r_fi Iter rex

Fig.10. Filter testbench

Filter bit width selecting

The vast majority of IIR filters are calculated in computers or FPGAs
using the integers or fixed-point numbers. When programming such a filter, a set
of coefficients that meet the requirements are presented in a floating-point
format. Then, the numbers of bits of quantization of the coefficients n,, the input
data n, and the results n, are chosen.

As a rule, ny,n, > log,D, where D is the dynamic range of the signal. That
is, every 6 decibels of the dynamic range account for at least one bit of data.

The coefficients are scaled and rounded off, so that at || <1 the integer
value is equal

b’i:]2nxb,+05[. (11)

11

Table 1. Ports and generic variables of the testbench module for testing

the digital filters

Port name Port meanings

fsampl Integer sampling frequency, for example, 1000 kHz

fstrt Starting frequency fo, the first frequency which is analyzed

deltaf Frequency increase d, so in k steps the generator will output the

frequency fo + k*d

The delay in signal samples, after which the output signal parameters will
maxdelay be estimated. Usually it is slightly higher than the maximum (group)
delay of the filter which is tested.

Factor, in which the filter speed is slowed down. If the input samples
slowdown enter each clock cycle then slowdown=1, if the samples go in odd clock
cycles then slowdown=2, etc.

nn Input and output data width

Integer magnitude of the generated sine/cosine waves. For example, if

magnitude nn=8 then magnitude is any positive number less than 127.

REO,IMO Cosine/ sine waves, represented by the nn bit integers, outputted by the
component
Filter output signals , which are responses to the cosine/ sine waves, and

RERSP,IMRSP which must be ported to the nn-bit width inputs

FREQ Frequency code of the given sine/cosine waves in this but the previous
frequency step, which is equal to fo + (k-1)*d

MAGN Estimated magnitude of the signal RERSP,IMRSP at the frequency

FREQ

Estimated magnitude of the signal RERSP,IMRSP at the frequency
LOGMAGN FREQ in the logarithmical scale, i.e. in decibels. Note, the signal with the
given magnitude is 0 db

Estimated phase of the signal RERSP,IMRSP at the frequency FREQ
represented in the range + &

PHASE

ENA Enable signal, which strobes the filter inputs when slowdown>1

The filter results are calculated by the formula (1). In this case, the adder
accumulating the result should have such a bit width so that no overflow occurs.
Moreover, the bit width of the product is n, = n, + n,, and the bit of the adder
must be at least n. = log,S + n.+n,, where S is the theoretically possible
maximum result of the formula (1). For the right half of the formula (1), which
corresponds to the FIR filter, the maximum of the sum is equal to the sum of the
modules of all the coefficients of the filter contained in the numerator of the

formula of the transfer function, 1.e.

12

M
ne=1log, 2 |bi| + nict ny. (12)
i=0

For the left half of the formula (1), the maximum of the sum can be much
larger due to the amplification of the signal in the feedback. Such gain is
proportional to the filter quality factor, which is proportional to the gain of the
signal at the resonant frequency. For the phase filter (7) and (8), the quality
factor of the filter increases sharply at b — 1.

In practice, for the phase filters and filters based on them, due to their low
sensitivity to rounding errors, the bit of intermediate results is chosen as

e =Ny + nt 3, (13)
where n, = 1,...,6 is chosen depending on the filter quality factor and is specified
after its simulation. That is, this value is reduced to such a minimum, which
provides the overflow absence for all inner signals. For example, when b <0.7 in
(7), then it is enough n, = 1.

The coefficient bit width for the phase filters may be less than one for
other IIR filters. Usually. the bit width n, = n, is sufficient. This bit width can be
reduced according to the results of the filter testing if the resulting frequency
response requirements are satisfied.

The filter result y(n) is taken as the highest ny bits of the sum (1), and the
lower bits of the sum are truncated. Some other rounding algorithms can be used
as well.

