
Is published in Advances in Computer Science for Engineering and
Education II, ICCSEEA'2019, Springer, Vol. 938. P.238–246

Software/Hardware Co-design of the Microprocessor for

the Serial Port Communications

Oleksii Molchanov
1
, Maria Orlova

1
 and Anatoliy Sergiyenko

1

1 Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, 03056, Ukraine

aser@comsys.kpi.ua

Abstract. The eight-bit stack processor architecture is proposed, which is de-

signed for the FPGA implementation. The microprocessor with this architecture

has small hardware costs, reduced software amount, and ability to add up to

hundred new user instructions to its instruction set. The microprocessor archi-

tecture is adapted for programming the serial port communications and is able

to perform the data stream parsing.

Keywords: stack processor, Forth, FPGA, VHDL.

1 Introduction

In recent years, field programmable gate arrays (FPGAs) became a reasonable alter-

native to von Neumann architecture-based approaches in computer systems design.

Increasing demand of performance and energy-efficiency is neatly fulfilled by capa-

bilities that FPGAs propose.

A need to organize the data exchange through the interfaces such as I2C, SPI,

Ethernet and others often occurs when a system on an FPGA is developed. At the

same time, it is more rational to use the microprocessor core, which has both small

hardware costs, and simple programming and debugging procedures. In addition, such

a microprocessor can replace the finite state machines, which are needed for control

of a designed system. RISC processors can be considered as those, which match de-

scribed characteristics.

There is a small selection of universal RISC processors offered by FPGA manu-

facturers such as Xilinx Picoblaze, Microblaze, Altera Nios, or clones of common

microcontrollers, such as i8051 [1−3]. But in many cases, the data exchange is per-

formed using a simple protocol and at a relatively small speed, such as in the case of

the I2C interface. In this situation, the capabilities of the RISC microprocessors are

used inefficiently.

For the implementation of many application-specific systems in FPGA, it is impor-

tant to have a configurable microcontroller with both minimized hardware and soft-

ware. This is dictated by the fact that the memory blocks, which are embedded in

FPGA, have significantly limited volume. It is desirable to have such a microcontrol-

ler which instruction set can be manually adjusted by the programmer to the needs of

the project, to simplify programming, allow program subroutines reuse and, as a re-

2

sult, to minimize the program length. Its instruction set has to be adapted for schedul-

ing the data transfer through the interfaces. Implementation of the architecture of such

a microprocessor is the goal of this work.

This paper is organized as follows: section 2 gives overview of related works; sec-

tion 3 describes architecture of the developed microprocessor; section 4 contains

evaluation results; conclusion of this work is presented in section 4.

2 Related works

The are several related works.

In [4] authors work on 8-bit input/output processor for performing USB operations.

It has the stack architecture and its instruction set consists of seventeen 14-bit instruc-

tions. This processor was tested on Altera Cyclone II FPGA and proven to become a

good substitution for the big USB IP Cores.

The parameterizable bitstream concept and its hardware implementation using the

small processor core is introduced in [5]. This concept introduces the fast generation

of parameterizable configurations in the commercial FPGAs and its implementation

states significantly reduces the resources (up to 80%) in comparison to the Micro-

Blaze soft processor when it is used as a configuration generation engine.

The novel soft processor core that executes the native Forth language is presented

in [6]. The core is designed to be a replacement of an embedded controller running

Forth in a VM. The branch prediction architecture, which is part of the designed core,

was introduced in order to the execution speed up.

In [7] a RISC 16-bit microcontroller Little16, is proposed. This novel microcon-

troller provides the small amount of silicon utilization with highly improved perfor-

mance for the efficient data flow control. It was tested on Xilinx Zynq7000 FPGA

platform and yielded a clock speed of 311 MHz at the cost of 366 LUT-6 blocks and

310 Flip-Flops.

The work [8] presents the 8-bit RISC processor with the reduced instruction set (29

instructions) and pipelining. It has 8-bit ALU, two 8-bit I/O ports, eight 8-bit general

purpose registers and 4-bit flag register. The proposed processor is verified in the Xi-

linx Spartan-6 SP605 Evaluation Platform.

