
1 

 

 

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ 

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ 

«КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ 

СІКОРСЬКОГО» 

 

Методичні вказівки до виконання лабораторних робіт 
 

по курсу 

Технологія проектування комп’ютерних систем — 2 
( назва    дисципліни) 

для напряму  підготовки (спеціальностей) 
123      Комп’ютерна інженерія      

(шифр та  назва напряму,  спеціальностей) 

(in English) 

Methodical instructions for laboratory excercises 

in the course 

Computer Systems Design Technology – 2 

 

                    Уклав 
професор Анатолій Михайлович  

Сергієнко, д.т.н., с.н.с. кафедри ОТ  

 

Рекомендовано 
Вченою радою факультету  
інформатики та обчислювальної техніки  
НТУУ «КПІ ім. Ігоря Сікорського» 
Протокол № 11_ від  _7_.__05_____.2019 р. 

 

Київ -  2020 



2 

 

Laboratory Excercise 1 

Recursive digital filter design 

Goal: To gain the knowledge and skills in the development and testing of 

the high-speed digital filters in FPGA. 

Theoretical information 

Transfer function 

Recursive, or infinite impulse response (IIR) digital filters are often used 

in digital signal processing. These filters being configured in the field 

programmable gate arrays (FPGAs) have high speed and low energy 

consumption. Any IIR filter is described by a N-th order difference equation  

with the constant coefficients: 

y(n) = –    
N

k=1
aky(n–k) +  

M

r=0
brх(п–r).   (1) 

Thus, the n-th value of the output can be calculated on the basis of the n-

th value of the input x (n) and, accordingly, of N and M past values of the output 

y(n–k) and the input х(п–r). Then the impulse response of such a system can be 

defined as: 

h(n) = 
y(n)
x(n)  .       (2) 

The filtering of the signal x by the filter impulse response h is called the 

convolution. The impulse response (2) in the general case is infinite and then it 

is an IIR system. 

The convolution of h(n)*х(n) corresponds to the multiplication Н(z)Х(z) in 

the z-space. It should be noted that these convolution properties are valid only 

for the domain of the complex variable z, where the function does not diverge. 

The impulse response h(n) of system (2) is mapped in the z-space as a 

transfer function: 
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H(z) =
Y(z)
X(z)   = 


r=0

M

brz
–r

 1 +   
k=0

N

akz
-k
  ,                        (3) 

where ak, br are real numbers, the function z–т corresponds to the delay of the 

signal to m cycles of the sampling clock signal. Here, the number N is a system 

order. 

The transfer function (3) can be decomposed into the sum of elementary 

fractions. Most often, for example, if N  M; Q =N/2, it is factored into the 

product of fractions: 

H(z) = П
k=0

Q

 
b0,k +b1,kz

–1+b2,kz
–2

 1+a1,kz
–1+a2,kz

–2       .                       (4) 

The transfer function indicates the spectral properties of the linear system 

under consideration. On its basis, we find the magnitude-frequency 

characteristic |H(е-jt)| and the phase-frequency characteristic arg(H(е-jt)) of 

the system. 

Graphical representation of the IIR filter algorithm 

In the vast majority of DSP algorithms, еру signal flows are synchronous. 

Therefore, such algorithms can be represented by a synchronous data flow graph 

(SDF).  The signal flow graph is commonly used in the DSP algorithm conside-

ring. And such an algorithm is equivalent to homogeneous SDF. Table 1 shows 

the correspondence of the graphical notations of the elements of both signal flow 

graph and SDF. 

Consider an example of the IIR filtering algorithm of a high-pass second-

order filter (HPF) using a signal graph and SDF. The transfer characteristic of 

such a filter is equal to 

H(z) = 
1–z–2

 1+a1z
–1+a2z

–2  = (1–z–2) 
1

 1+a1z
–1+a2z

–2  ,       (5) 

(compare with (4)).  
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Table 1. Designation of the elements of the signal graph and GSPD 

Model element Signal flow graph Uniform SDF 

Signal х(п)  х(п) 
  х(п) 

 
Input, output ports, signal source  
х(п), and destination у(п)  или

 у(п) х(п) 
  х у 

 

Delay to k cycles  х(п)         х(п– k) z– k 

 
 х(п)    …   х(п– k) 

k  

Signal addition, adder node  
у(n) = a(n)+b(n) 

   a ( n ) 
у ( n ) 

b ( n ) + 
 

   a ( n ) 
у ( n ) 

b ( n ) + 
 

Multiplication to a constant  
у(n) = aх(n), multiplication node 

 х(п)    а 
 

 
*а

+

х(п) 
 

 

The differential equations correspond to the factors of the transfer 

function of the filter (compare with (1)): 

u(n) = х(п) – х(п–2); 

y(n) = u(n) – a1y(n–1) – a2y(n–2). 

The equations are calculated in the signal flow graph (Fig. 1). All delay 

elements are considered to be zeroed before the algorithm execution. The input 

datum х(п) is sampled with the sampling frequency fS. As soon as х(п) arrives, it 

immediately goes to the delay element for two cycles z–2 and to the adder “+”, 

where it is added to the delayed data х(п–2). The other elements of the graph 

model function in the same way: as soon as there is input datum for a node, it 

immediately triggers and outputs the output datum. 