Since n. can be quite a large number, and the probability of reaching the
result of the maximum value is small (at resonant frequencies and large input
signals), in practice, n. is chosen slightly less. But in this situation, the addition
in (1) is performed by the algorithm of accumulation with saturation. According
to this algorithm, if there is an overflow occurs, the result is replaced by the
maximum number with the corresponding sign. The signal saturation simulates a
similar process in the analog circuits and produces significantly less signal

distortion than the overflow.

13

The following example shows the implementation of the saturation in
VHDL. Consider n, = 14, n,=3 u n,= 8, and the resulting magnitude is less
than 1, and a fixed point stands before the 8-th bit. Then the saturation operation
of the accumulated result S is programmed as

Y <=x"7F” when S(13 downto 10) > signed(“0001”),
X80 when S(13 downto 10) <signed(“1111”), else
S(11 downto 3);

Here, the constants x”7F” and x”80 represent the maximum value 0,99

and minimum value —0,99.

Task for work

Develop a VHDL-project of a digital filter with a transfer function (6).

The types of components H;(z) and H,(z) are set according to the variant
from Table 2. The task number of this and other laboratory works coincides with
the student number in the group list. In this case, in Table 2, H,(z), cut-off
frequency (resonance frequency) fz, transition bandwidth Af, and type of SDF
are set. The coefficients a, b for the function (7) are calculated by formulas (8),
and the coefficient ¢ for the function (9) is calculated as c =a (b + 1).

The bit width of the input and output data

in the first group, bit width is 14,

in the second — bit width 1s 16,

in the third — bit width is 24,

in the fourth — bit width is 18.

The coefficient bit width is equal to n,=n,—2. The bit width of the
internal intermediate results is determined by the relation (13).

The filter model is a description of a given SDF in VHDL. SDF is
optimized by the retiming and pipelining methods. For example, it is advisable
to add delays at the input and output of SDF, which are mapped in the

corresponding registers of the input and output signals.

14

Table 2. Parameters and functions for laboratory work

var.Ne | fz, Af | Fig. SDF Hi(z) Hy(2)

1 0,1 0,05 4 7!
2 0,125 | 0,05 5 7!
3 0,15 0,05 6 !
4 0,175 0,05 7 !
5 0,20 0,05 8 !
6 0,225 | 0,05 4 !
7 0,25 0,05 5 !
8 0,275 |0,05 6 !
9 0,1 0,05 7 !
10 0,125 |0,05 8 —Z!
11 0,15 0,05 4 !
12 0,175 |0,05 5 !
13 0,20 0,05 6 !
14 0,225 | 0,05 7 !
15 0,25 0,05 8 !
16 0,275 | 0,05 4 !
17 0,1 0,1 6 1

18 0,125 |0,1 7 1

19 0,15 0,1 8 1

20 0,175 0,1 4 1

21 0,20 0,1 5 1

22 0,225 | 0,1 6 1

23 0,25 0,1 7 1

24 0,275 |0,1 8 1

25 0,125 |0,1 4 -1
26 0,15 0,1 5 -1
27 0,175 |0,1 6 -1
28 0,20 0,1 7 -1
29 0,225 0,1 8 -1
30 0,25 0,1 4 -1

The VHDL description of the filter should have appropriate comments
that indicate the author and explain the execution of the algorithm.

The developed filter should be tested in the testbench, such as in fig. 8.

Also, the filter must be synthesized in FPGA CAD (Xilinx or Intel) for
FPGAs selected arbitrarily, with the placement and routing procedures.

The laboratory work protocol should contain:

— filter algorithm, optimized filter SDF;

— VHDL-text description of the filter;

15

— magnitude-frequency response charts in a linear and logarithmic scale
derived during the testing;
- synthesis results in the form of hardware costs and the minimum period

of the clock frequency, given as a screenshot of the FPGA CAD.

Execution example

Consider SDF such as in Fig. 8 and it is necessary to develop a low-pass
filter with a cutoff frequency fz =0.25 (this is the so-called half-pass filter) and a
transition band Af'= 0.1. The width of the input data is 12.