The high performance and low power MIPS microprocessor and its implementa-

tion in FPGA are proposed in [9]. The authors use different methods to achieve the

high performance and low power consumption. They are unfolding transformation, C-

slow retiming technique, and double edge registering. The design was tested in Quar-

tus II 9.1 and Stratix II FPGAs and has demonstrated the high performance of the

proposed microprocessor.

Other related works are [10], [11], [12]. All mentioned above projects show the

high interrest to the small processor IP cores which are utilized for the simple control

tasks. Many of them have the minimized hardware volume, but a few processors are

well fitted for the serial communications.

3

3 Microprocessor architecture for serial port communications

2.1 Stack processors

The stack processor architecture is distinguished among all microprocessor architec-

tures. Its instruction set differs in that the operands have implicit addressing because

they are usually placed in a few fixed stack registers. Therefore, such instructions

have a short instruction length because they have the implicit register addressing.

Since these instructions support algorithms that actively use the stack addressing, the

programs that are composed for this processor occupy very small memory volume

[13].

Various authors have developed several projects of stack processors, which are im-

plemented in the FPGA and which are available for reproduction [14-16]. All of them

have 16-bit instructions and process 16-bit data. It is shown in [16], that the stack

processor has approximately 2.5 times less program length than the program for the

Xilinx MicroBlaze processor when the data exchange protocols through the serial

interfaces are implemented. In addition, all stack processors allow the designer to

extend the instruction set. To do so, the appropriate changes should be made to the

description of the processor at the register transfer level.

Consequently, the architecture of the stack processor provides both firmware

amount and hardware costs minimization. In addition, it is easy to develop compilers

for such architecture, because, as a rule, its instruction set is a subset of the Forth lan-

guage commands ([17]). It is known that this language is convenient for both gram-

matical parsing of lines and for the interpretation of high-level language operators.

The stack processor assembly language has the same syntax as the Forth language

[13]. Therefore, it is attractive to develop the stack processor architecture, which

gives not only minimized hardware costs but also simplified implementation of user

instructions, which are adapted to the serial port communications.

2.2 SM8 microprocessor

The structure of the developed SM8 microprocessor is shown in Fig.1. This processor

has the well-known two-stack architecture. It consists of a program counter PC, Data

RAM, Program ROM, instruction register IR, user instruction encoder UIE, return

address stack RS, data stack DS, ALU and peripheral registers R0,..., Rn, n < 32. The

registers T, N, P are the top registers of the DS-stack and are designed to store the

operands and the ALU results. The Program ROM has the volume up to 7936 bytes,

and the Data RAM has up to 256 bytes, and both of them have a common address

space.

The SM8 microprocessor instructions are sampled in Table 1. All instructions, ex-

cept CALL, LIT, and IF, have the 8-bit length. The branch and input-output instruc-

tions are executed in two cycles, and the rest of the instructions are single cycle in-

structions. Due to the frequent use of the CALL, LIT, and IF instructions, the average

duration of one instruction execution is 1.5 clock cycles.

4

 T N P DS R RS

 ALU

13

Program

ROM

PC

 IR
15 8 7 0

12 0

 Data

RAM

14 8

 UIE

7 0

SM

+1

13

8

 R0 Rn …

Addr

Fig.1. Structure of the SM8 microprocessor

2.3 User-defined instructions

The user-defined instructions are implemented as follows. First, the instruction code

is associated with the specified address in the user subroutine library, where the user-

defined subroutine is located. Second, when the control-flow approaches this instruc-

tion, it writes the instruction code to the IR register. Then the code is encoded by UIE

to the address of the subroutine, associated with it. The return address (address of the

next instruction) is saved in the RS stack. After that, the control-flow is passed to the

first action (sub-instruction) of the subroutine (subroutine is ‘called’) and all actions

which it contains are executed. The return of the control-flow from the subroutine to

the next instruction is performed by the RET instruction. This subroutine can also

read and process the operand fields that follow the byte of the opcode. But the return

address in the R register must be properly corrected.

This instruction is coded by a single byte comparing to the two-byte CALL instruc-

tion. Therefore, the user instructions can save the software memory volume compar-

ing to the equivalent instruction implementation using the CALL instruction.