 

 

 

 

 

 

 
Рис. 1. Signal flow graph of a LPF algorithm 

+ 
х(n)                      u(n)                                   y(n)  

y(n–1) z–2 
+ 

z–2 

z–1 
х(n–2)    

y(n–2) 

–   –   –   
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The graph in Fig. 1 can be considered as a structural diagram of some 

application-specific calculator, which adders, multipliers are derived by the 

mapping of addition, multiplication nodes, and registers are done by the map-

ping of delays. This variant of the algorithm is not a rational one because of the 

excessive number of delays. To optimize it, it is possible to rearrange the factors 

in formula (5) and to represent the delay z–2 as two consecutive delays z–1: 

u(n)= х(n) – a1u(n–1) – a2v(n–1); 
v(n) =u(n–1); 
y(n) = u(п) – v(п–1); 

The resulting signal graph is shown in Fig. 2, a. It corresponds to SDF in 

Fig. 2, b. This graph is called the canonical form of an IIR filter, since it 

contains a minimum number of delay elements for storing the intermediate 

results, which are the samples of delayed signals u(п) and v(п). 

 

 

 

 

 

 

 

 

The signal flow graph and respective SDF may have closed cycles. In Fig. 

2 such a cycle is highlighted by a thick line. If there is no delay elements in the 

closed loop, then the signals in it are endlessly re-assigned within one clock 

cycle, that is, the algorithm is blocked. Therefore, at least one delay element in 

each closed loop is a prerequisite for the absence of deadlocks in the signal flow 

graph or SDF. Another condition for the absence of the deadlocks is the initial 

data, for example, zero data in all the delay elements that belong to such cycles. 

 

+ 
– 

+ 
– 

a1 u(n–1) 

z–1 

– 

a2 v(n–1) 

z–1 

а) 

х(n)            u(n)               y(n) х у 

*а2 

*а1 

+ + 
– 

– – 

b) 

Fig. 2. Signal flow graph of HPF, а) and respective SDF, b) 
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IIR filters based on phase filters 

The phase filter has a magnitude of its transfer function H(z) which is 

equal to |H(z)|  = 1.  Its phase frequency response at a frequency fR has a phase 

shift equal to 180. If the signals from two parallel phase filters are added, the 

output signal is suppressed at the frequencies for which the phase difference is 

180. The resulting transfer function is: 

HS = (H1(z) ± H2(z))/2,                      (6) 

and it corresponds to various filters: low pass filter (LPF), high pass filter 

(HPF), bandpass filter (BPF), or notch filter. The filter orders play the role as 

well. For example, if the function H1(z) is of the second order, as in this 

laboratory work, then for H2(z) = 1 we obtain a notch filter, for H2(z) = –1 we do 

BPF, for H2(z) = ± z-1 we do  LPF (+), and HPF (–). 

The phase-based IIR filter is characterized by the stability at the low bit 

rate of its coefficients, high linearity of the frequency response, as well as high 

speed. The parameters of its frequency response, such as the position of the 

cutoff frequency, the slope of the transition band are directly dependent on the 

coefficients of the filter. 

The LPF transfer function, which can be reconfigured, is: 

HS = (H1(z) + z–1)/2, 

where    H1(z) = 
b + a(b + 1)z–1 + z–2

 1+ a(b + 1)z–1 + bz–2  ,        (7) 

a = cos(2πfR), 

b = (1t)/(1+t),      (8) 

t = tg(Δf), 

moreover, the coefficient a regulates the cutoff frequency fR, coefficient b sets 

the width of the transition band Δf or the cutoff sharpness. Thus, changing a in 

(7), the edge frequency of the passband is regulated within (0.1 – 0.4)fS with a 

suppression in the stop band up to 50 dB. 
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SDF of LPF and SDF of the bandpass filter, which are constructed in 

accordance with (6), are shown in Fig. 3. Therefore, these SDFs are 

distinguished only by the sign of addition and the presence or absence of a delay 

in the second branch of the input signal propagation. 

 

 

 

 

Fig. 3. SDF of LPF, (a) and bandpass filter SDF, (b) 

 

The bandpass filter works as follows. The same signal passes through two 

branches of the graph and a copy of it is subtracted at all frequencies except the 

resonance one, giving a zero result. At the resonant frequency fR, the phase filter 

returns the signal by 180 and as a result, the signal and its copy are added. LPF 

works similarly, but the signal in the phase filter returns 180 at frequencies 

above fR. 

Let us consider in detail several examples of SDF of the second-order 

phase filter. In the direct implementation of the formula (7), at least 6 

multiplication  nodes and 6 adder nodes are required in SDF. There is a more 

efficient SDF for this formula, which is called the wave-propagation filter graph 

because it is a waveguide model (Fig. 4). 

 

 

 

 

 

 

Figure 4. SDF for the transfer function (7) 

 

у 

*b 

+ 

– – 
х + + *a 

+ 

+ + 

а) 

у *½ 

 
х + H1(z) у *½ 

– 
х + H1(z) 

b) 
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Formula (7) can be reduced by rejecting the ability to directly control the 

characteristics of the filter: 

H12(z) = 
b + сz–1 + z–2

 1+ сz–1 + bz–2 ,                 (9) 

where с = a(b + 1). Respective SDF, which represents the cannonic filter 

structure, is shown in Fig. 5. The cannonic filter structure contains the 

minimum delay number which is equal to the filter order. 