Then, according to (8) and (9), a = cos(2n-0,25) = 0; ¢ = tg(n-0,1) =0,325;
b = (1-0,325)/(1+0,325) = 0,509; ¢ = a(1 + b) = 0. So, the multiplication to c is
removed. The resulting filter SDF is shown in Fig. 11.

Fig. 11. Half-band low-pass filter SDF

In Fig.11, an arrow across the arc represents a one-bit right shift, that is, a
division in a half.

Further, this SDF is subject to the retiming by pipelining. In this case, the
graph edges are weighted with delays so that the algorithm remains unchanged,

with the exception of latent delay and so that the critical path is minimized. The

16

resulting filter SDF is shown in Fig. 12. It shows the critical path and all the

signals that are involved in the calculations.

Xi 1 g X2 g Xi-3

Fig. 12. Pipelined SDF of the half-band low-pass filter

The bit width of the intermediate signals n.=n, + ny,+3 ==2+12+3 =17
1s selected. The bit width of the coefficients is n, = 12. The bit width of the
product is n, = n+ n, = 17+12=29.

The resulting VHDL filter description is presented below.

Tibrary IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity LPF_HB_LAB 1is
port(CLK : in STD_LOGIC;

RST : in STD_LOGIC;

X : in STD_LOGIC_VECTOR(11l downto 0);
: out STD_LOGIC_VECTOR(11l downto 0)

<

end LPF_HB

;
LAB;

architecture synt of LPF_HB_LAB is
constant b:signed(11 downto 0):=
to_signed(integer(0.509%2.0%*11),12);
constant max:signed(3 downto 0):="0111";
constant min:signed(3 downto 0):="1100";
signal xi,xi_1,xi_2,xi_3:signed(16 downto 0);
signal qi,qi_l,qi_2,mbp:signed(16 downto 0);
signal mb:signed(28 downto 0);
signal yi:signed(11l downto 0);
begin
LPF:process(CLK,RST)
variable yt:signed(16 downto 0);
begin
if RST = '"1' then
xi<=(others=>'0");

17

xi_l<=(others=>
xi_2<=(others=>
xi_3<=(others=>
yi<=(others=>"'0
gi_l<=(others=>
gi_2<=(others=>
mb<=(others=>'0");
mbp<=(others=>'0");

elsif CLK="1l"' and CLK'event then
Xi<= RESIZE(signed(x&"000"),17);
Xi_l<= xi;
Xi_2<= xi_1;
Xi_3<= xi_2;
mb <= b*(xi + qi_1);
gi_l<= xi_1l - mb(27 downto 11);
gi_2<= qi_1;
mbp <= qi_2 + mb(27 downto 11);

“YOOWVOOOoO

yt:= mbp + xi_3;
if yt(16 downto 13) > max then

yi<= x"7ff";
elsif yt(16 downto 13) < min then
yi<= x"800";
else
yi<=yt(14 downto 3);
end if;
end if;

end process;
Y<= std_logic_vector(yi);

end synt;

The test results of the filter model in the form of the magnitude frequency
response, logarithmic frequency response and phase-frequency response are
shown in Fig. 13. In this case, the input signal has an amplitude of 2000 <2'',
the sampling frequency is 1000 arbitrary units.

The charts show that the filter has a suppression level of 21 dB, is really
half-band filter (at a frequency of 250 = 1000/4, the transfer function is
1459/2000 z\/O_,S), its phase characteristic approximately linear, but at a
frequency of 332 the phase is changed sharply by an angle m, and at this
frequency, just a collapse occurs in the frequency response.

When configuring the filter in the Xilinx Spartan-6 FPGA, the following

results were obtained.