The user-defined instructions can be stored in both Program ROM and Data RAM.

Thus, a microprocessor can store a certain dynamic data processing script, which is

formed by the user instructions and respective data bytes for them. It can perform a

line parsing as well. For example, this line can be a string of decimal calculator opera-

tions and digits.

5

Table 1. Instruction set of the SM8 microprocessor

Name Instruction Description

CALL 001 Addr PC+1 −> R, PC = Addr, subroutine call

INR 010 n Rn −> T, data receiving

OUTR 011 n Rn = Т, data sending

NOP 0000 0000 No operation

LIT 0000 0001 B В −> T, constant input

IF 0000 0010 D РС = РС + D by Т = 0, else РС = РС + 1

DUP 0000 0110 N = T

SWAP 0000 1001 X = T, T = N, N = X

@ 0000 1010 T = RAM[T], memory reading

! 0000 1011 RAM[T] = N, memory writing, T−>

R> 0000 1100 R −> T

>R 0000 1110 T −> R

RET 0000 1101 R −> PC, return from the subroutine

DROP 0000 1111 T−>, stack purge

NOT 0001 0000 T = not T

OR 0001 0001 T = T or N

AND 0001 0010 T = T and N

XOR 0001 0011 T = T xor N

ADD 0001 1000 T = T + N

INC 0001 1001 T = T + 1

SUB 0001 1010 T = T − N

DEC 0001 1011 T = T − 1

 1ххх хххх User instruction

2.4 Dynamic reconfiguration

A common problem for many FPGA-based architectures is the reconfiguration

process. Usually, the need in reconfiguration leads to recompilation of a hardware

circuit, which is a very CPU-intensive and time-consuming task (it can last from mi-

nutes to hours). The solution to this problem was presented in several works [18], [19]

as an implementation of task-specific architectures that can be reconfigured ‘on-the-

fly’. For example, in [19] the authors propose the segment-based architecture for the

XML filtering. The sequence of configured segments implements the XPath pattern of

the interesting part of the whole XML. This pattern can be changed ‘on-the-fly’, and

the hardware reconfiguration takes from nano- to microseconds.

Another approach is implemented in SM8. The processing script, which is saved in

RAM, can be rewritten or loaded from other memory, for example, from ROM. Such

simple rewriting allows the system changing the behavior of a chip in terms of micro-

seconds. As far as such action is performed in a synchronization point, neither data

loss nor wrong behavior happens. In such a way, the segments in [19] are reconfi-

gured without stop of the input data processing with preserving all currently

processed XML node tree parts.

6

2.5 Assembler of the SM8 microprocessor

An assembler was developed for programming the SM8 microprocessor. The assemb-

ler is written in Java and is called from the command line. Below, an example of a

program in the SM8 assembly language is shown, which performs a single-byte trans-

fer to the I2C port.

DEFINE nap 9 \ memory address width
DEFINE WAITRDY 82h \ user instruction – wait for port is ready
DEFINE DELAYN 83h \ user instruction – delay for N cycles
EQU START 2
EQU A_SEND 4
EQU D_SEND 5
EQU STOP 12
EQU PAUSE 15
ORG 256 \ program segment begin
\Write byte to I2C
: WR2I2C (r1 - I2C address, r2 - inner address, r3 - byte,
 r8 - I2C data, r9 - I2C control)
 lit START outr r9

inr r1 outr r8 lit A_SEND outr r9 WAITRDY
inr r2 outr r8 lit D_SEND outr r9 WAITRDY
inr r3 outr r8 lit D_SEND outr r9 WAITRDY

 lit STOP outr r9
 lit PAUSE outr r9
 lit 100 DELAYN xor if END
;
: DELAYN (N -- - N cycles)
 dec dup ifn DELAYN
;
: WAITRDY (do while rdy=1)
 inr r10 \0-th bit = rdy
 lit 1 and if WAITRDY
;
: END

The assembly language of the SM8 core uses the syntax of the Forth language.

Therefore, the comments here are enclosed in parentheses or followed after a back-

slash. The label follows a colon. Operators and literals are separated by spaces. A se-

micolon indicates the subroutine return instruction.

Some special operators (called the pragmas) are used in the script for the special

purpose. Table 2 contains the description of all pragmas.