 

 

 

 

 

Figure 5. SDF for the transfer function (9) in the canonical form 

 

Formula (9) corresponds to the difference equation (10). 

уi  = bxi + сxi-1
 + xi–2 – сyi–1

 – byi–2  .      (10) 

Equation (10) can be rewritten as follows 

qi  = xi – cqi-1
 – bqi–2 ;    (11) 

уi  = bqi + сqi-1
 + qi–2. 

If the delays in edges are not to be minimized, then equations (11) are 

satisfied in SDF, such as in Fig. 6. But we get only two multiplication 

operations. When selecting the common coefficients for parentheses in (10), we 

obtain the equation: 

уi   = b(xi – yi–2) + с(xi-1 –
 yi–1)

  + xi–2 .    (12) 

 

 

 

 

Figure 6. SDF for the transfer function (9) with excessive delay number 

xi yi 

-–

*b 

*c 

*b х у 

qi yi 

* 

b xi 

* 

c 
– 
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According to the equation (12) SDF is drawn, which is shown in Fig. 7. 

Due to the reuse of delays, the authors Mitra and Hirano had constructed the 

SDF example called MH2B, which is shown in Fig. 8. 

 

 

 

 

 

 

 

 

Fig.7. SDF for equation (12) 

 

 

 

 

 

 

 

 

Fig.8.  SDF  МН2В 

 

The thick line in SDF in Fig. 4 – 8 represents the critical path. The length 

of this path has the maximum value — 4tS + 2tM for SDF in fig. 4 and the 

minimum value for SDF in Fig. 5 and 6, which is equal to 2tS + tM at the cost of 

the larger number of multiplication nodes. 

 

 

 

у 

*b + 

xi 
х + 

*с + 

+ 

– 
– 

xi–1  xi–2  yi  

yi–1  yi–2  

у 

*b 

+ 

xi 
х 

+ 

*с 

+ – 

qi–1  

qi–2  

yi  
+ 

qi 
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Digital filter testing 

Determination of the frequency response of a filter is a typical procedure 

for its diagnosis and testing. For the analysis or measurement of the magnitude-

frequency response and the phase-frequency response of a IIR filter, a complex 

signal е–jn, which, should be fed to the input of the tested filter. Here,  = 2f is 

the frequency under consideration. This signal is called an analytical signal.  

Often, a simple method of checking is used which uses only the 

component cos(n) instead of the analytical signal. Then, the frequency 

response is measured at the output of the system, as a maximum of the resulting 

signal Re(H()), that is, it is measured at the moments when the second 

component is equal to Im(H()) = sin(n) = 0. The disadvantage of this method 

is the inaccuracy of measuring the maximum of the signal. 

A more accurate method is based on deriving the imaginary component 

Im(H()) after passing the result of Re(H()) through a Gilbert filter, which 

rotates the phase of the signal by 90. But such a filter introduces a significant 

distortion in the frequency response.  

Therefore, a signal graph such as in Fig. 9 should be used to analyze the 

IIR filter. It uses two identical copies of the filter with the function H(z) to 

which the sine and cosine components of the analytical signal are fed. 

Respectively, the components of the analytic response signal of the IIR filters 

are measured on their outputs. 

 

 

 

 

 

 

 

H(z) 

H(z) 

cos(n) 

sin(n) 

x2 + y2
 

–arctg








y

x    

Re(H())=x |H()| 

arg(H()) 
–Im(H())=y 

Fig. 9. Frequency response measurement of the real system H(z) 
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In the laboratory work, a test bench is used, having the structure as in Fig. 

10, which can be downloaded at: http://kanyevsky.kpi.ua/en/useful-ip-

cores/testbench-for-the-filter-testing/ The ports and tuning constants of this 

testbench unit are presented in Table 1. 

 

 

Fig.10. Filter testbench 

 

Filter bit width selecting 

The vast majority of IIR filters are calculated in computers or FPGAs 

using the integers or fixed-point numbers. When programming such a filter, a set 

of coefficients that meet the requirements are presented in a floating-point 

format. Then, the numbers of bits of quantization of the coefficients пк, the input 

data пх, and the results пу are chosen.   

As a rule, пх,пу  log2D, where D is the dynamic range of the signal. That 

is, every 6 decibels of the dynamic range account for at least one bit of data. 

The coefficients are scaled and rounded off, so that at  |bi| < 1 the integer 

value is equal 

b’i = ]2nxbi +0.5[ .                                 (11) 
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Table 1. Ports and  generic variables of the testbench module for testing 

the digital filters 

Port name Port meanings 

fsampl Integer sampling frequency, for example, 1000 kHz 

fstrt Starting frequency fo, the first frequency which is analyzed 

deltaf 
Frequency increase d, so in k steps the generator will output the 
frequency fo + k*d 

maxdelay 
The delay in signal samples, after which the output signal parameters will 
be estimated. Usually it is slightly higher than the maximum (group) 
delay of the filter which is tested. 

slowdown 
Factor, in which the filter speed is slowed down. If the input samples 
enter each clock cycle then slowdown=1, if the samples go in odd clock 
cycles then slowdown=2, etc. 

nn Input and output data width 

magnitude 
Integer magnitude of the generated sine/cosine waves. For example, if 
nn=8 then magnitude is any positive number less than 127. 