18

wFREQ 230 1 T

188 367 786 ps

wUAGH 1459
il v 297 766 12898 |——
wLOGMAGN 21821
wFREQ | 502 | T
L
s
ar PHASE -3.1291

Fig. 13. Magnitude-frequency response, logarithmic frequency response and

phase-frequency response of the developed filter

19

| Slice Logic Utilization Used |Available |Utilization
I Number of Slice Registers 125 18,224 1%
| Number used as Flip Flops 125
Number usad as Latches 0
Number used as Latch-thrus 0
Number used as AND/OR logics 0
Number of Slice LUTs 91 9,112 1%
Number used as logic 68 9,112 1%
Number using 06 output onky]
Number using O5 cutput only 0
Number using OS and 06 9
Number used as ROM 0
Number usad as Mamory 0 2,176 0%
Number used exclusively as route-thrus 23
Number with same-slice regster load 23
Number with same-slice carry load 0
Number with other load 0
INurrber of occupied Sices 3 2,278 1%
Nummber of MUXCYs used 71 4,556 1%
Number of LUT Flip Flop pairs used 107
Number of DSP4EAls 1 1 3% |:
Cctraint] check [vorge | et e | Timima | Tining
:sg(c);‘k = PERIOD TIMEGRP "CLK" 7.93 ns HIG I agzgp I 8(;2%;{ 7.930nsl 8I 8

So, the hardware costs of the synthesized filter are 31 CLB slices and 1
block DSP48. The filter clock frequency reaches fc =1/7.93 =126 MHz.

20

Laboratory Excercise 2

Designing a digital filter without multiplication blocks
Goal: To gain knowledge and skills in the development and testing of
high-speed digital filters in FPGAs using techniques of the hardware costs

reducing.
Theoretical information

Mask filters

When the digital filter cascades are connected in series, the resulting
frequency response is the intersection of the frequency responses of these
cascades. It is said that the cascade frequency response masks the frequency
response of other cascades, that is, such a cascade is a masking filter (Fig. 14).
Thanks to masking, the resulting filter, consisting of simple filter cascades, has a

high-quality frequency response.

i

H>

H;

N SN

Hpea. | J

Fig. 14. An example of a three cascade filter with the mask filters

Multiple delay filters
Each term z* in the transfer function H (z) in the filter signal graph
corresponds to a delay of & cycles or a chain of £ delay registers in the filter

structure. If the number of delay registers in the filter is increased in n times, a

21

filter with frequency response H,(z) = H(zn) is obtained. The frequency response
of this filter has the same form as the prototype filter H(z), but in the range of
0 — fs it is repeated n times, where fs is the sampling frequency. For example, in
fig. 14 H, = H(z), H, = H(2z), H3 = H(4z).

Replacing a multiplication block with a constant multiplier

Most multiplication blocks in DSP are the blocks that multiply to the
constants. If a constant can be represented in a canonical number system with a
small number of nonzero digits, then the general purpose multiplier is worth to
be replaced by an application-specific multiplier in the form of a tree of partial
product adders.

For example, consider a constant y =93, = 101110,,. Then the product is

ya=93x=(2° +2* +2° +2* +1)x,
that is, when representing the factor y in the binary form, we have 5 nonzero
digits. The multiplication by such a factor consists of shifting the datum x by the
corresponding number of bits and adding them on the tree of 4 adders. A
diagram of such a tree is shown in Fig. 15a, on which the horizontal arrows

show a shift to the right by the corresponding number of bits.

» (D= »(De
& LB
(24x) (5x) T7 O
D= =D
D« (96x) (—3x)
(88x)
» (= ()=
P P
a) b) c)

Fig. 15. Examples of the constant multipliers

If the constant is represented in the signed canonical notation, the number
of nonzero digits decreases. It should be noted that the complexity of the adder

and the subtractor are the same. For instance,

22

y=93,,=1011101,=1100101,= 10100101, = (27 —2° — 2% +1).
Then the number of adders decreases to three, as in Fig. 15, b. You can

still improve the scheme after factorizing the coefficient. For instance,

10100101, = (2" +1)-(2°— 1).

Then the number of adders decreases to two, as in Fig. 15, c.

Task for work

To develop a VHDL project of a digital filter without the multiplication
blocks with the following transfer function

H(z) = Hy(z)-Hw(2) ,

where H,(z) = Hx(zk),

Hy(2) =(H\(2) + H(2))/2,

H\(z) is the same as in the laboratory work 1 and is implemented in the
corresponding SDF, and Hy(z), H(z), a, b, k are selected from Table 3.