As it is seen from the example above, none of the subroutines contain the RET in-

struction. It is explained by the fact that the semicolon sign represents the RET in-

struction in the Forth language. The user also can specify its own RETs in his subrou-

tine if needed.

The assembler generates two VHDL files, which contain the data and programs in

the memory and the user instruction encoder content. As a result, this assembly lan-

guage by its user properties occupies an intermediate position between the usual as-

sembly language and the high-level language. Thanks to this, writing and debugging

of programs is significantly accelerated. Besides, the VHDL model of the SM8 mi-

croprocessor core is equipped with a disassembler. Such a feature significantly simpli-

fies the program debugging in the VHDL simulator.

7

Table 2. Pragmas set for SM8 assembler

Name Arguments Description

DEFINE <name> <value> associates <name> with <value> for assembler. <name>

can be a common setting attribute (like nap – memory

address width) or name of a user-defined instruction.

<value> is a value for a setting or code of instuction

EQU <name> <value> defines constant with name <name>. Each occurrence of

<name> in script is replace with <value>

ORG <shift> defines a shift of next and all the following instructions

in memory to address <shift>

4 Experimental results

The SM8 microprocessor core is described in VHDL and has synthesized for different

FPGA circuits. Table 3 presents the results of the SM8 microcontroller synthesis in

the Xilinx Spartan-6 FPGA while setting the optimization parameters for hardware

costs. Also, the parameters of the microprocessors, which were synthesized in the

same conditions, are presented in this table for a comparison. The analysis of the table

shows that the SM8 microprocessor has the lowest hardware costs in the look-up

tables (LUTs), and in configured logical blocks (CLBs), and the highest speed in mil-

lions of instructions per second (MIPS) among stack processors. This is explained by

the fact that the reduction of the data bit width up to eight digits reduces both hard-

ware costs and delay in ALU.

Table 3. Parameters of the microprocessor core configured in Xilinx FPGA

Microprocessor Instruction bit

width

Hardware costs Max. clock fre-

quency, MHz

Speed,

MIPS LUTs CLBs

FS8051 [20] 8, 16, 24 1293 470 89 30

KCPSM6 [2] 18 87 26 140 70

MSL16 [14] 16 235 61 100 67

b16-small [15] 16 280 73 100 50

J1 [16] 16 342 93 106 70

SM8 8, 16 181 50 140 94

Other synthesis results comparison is presented in Table 3. These results show core

parameters for some Intel FPGAs.

The waveforms from the ActiveHDL simulator showing the first clock cycles of

the processor operation after its reset are presented in Fig. 2. The cop signal shows the

opcode as a result of the disassembler function.

8

Table 4. Microprocessor core parameters in Intel FPGA

Microprocessor FPGA Hardware volume Max. clock fre-

quency, MHz

Speed,

MIPS

Nios II/f [21] MAX10 2268 LE 150 135

Nios II/f [21] Cyclone 5 867 ALM 170 150

SM8 MAX10 1164 LE 150 100

SM8 Cyclone 5 210 ALM 205 140

Fig.2. First cycles of simulation in ActiveHDL

5 Conclusion

The proposed SM8 microprocessor core has small hardware costs at high performance

and reduced hardware volume. It is designed to implement simple control algorithms,

for example, to control the data exchanges through the I2C interface. The core is de-

scribed in VHDL and can be implemented in an FPGA of any series. The programmer

has the ability to add his own instructions to the instruction set without changing the

core description. The developed assembler provides to write and compile the pro-

grams written in the Forth language style. This simplifies the design of devices that

implement the protocols for the serial port communications through interfaces such as

RS232, I2C, SPI, Ethernet.

References

1. Processor Design. System-on-Chip Computing for ASICs and FPGAs. Nurmi, J. (ed.)

Springer (2007).

2. Chapman, K.: PicoBlaze for Spartan-6, Virtex-6, and 7-Series (KCPSM6). Xilinx, Inc.

(2012).

3. Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays. 4th

edn. Springer (2014).

4. Al-Dujaili, A., Hiung, L. H., Tan, S.: ASH1: A stack-based input/ output processor for

USB operations. Proc. of 2015 IEEE International Circuits and Systems Symposium

(ICSyS), pp. 76-79. IEEE (2015).