REO,IMO 
Cosine/ sine waves, represented by the nn bit integers, outputted by the 
component 

RERSP,IMRSP 
Filter output signals , which are responses to the cosine/ sine waves, and 
which must be ported to the nn-bit width inputs 

FREQ 
Frequency code of the given sine/cosine waves in this but the previous 
frequency step, which is equal to fo + (k-1)*d 

MAGN 
Estimated magnitude of the signal RERSP,IMRSP at the frequency 
FREQ 

LOGMAGN 
Estimated magnitude of the signal RERSP,IMRSP at the frequency 
FREQ in the logarithmical scale, i.e. in decibels. Note, the signal with the 
given magnitude is 0 db 

PHASE 
Estimated phase of the signal RERSP,IMRSP at the frequency FREQ 
represented in the range ± π 

ENA Enable signal, which strobes the filter inputs when slowdown>1 

 

The filter results are calculated by the formula (1). In this case, the adder 

accumulating the result should have such a bit width so that no overflow occurs. 

Moreover, the bit width of the product is пд = пк + пх, and the bit of the adder 

must be at least пс = log2S + пк+пх, where S is the theoretically possible 

maximum result of the formula (1). For the right half of the formula (1), which 

corresponds to the FIR filter, the maximum of the sum is equal to the sum of the 

modules of all the coefficients of the filter contained in the numerator of the 

formula of the transfer function, i.e. 



13 

 

nс = log2 
i=0

M

|bi|  + nк+ nх.                         (12) 

For the left half of the formula (1), the maximum of the sum can be much 

larger due to the amplification of the signal in the feedback. Such gain is 

proportional to the filter quality factor, which is proportional to the gain of the 

signal at the resonant frequency. For the phase filter (7) and (8), the quality 

factor of the filter increases sharply at b  1. 

In practice, for the phase filters and filters based on them, due to their low 

sensitivity to rounding errors, the bit of intermediate results is chosen as 

пс = пд + пх+ 3,     (13) 

where пд = 1,...,6 is chosen depending on the filter quality factor and is specified 

after its simulation. That is, this value is reduced to such a minimum, which 

provides the overflow absence for all inner signals. For example, when b <0.7 in 

(7), then it is enough пд = 1. 

The coefficient bit width for the phase filters may be less than one for 

other IIR filters. Usually. the bit width пк = пх is sufficient. This bit width can be 

reduced according to the results of the filter testing if the resulting frequency 

response requirements are satisfied. 

The filter result y(n) is taken as the highest пу bits of the sum (1), and the 

lower bits of the sum are truncated. Some other rounding algorithms can be used 

as well. 

Since пс can be quite a large number, and the probability of reaching the 

result of the maximum value is small (at resonant frequencies and large input 

signals), in practice, пс is chosen slightly less. But in this situation, the addition 

in (1) is performed by the algorithm of accumulation with saturation. According 

to this algorithm, if there is an overflow occurs, the result is replaced by the 

maximum number with the corresponding sign. The signal saturation simulates a 

similar process in the analog circuits and produces significantly less signal 

distortion than the overflow. 
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The following example shows the implementation of the saturation in 

VHDL. Consider  пс = 14, nд = 3 и ny = 8, and the resulting magnitude is less 

than 1, and a fixed point stands before the 8-th bit. Then the saturation operation 

of the accumulated result S is programmed as 

Y <= x”7F” when S(13 downto 10) > signed(“0001”), 
         X”80” when S(13 downto 10) < signed(“1111”), else 
         S(11 downto 3); 

Here, the constants x”7F” and x”80” represent the maximum value 0,99 

and minimum value –0,99. 

 

Task for work 

Develop a VHDL-project of a digital filter with a transfer function (6). 

The types of components H1(z) and H2(z) are set according to the variant 

from Table 2. The task number of this and other laboratory works coincides with 

the student number in the group list. In this case, in Table 2, H2(z), cut-off 

frequency (resonance frequency) fR, transition bandwidth Δf, and type of SDF 

are set. The coefficients a, b for the function (7) are calculated by formulas (8), 

and the coefficient c for the function (9) is calculated as c = a (b + 1). 

The bit width of the input and output data 

in the first group, bit width is 14, 

in the second – bit width is 16, 

in the third – bit width is 24, 

in the fourth – bit width is 18. 

The coefficient bit width is equal to пк = пх – 2. The bit width of the 

internal intermediate results is determined by the relation (13). 