The filter model is a description of a given SDF in VHDL. SDF is
necessarily optimized by the retiming and pipelining methods, as this is
facilitated by the use of multiple delays in the SDF feedbacks.

The testing of the developed filter is performed on a test bench, such as in
fig. 8.

Also, the filter has to be synthesized with the placement and routing in
selected FPGA CAD (Xilinx or Intel) for FPGA, which is chosen arbitrarily.

The protocol of the laboratory work in which the following items must be:

— filter algorithm, and optimized SDF;

— VHDL description of the filter, which should have appropriate
comments indicating the author and explanations of the algorithm execution.

— frequency response charts in the linear and logarithmic scales derived

from the filter testing;

23

Table 3. Parameters and functions for the laboratory work 2

iant
varant| 4 b | Hd) |k Hu()
1 —0,3125 0,75 | -1 2 |+ 42428
2 0,125 0,75 | -1 2 |z 422+ Y8
3 —0,625 0,75 | -1 2 | (1 +4z '+6z +4z +z /16
4 —0,875 0,75 | -1 2 | (1 -4z "+6z—4z +2 1)/16
5 —0,3125 05 | —' | 2|0+4z"+6z 4z +2 ")/16
6 0,75 05 | —' | 2]+ 42+ ")/8
7 0,5 05 | —' |2 | (14324524322 ")/8
8 -0,25 05 | —' | 2| A+52"+10z7+10z+52 "+)/32
9 —0.875 0,5 z! 2 | (I+z Mz 24z 42 242 2)8
10 0.5 0,5 z' 2 | (1+z H(1+z 4z 4278
11 0,25 025 | =z! 3 | (2 +5z +7z 52 7422 1)/32
12 -0,5 025 | z! 3| (1 4z 22+ 2 0)8
13 0,125 025 | z! 3| (1+z "+ 22427+)8
14 -0,75 025 | z! 3| —=T4z—z"4
15 -0,75 025| z! 3 | (1+40.72'-0.7z°—=")/4
16 —0,625 025 | z! 3| (1= 2+ 27)8
17 -0,75 025| z! 3 1 (1-0.72"40.7z°—=")/4
18 -0,5 025 | z! 2 | (1 +z 427+ Y4
19 0.25 025| z! 2 | (142 427 ")/4
20 —0,625 025 z' |20 —="+"=zYM4
21 -0,5 025 | z! 2 | (1422724
22 -0,75 025| z! 2 | (1 122 422 2422+ %)/8
23 —0.,6 025 | z' |2 |(=2z"+2z2z+z %8
24 0 025| z! 2 | (142 4z 242742 2 42 0)/8
25 —0.1 025 | z! 2 | ="+ %/4
26 —0.15 025 | z! 3| (1+14z 42221427258
27 -0,5 025| z! 3 | +z 2427+ D)8
28 —0,625 025 | z! 3 | (=3-2z "+5z 45272z "3z 0)/32
29 -0,5 025| z! 3 | (1452 '+102 2410z +52 +2)/32
30 -0,75 025 | z! 3 | (322 "+52 52 22 *+327)/32

— synthesis results in the form of a screenshot showing the hardware costs
and the minimum period of the clock frequency for the selected FPGA.

The variant number for this lab is the same as the student number in the
group list.

The bit depth of input, output and intermediate data is the same as in the

laboratory work 1.

24

Execution example

Consider SDF of the IIR filter part such as in Fig. 11 and it is necessary to
develop LPF with a =0, b =0.5625, k = 2; Hyu(z) = (1 +4z '+62 *+4z +z *)/16.

The input data bit width is 12.

The filter SDF is shown in fig. 16. It consists of the IIR part (left) and the
FIR part (right).

Fig. 16. Low-pass filter SDF

This SDF is then retimed using the pipelining technique. Also, the

multiplication by b is replaced by an application-specific adder-based multiplier.

Then, b =0,4375 = O,lOOi means that the multiplication is performed as the
subtraction of the operand shifted by 4 bits from the operand shifted by 1 bit.
Similarly are implemented multiplication by coefficients in the FIR part.