5. Abouelella, F., Bruneel, K., Stroobandt, D.: Efficiently Generating FPGA Configura-

tions through a Stack Machine. Proc. of 2010 International Conference on Field Pro-

grammable Logic and Applications, pp. 35-39. IEEE (2010).

9

6. Hanna, D. M., Jones, B., Lorenz, L., Porthun, S.: An embedded Forth core with floating

point and branch prediction. Proc. of 2013 IEEE 56th International Midwest Sympo-

sium on Circuits and Systems (MWSCAS’2013), pp. 1055-1058. IEEE (2013).

7. Hin, W. K., Chiu-Sing, C., Oliver: Littlel6 - small scale 16-bit controller architecture

for FPGA systems flow control. Proc. of TENCON 2015 - 2015 IEEE Region 10 Con-

ference, pp. 1926-1929. IEEE (2015).

8. Jeemon, J.: Low power pipelined 8-bit RISC processor design and implementation on

FPGA. Proc. of 2015 International Conference on Control, Instrumentation, Communi-

cation and Computational Technologies (ICCICCT), pp. 476-481. IEEE (2015).

9. Daghooghi, T.: Design and Development MIPS Processor Based on a High Perfor-

mance and Low Power Architecture on FPGA. International Journal of Modern Educa-

tion and Computer Science (IJMECS), Vol. 5, No. 5, pp. 49-59. MECS (2013). doi:

10.5815/ijmecs.2013.05.06.

10. Afzal, S., Hafeez, F., Akhter, M. O.: Single Chip Embedded System Solution: Efficient

Resource Utilization by Interfacing LCD through Softcore Processor in Xilinx FPGA.

International Journal of Information Engineering and Electronic Business (IJIEEB),

Vol. 6, No. 7, pp. 23-27. MECS (2015). doi: 10.5815/ijieeb.2015.06.04.

11. Oyetoke, O. O.: A Practical Application of ARM Cortex-M3 Processor Core in Embed-

ded System Engineering. International Journal of Intelligent Systems and Applications

(IJISA), Vol. 9, No. 7, pp. 70-88. MECS (2017). doi: 10.5815/ijisa.2017.07.08.

12. Rani, A., Grover, N.: Novel Design of 32-bit Asynchronous (RISC) Microprocessor &

its Implementation on FPGA. International Journal of Information Engineering and

Electronic Business, Vol. 10, No. 1, pp. 39-47. MECS (2018). doi:

10.5815/ijieeb.2018.01.06.

13. Koopman P.: Stack computers: the new wave. Ellis Horwood, Mountain View Press,

CA. (1989).

14. Leong P. H. W., Tsang P.K., Lee T.K.: A FPGA Based Forth Microprocessor. Proc. of

the IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM).

IEEE, USA, Napa Valley, California (1998).

15. Paysan B.: b16-small — Less is More. Proc. EuroForth 2004, Jul. 9 (2006).

16. Bowman J., Garage W.: J1: a small Forth CPU Core for FPGAs. Proc. EuroForth’2010,

January, pp. 1−4 (2010).

17. Kelly, M., Spies, N.: Forth: A Text and Reference. Englewood Cliffs, NJ. Prentice Hall,

(1986).

18. Najafi, M., Sadoghi, M., Jacobsen, H.-A.: Configurable Hardware-based Streaming Ar-

chitecture using Online Programmable-Block, ICDE 2015, Seoul, South Korea, April

13-17, pp. 819-830 (2015).

19. Teubner, J., Woods, L., Nie, C.: XLynx — An FPGA-based XML Filter for Hybrid

XQuery Processing. ACM Transactions on Database Systems (TODS), 38 (4), Article

23, November, ACM New York, NY (2013).

20. Maslennikov, O., Shevtshenko J., Sergyienko, A.: Configurable microcontroller array.

Proc. Parallel Computing in Electrical Engineering, PARELEC’02, 25 Sept. 2002. War-

saw, Poland. 47-49. IEEE (2003).

21. Nios II Performance Benchmarks. DS-N28162004. Intel. pp. 1-7. (2018).