The filter model is a description of a given SDF in VHDL. SDF is 

optimized by the retiming and pipelining methods. For example, it is advisable 

to add delays at the input and output of SDF, which are mapped in the 

corresponding registers of the input and output signals. 
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Table 2. Parameters and functions for laboratory work 

var.№  fR,   Δf  Fig. SDF H1(z) H2(z) 
1 0,1 0,05 4 z–1 
2 0,125 0,05 5 z–1 
3 0,15 0,05 6 z–1 
4 0,175 0,05 7 z–1 
5 0,20 0,05 8 z–1 
6 0,225 0,05 4 z–1 
7 0,25 0,05 5 z–1 
8 0,275 0,05 6 z–1 
9 0,1 0,05 7 –z–1 
10 0,125 0,05 8 –z–1 
11 0,15 0,05 4 –z–1 
12 0,175 0,05 5 –z–1 
13 0,20 0,05 6 –z–1 
14 0,225 0,05 7 –z–1 
15 0,25 0,05 8 –z–1 
16 0,275 0,05 4 –z–1 
17 0,1 0,1 6 1 
18 0,125 0,1 7 1 
19 0,15 0,1 8 1 
20 0,175 0,1 4 1 
21 0,20 0,1 5 1 
22 0,225 0,1 6 1 
23 0,25 0,1 7 1 
24 0,275 0,1 8 1 
25 0,125 0,1 4 –1 
26 0,15 0,1 5 –1 
27 0,175 0,1 6 –1 
28 0,20 0,1 7 –1 
29 0,225 0,1 8 –1 
30 0,25 0,1 4 –1 

 

The VHDL description of the filter should have appropriate comments 

that indicate the author and explain the execution of the algorithm. 

The developed filter should be tested in the testbench, such as in fig. 8. 

Also, the filter must be synthesized in FPGA CAD (Xilinx or Intel) for 

FPGAs selected arbitrarily, with the placement and routing procedures. 

The laboratory work protocol should contain: 

– filter algorithm, optimized filter SDF; 

– VHDL-text description of the filter; 
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– magnitude-frequency response charts in a linear and logarithmic scale 

derived during the testing; 

- synthesis results in the form of hardware costs and the minimum period 

of the clock frequency, given as a screenshot of the FPGA CAD. 

 

Execution example 

Consider SDF such as in Fig. 8 and it is necessary to develop a low-pass 

filter with a cutoff frequency fR =0.25 (this is the so-called half-pass filter) and a 

transition band Δf = 0.1. The width of the input data is 12. 

Then, according to (8) and (9), a = cos(2π0,25) = 0; t = tg(0,1) =0,325; 

b = (10,325)/(1+0,325) = 0,509; c = a(1 + b) = 0. So, the multiplication to c is 

removed. The resulting filter SDF is shown in Fig. 11. 

 

 

 

 

 

 

 

 

Fig. 11. Half-band low-pass filter SDF 

 

In Fig.11, an arrow across the arc represents a one-bit right shift, that is, a 

division in a half. 

Further, this SDF is subject to the retiming by pipelining. In this case, the  

graph edges are weighted with delays so that the algorithm remains unchanged, 

with the exception of latent delay and so that the critical path is minimized. The 
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+ 

x
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qi–1 
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resulting filter SDF is shown in Fig. 12. It shows the critical path and all the 

signals that are involved in the calculations. 

 

 

 

 

 

 

 

 

Fig. 12. Pipelined SDF of the  half-band low-pass filter 

 

The bit width of the intermediate signals  пс = пд + пх + 3 = = 2+12+3 = 17 

is selected. The bit width of the coefficients is пк = 12. The bit width of the 

product is пп  = пк+ пс = 17+12= 29. 

The resulting VHDL filter description is presented below. 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.NUMERIC_STD.all; 
entity LPF_HB_LAB is 
 port( CLK : in STD_LOGIC; 
  RST : in STD_LOGIC; 
  X : in STD_LOGIC_VECTOR(11 downto 0); 
  Y : out STD_LOGIC_VECTOR(11 downto 0) 
  ); 
end LPF_HB_LAB; 
   
architecture synt of LPF_HB_LAB is  

constant b:signed(11 downto 0):= 
 to_signed(integer(0.509*2.0**11),12); 

 constant max:signed(3 downto 0):="0111"; 
 constant min:signed(3 downto 0):="1100"; 
 signal xi,xi_1,xi_2,xi_3:signed(16 downto 0); 
 signal qi,qi_1,qi_2,mbp:signed(16 downto 0); 
 signal mb:signed(28 downto 0);  
 signal yi:signed(11 downto 0); 
begin 
 LPF:process(CLK,RST)  
   variable yt:signed(16 downto 0); 
 begin 
  if RST = '1' then 
   xi<=(others=>'0'); 

у 

*b 

+ 

x

 
х 
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   xi_1<=(others=>'0'); 
   xi_2<=(others=>'0'); 
   xi_3<=(others=>'0'); 
   yi<=(others=>'0'); 
   qi_1<=(others=>'0'); 
   qi_2<=(others=>'0'); 
   mb<=(others=>'0'); 
   mbp<=(others=>'0'); 
  elsif CLK='1' and CLK'event then 
   xi<= RESIZE(signed(X&"000"),17); 
   xi_1<= xi; 
   xi_2<= xi_1; 
   xi_3<= xi_2; 
   mb  <= b*(xi + qi_1); 
   qi_1<= xi_1 - mb(27 downto 11); 
   qi_2<= qi_1; 
   mbp <= qi_2 + mb(27 downto 11); 
 
   yt:= mbp + xi_3; 
   if yt(16 downto 13) > max  then  
    yi<= x"7ff"; 
   elsif yt(16 downto 13) < min  then  
    yi<= x"800"; 
   else  
    yi<=yt(14 downto 3);  
   end if; 
  end if; 
 end process; 
  Y<= std_logic_vector(yi); 
  
end synt; 

 

The test results of the filter model in the form of the magnitude frequency 

response, logarithmic frequency response and phase-frequency response are 

shown in Fig. 13. In this case, the input signal has an amplitude of 2000 <211, 

the sampling frequency is 1000 arbitrary units. 