The resulting filter SDF is shown in Fig. 17. It shows all the signals that
are involved in the calculations. The filtering result is divided by 32 using a shift
right to 5 bits, taking into account the transmission coefficients of the IIR and
FIR parts. The critical path is minimized to the delay of one adder due to the

retiming and pipelining, as well as the replacement of multiplication by addition.

25

Xio Xi3 Xia4 Xis

Fig. 17. Low-pass filter pipelined SDF

The bit width of the intermediate data in the FIR part is selected:
ne=n, +n,+3=2+12 + 3=17. Taking into account the formula (12), the
intermediate data bit width of the FIR part is ny =n.+ 4 = 17 + 4 = 21. The

resulting VHDL filter description is presented below.

Tibrary IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity LPF_HB_LAB2 is
port(
CLK : in STD_LOGIC;
RST : in STD_LOGIC;
X : in STD_LOGIC_VECTOR(11l downto 0);
§ : out STD_LOGIC_VECTOR(1l1l downto 0)
end LPF_HB_LAB2;

architecture synt of LPF_HB_LAB2 is
constant max:signed(3 downto 0):="0111";
constant min:signed(3 downto 0):="1100";
signal xi,xi_1,xi_2,xi_3,xi_4,xi_5:signed(16 downto 0);
signal qi,qi_1,qi_2,qi_3,mb,qgpx,mbp:signed(16 downto 0);
signal yi,yi_1,yi_2,yi_3,yi_4:signed(16 downto 0);
signal y01,y22,y34,y012,y34_1:signed(20 downto 0);
signal ys:signed(11l downto 0);

begin
IIR:process(CLK,RST)
begin

if RST = '"1' then

26

xi<=(others=>
xi_2<=(others

xi_l<=(others=
xi_3<=(others=

xi_4<=(others
yi<=(others=>
qi_l<=(others=>

0');
>'0");
>'0");
0'); qi<=(others=>"
'O); gi_2<=(others=
gi_3<=(others=>'0"); gpx<=(others=>
mb<= (others >'0") mbp<=(others=>
elsif CLK="1" and CLK' event then
Xi<= RESIZE(signed(x&"000"),17);
xi_l<= x1i;
Xi_2<= x1_1;
Xi_3<= xi_2;
Xi_4<= xi_3;
Xi_5<= xi_4;
gpx <= xi + qi_1;
mb <= shift_right(qpx,l) - shift_right(qpx,4);
qi <= xi_2 - mb;
qi_l<=
qi_2<=
qi_3<= qi_2;
mbp <= qi_3 + mb;
yi<= mbp + xi_5;
end if;
end process;

>
>
xi_5<=(others=>
0
=

- =OYOOO

0
0

q1
q1 1;

FIR:process(CLK,RST)
variable yt:signed(20 downto 0);
begin
if RST = '1' then
yi_l<=(others=
yi_3<=(others=
y0l <=(others=
y22 <=(others=
y34_1<=(others=>
elsif CLK="1"
yi_l<= yi;
yi_2<= yi_1;
yi_3<= yi_2;
yi_4<= yi_3;
yOl <= yi + resize((yi_1l &"00"),21) ;
y22 <= resize((yi_2 &"00"),21) + (yi_2 & "0");
y34 <= yi_4 + resize((yi_3 & "00"),21) ;
y34_1<= y34;
y012 <= y01 + y22;
yt:= y012 + y34_1;
ys<=yt(19 downto 8);
end if;
end process;
Y<= std_logic_vector(ys);

yi_2<=(others=>'0'

yi_4<=(others=>"'0"'

y012 <=(others= ?'0
>

VVVYV

y34 <=(others=> Q'?

5, ys <=(others=
and CLK'event then

end synt;

The test results derived on the test bench are shown in Fig.18.

27

ar FREQ 204 | | 153670476 ps |

ar MAGN 33

ar LOGMAGN | -35.654

Fig. 18. The magnitude-frequency response and the logarithmic frequency
response of the filter in Fig. 17

From the obtained charts, one can see that the filter has a suppression
level of 35.6 dB, a cutoff frequency of 0.112, and a start frequency of the
suppression band of 0.175.