The charts show that the filter has a suppression level of 21 dB, is really 

half-band filter (at a frequency of 250 = 1000/4, the transfer function is 

1459/2000  0,5 ), its phase characteristic approximately linear, but at a 

frequency of 332 the phase is changed sharply by an angle , and at this 

frequency, just a collapse occurs in the frequency response. 

When configuring the filter in the Xilinx Spartan-6 FPGA, the following 

results were obtained. 
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Fig. 13. Magnitude-frequency response, logarithmic frequency response and 

phase-frequency response of the developed filter 

 



20 

 

 

 
---------------------------------------------------------------------------------------------------------- 
  Constraint                                |    Check    | Worst Case |  Best Case | Timing |   Timing    
                                            |             |    Slack   | Achievable | Errors |    Score    
---------------------------------------------------------------------------------------------------------- 
  ts_clk = PERIOD TIMEGRP "CLK" 7.93 ns HIG | SETUP       |     0.000ns|     7.930ns|       0|           0 
  H 50%                                     | HOLD        |     0.382ns|            |       0|           0 
---------------------------------------------------------------------------------------------------------- 

 

So, the hardware costs of the synthesized filter are 31 CLB slices and 1 

block DSP48. The filter clock frequency reaches fC  = 1 / 7.93 = 126 MHz. 
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Laboratory Excercise 2 

Designing a digital filter without multiplication blocks 

Goal: To gain knowledge and skills in the development and testing of 

high-speed digital filters in FPGAs using techniques of the hardware costs 

reducing. 

Theoretical information 

Mask filters 

When the digital filter cascades are connected in series, the resulting 

frequency response is the intersection of the frequency responses of these 

cascades. It is said that the cascade frequency response masks the frequency 

response of other cascades, that is, such a cascade is a masking filter (Fig. 14). 

Thanks to masking, the resulting filter, consisting of simple filter cascades, has a 

high-quality frequency response. 

 

 

 

Fig. 14. An example of a three cascade filter with the mask filters 

 

Multiple delay filters 

Each term z-k in the transfer function H (z) in the filter signal graph 

corresponds to a delay of k cycles or a chain of k delay registers in the filter 

structure. If the number of delay registers in the filter is increased in n times, a 



22 

 

filter with frequency response Hn(z) = H(zn) is obtained. The frequency response 

of this filter has the same form as the prototype filter H(z), but in the range of 

0 — fS it is repeated n times, where fS is the sampling frequency. For example, in 

fig. 14 H1 = H(z), H2 = H(2z), H3 = H(4z). 

Replacing a multiplication block with a constant multiplier 

Most multiplication blocks in DSP are the blocks that multiply to the 

constants. If a constant can be represented in a canonical number system with a 

small number of nonzero digits, then the general purpose multiplier is worth to 

be replaced by an application-specific multiplier in the form of a tree of partial 

product adders. 

For example, consider a constant y = 9310 = 10111012. Then the product is 

ух = 93x =(26 +24 +23 +22 +1)x, 

that is, when representing the factor y in the binary form, we have 5 nonzero 

digits. The multiplication by such a factor consists of shifting the datum x by the 

corresponding number of bits and adding them on the tree of 4 adders. A 

diagram of such a tree is shown in Fig. 15a, on which the horizontal arrows 

show a shift to the right by the corresponding number of bits. 

 

  

 

 

 

 

 

Fig. 15. Examples of the constant multipliers 

 

If the constant is represented in the signed canonical notation, the number 

of nonzero digits decreases. It should be noted that the complexity of the adder 

and the subtractor are the same. For instance, 

 

       а)   b)     c) 
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y = 9310 = 10111012 = 1100
-
1012 = 10

-
100

-
1012 = (27 –25 – 22 +1). 

Then the number of adders decreases to three, as in Fig. 15, b. You can 

still improve the scheme after factorizing the coefficient. For instance, 

10
-
100

-
1012 =  (21 +1)( 25 – 1). 

Then the number of adders decreases to two, as in Fig. 15, c. 

 

Task for work 

To develop a VHDL project of a digital filter without the multiplication 

blocks with the following transfer function 

H(z) = H4(z)HМ(z) , 

where H4(z) = H3(zk),  

 H3(z) =(H1(z) + H2(z))/2, 

H1(z) is the same as in the laboratory work 1 and is implemented in the 

corresponding SDF, and HМ(z), H2(z), a, b, k are selected from Table 3. 

The filter model is a description of a given SDF in VHDL. SDF is 

necessarily optimized by the retiming and pipelining methods, as this is 

facilitated by the use of multiple delays in the SDF feedbacks. 

The testing of the developed filter is performed on a test bench, such as in 

fig. 8. 

Also, the filter has to be synthesized with the placement and routing in 

selected FPGA CAD (Xilinx or Intel) for FPGA, which is chosen arbitrarily. 

The protocol of the laboratory work in which the following items must be: 

– filter algorithm, and optimized SDF; 

– VHDL description of the filter, which should have appropriate 

comments indicating the author and explanations of the algorithm execution. 

 – frequency response charts in the linear and logarithmic scales derived 

from the filter testing; 
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Table 3. Parameters and functions for the laboratory work 2 

Variant 
№  

a b H2(z) k HМ(z) 

1 –0,3125 0,75 –1 2 (1 +z–1+z–2+z–3+z–4)/8 
2 –0,125 0,75 –1 2 (1 –z–1+z–2–z–3+z–4)/8 
3 –0,625 0,75 –1 2 (1 +4z–1+6z–2+4z–3+z–4)/16 
4 –0,875 0,75 –1 2 (1 –4z–1+6z–2–4z–3+z–4)/16 
5 –0,3125 0,5 –z–1 2 (1 +4z–1+6z–2+4z–3+z–4)/16 
6 –0,75 0,5 –z–1 2 (1 +z–1+z–2+z–3+z–4)/8 
7 –0,5 0,5 –z–1 2 (–1 +3z–1+5z–2+3z–3–z–4)/8 
8 –0,25 0,5 –z–1 2 (1+5z–1+10z–2+10z–3+5z–4+z–5)/32 
9 –0.875 0,5 z–1 2 (1+z–1+z–2+z–3+z–4+z–5+z–6+z–7)/8 
10   0.5 0,5 z–1 2 (1+z–1)(1+z–1+z–2+z–3)/8 
11 –0,25 0,25 z–1 3 (2 +5z–1+7z–2+5z–3+2z–4)/32 
12 –0,5 0,25 z–1 3 (1 +z–1+z–2+z–3+z–4+z–5)/8 
13 –0,125 0,25 z–1 3 (1 +z–1+2z–2+z–3+z–4)/8 
14 –0,75 0,25 z–1 3 (1 –z–1+z–3–z–4)/4 
15 –0,75 0,25 z–1 3 (1 +0.7z–1–0.7z–3–z–4)/4 
16 –0,625 0,25 z–1 3 (1 –z–1+z–2–z–3+z–4–z–5)/8 
17 –0,75 0,25 z–1 3 (1 –0.7z–1+0.7z–3–z–4)/4 
18 –0,5 0,25 z–1 2 (1 +z–1+z–3+z–4)/4 
19   0.25 0,25 z–1 2 (–1 +z–1+z–3–z–4)/4 
20 –0,625 0,25 z–1 2 (1 –z–1+z–3–z–4)/4 
21 –0,5 0,25 z–1 2 (–1 +2z–2–z–4)/4 
22 –0,75 0,25 z–1 2 (1 +2z–1+2z–2+2z–3+z–4)/8 
23 –0,6 0,25 z–1 2 (1–2z–1+2z–2–2z–3+z–4)/8 
24     0 0,25 z–1 2 (1+z–1+z–2+z–3+z–4+z–5+z–6)/8 
25 –0.1 0,25 z–1 2 (1–z–2+z–4–z–6)/4 
26 –0.15 0,25 z–1 3 (1+1.4z–1+z–2–z–4–1.4z–5–z–6)/8 
27 –0,5 0,25 z–1 3 (1 +z–1+z–2+z–3+z–4)/8 
28 –0,625 0,25 z–1 3 (–3–2z–1+5z–2+5z–3–2z–4–3z–5)/32 
29 –0,5 0,25 z–1 3 (1+5z–1+10z–2+10z–3+5z–4+z–5)/32 
30 –0,75 0,25 z–1 3 (3–2z–1+5z–2+5z–3–2z–4+3z–5)/32 

 
– synthesis results in the form of a screenshot showing the hardware costs 

and the minimum period of the clock frequency for the selected FPGA. 

The variant number for this lab is the same as the student number in the 

group list. 

The bit depth of input, output and intermediate data is the same as in the 

laboratory work 1. 
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Execution example 

Consider SDF of the IIR filter part such as in Fig. 11 and it is necessary to 

develop LPF with a = 0, b = 0.5625, k = 2; HМ(z) = (1 +4z–1+6z–2+4z–3+z–4)/16. 

The input data bit width is 12. 

The filter SDF is shown in fig. 16. It consists of the IIR part (left) and the 

FIR part (right). 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Low-pass filter SDF 

 

This SDF is then retimed using the pipelining technique. Also, the 

multiplication by b is replaced by an application-specific adder-based multiplier. 

Then, b = 0,4375 = 0,100
-
1 means that the multiplication is performed as the 

subtraction of the operand shifted by 4 bits from the operand shifted by 1 bit. 

Similarly are implemented multiplication by coefficients in the FIR part.  

The resulting filter SDF is shown in Fig. 17. It shows all the signals that 

are involved in the calculations. The filtering result is divided by 32 using a shift 

right to 5 bits, taking into account the transmission coefficients of the IIR and 

FIR parts. The critical path is minimized to the delay of one adder due to the 

retiming and pipelining, as well as the replacement of multiplication by addition. 
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Fig. 17. Low-pass filter pipelined SDF 

 

The bit width of the intermediate data in the FIR part is selected: 

пс = пд + пх + 3 = 2 + 12 + 3 = 17. Taking into account the formula (12), the 

intermediate data bit width of the FIR part is пу  = пс + 4 = 17 + 4 = 21. The 

resulting VHDL filter description is presented below. 