When configuring the filter in the Xilinx Spartan-6 FPGA, the following

results are derived.

28

Slice Logic Milization Used | Available | Hilzation
Number of Shce Registars 382 18,224 9%
Number used 2t Flip Flops 382
Number used as Latches o
Number used as Latch-thrus]
Number used as AND/OR logics 1]
Number of Shice LUTs 263 2112 2%
Number used as logic 173 2112 1%
Number using O6 cutput only 165
Number using O5 output onby O
Numbar using 05 and OF 4
Number used as ROM)
Number used a Memory 1 2,176 1%
Number used as Dual Port RAM 0
Number usad as Singls Port RAM 0
Number used as Shift Register 1
MNumber using O6 output only 1
Number using OS output only)
Number using OF and 0%]
Number used exclusively as route-thrus &5
MNumber with same-siice regster load B8
Number with same-slice carry lcad 1
Number with othar load]
Number of cccupied Shices 7T 2,278 %
Nummber of MUXCYs used 192 4,556 4%
Number of LUT Flip Flop pairs used i
Number with an unusad Flip Flop 9 286 3%
Number with an unused LUT 23 28BE E%%
Number of fully used LUT-FF pairs 254 286 BB%
T e | R
ts_clk = PERIOD TIMEGRP "CLK" 2.8 ns HIGH | SETUP | 0.248ns| 2.552ns| 0| 0
50% I MINPERZOD I 0 igﬁﬂil 2.666nsl gl 0

So, the hardware volume of the synthesized filter is 77 CLB slices,
including 382 triggers and 263 LUTs.

29

The filter maximum clock frequency reaches f- = 1/2.666 = 375 MHz.
This is almost three times higher than for a filter that uses a multiplication block
(see Laboratory exercise 1). Thus, the technique of using application-specific
multiplication blocks not only reduces the hardware costs (DSP48 multiplication
blocks, each of which is equivalent to 20 adders) but also significantly increases

the filter performance.

Recommended literature

1. Cepruenko A.M. VHDL nid nOpoeKTUPOBaHUS BBIYHACIUTENBHBIX
ycrpoiictB. Kues: Ul "Kopneiuyk", TUJL J1C, 2003. — 208 c.

2. Ceprienko A.M. T'eHeparop pekypcuBHUX GUIBTpIB 0e3 OJIOKIB
MHOXEHHs. 2014. [enexkTpoHHUN pecypc]

http://kanyevsky.kpi.ua/GEN_MODUL/APgen/APMF _help_ukr.php

3. Ceprienko A. M., Ceprienko A.A. MeTonuka TMpPOEKTYBaHHS
muppoBux QuibTpiB 3 3actocyBaHHsM VHDL. //Ilpami 3 wmikHapomHoi
koHpepeniii InfoCom’2016, 1 — 2 rpyans 2016 p. -K:HTYY “KIII”, BIII
“ITomitexnika”. —2016. —C. 56-57. [enekTpoHHUH pecypc]

https://iconfs.net/w.infocom2016/metodyka-proektuvannya-tsyfrovykh-filtriv-

z-zastosuvannyam-vhdl

4. Ceprienxko A.M., Bunorpanos I0.M., Jlecuk T.M. Ludposa o6podxa
curnaniB. Komm’rorepuuii npaktukym moBoro VHDL. — Kuis. — 2012. — 106 c.

[eneKTpOHHMI pecypc]

http://kanyevsky.kpi.ua/wp-content/uploads/2017/11/DSP_LabS.pdf

5. Schlichthirle D. Digital Filters: Basics and Design. — Springer. Berlin
Heidelberg, —2011. — 527 p.

6. Khan S. A. Digital Design of Signal Processing Systems. A Practical
Approach. — Wiley. — 211. — 586 p. — Available at
http://dspace.bhos.edu.az/jspui/bitstream/123456789/1146/1/%5BShoab_Ahmed
_Khan%35D_Digital Design_of Signal Process.pdf

30