 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.NUMERIC_STD.all; 
entity LPF_HB_LAB2 is 
 port( 
  CLK : in STD_LOGIC; 
  RST : in STD_LOGIC; 
  X : in STD_LOGIC_VECTOR(11 downto 0); 
  Y : out STD_LOGIC_VECTOR(11 downto 0) 
  ); 
end LPF_HB_LAB2; 
   
architecture synt of LPF_HB_LAB2 is  
 constant max:signed(3 downto 0):="0111"; 
 constant min:signed(3 downto 0):="1100"; 
 signal xi,xi_1,xi_2,xi_3,xi_4,xi_5:signed(16 downto 0); 
 signal qi,qi_1,qi_2,qi_3,mb,qpx,mbp:signed(16 downto 0); 
 signal yi,yi_1,yi_2,yi_3,yi_4:signed(16 downto 0); 
 signal y01,y22,y34,y012,y34_1:signed(20 downto 0); 
 signal ys:signed(11 downto 0); 
begin 
 IIR:process(CLK,RST)  
 begin 
  if RST = '1' then 
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   xi<=(others=>'0');  xi_1<=(others=>'0'); 
   xi_2<=(others=>'0'); xi_3<=(others=>'0'); 
   xi_4<=(others=>'0'); xi_5<=(others=>'0'); 
   yi<=(others=>'0');  qi<=(others=>'0'); 
   qi_1<=(others=>'0'); qi_2<=(others=>'0'); 
   qi_3<=(others=>'0'); qpx<=(others=>'0'); 
   mb<=(others=>'0');  mbp<=(others=>'0'); 
  elsif CLK='1' and CLK'event then 
   xi<= RESIZE(signed(X&"000"),17); 
   xi_1<= xi; 
   xi_2<= xi_1;   
   xi_3<= xi_2;   
   xi_4<= xi_3;   
   xi_5<= xi_4;   
   qpx <= xi + qi_1; 
   mb  <= shift_right(qpx,1) - shift_right(qpx,4); 
   qi  <= xi_2 - mb; 
   qi_1<= qi;   
   qi_2<= qi_1; 
   qi_3<= qi_2; 
   mbp <= qi_3 + mb; 
   yi<= mbp + xi_5; 
  end if; 
 end process;   
  
 FIR:process(CLK,RST)  
   variable yt:signed(20 downto 0); 
 begin 
  if RST = '1' then 
   yi_1<=(others=>'0'); yi_2<=(others=>'0'); 
   yi_3<=(others=>'0'); yi_4<=(others=>'0'); 
   y01 <=(others=>'0'); y012 <=(others=>'0'); 
   y22 <=(others=>'0'); y34 <=(others=>'0'); 
   y34_1<=(others=>'0'); ys   <=(others=>'0'); 
  elsif CLK='1' and CLK'event then 
   yi_1<= yi; 
   yi_2<= yi_1; 
   yi_3<= yi_2; 
   yi_4<= yi_3; 
   y01 <= yi + resize((yi_1 &"00"),21) ; 
   y22 <= resize((yi_2 &"00"),21) + (yi_2 & "0"); 
   y34 <= yi_4 + resize((yi_3 & "00"),21) ; 
   y34_1<= y34; 
   y012 <= y01 + y22; 
   yt:= y012 + y34_1; 
   ys<=yt(19 downto 8);  
  end if; 
 end process; 
    Y<= std_logic_vector(ys); 
end synt; 

 

The test results derived on the test bench are shown in Fig.18.  
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Fig. 18. The magnitude-frequency response and the logarithmic frequency 

response of the filter in Fig. 17 

 

From the obtained charts, one can see that the filter has a suppression 

level of 35.6 dB, a cutoff frequency of 0.112, and a start frequency of the 

suppression band of 0.175. 

When configuring the filter in the Xilinx Spartan-6 FPGA, the following 

results are derived. 
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---------------------------------------------------------------------------------------------------------- 
  Constraint                                |    Check    | Worst Case |  Best Case | Timing |   Timing    
                                            |             |    Slack   | Achievable | Errors |    Score    
---------------------------------------------------------------------------------------------------------- 
  ts_clk = PERIOD TIMEGRP "CLK" 2.8 ns HIGH | SETUP       |     0.248ns|     2.552ns|       0|           0 
   50%                                      | HOLD        |     0.388ns|            |       0|           0 
                                            | MINPERIOD   |     0.134ns|     2.666ns|       0|           0 
---------------------------------------------------------------------------------------------------------- 

So, the hardware volume of the synthesized filter is 77 CLB slices, 

including 382 triggers and 263 LUTs. 
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The filter maximum clock frequency reaches fC = 1/2.666 = 375 MHz. 

This is almost three times higher than for a filter that uses a multiplication block 

(see Laboratory exercise 1). Thus, the technique of using application-specific 

multiplication blocks not only reduces the hardware costs (DSP48 multiplication 

blocks, each of which is equivalent to 20 adders) but also significantly increases 

the filter performance. 
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